Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732138

RESUMO

D-bifunctional protein deficiency (D-BPD) is a rare, autosomal recessive peroxisomal disorder that affects the breakdown of long-chain fatty acids. Patients with D-BPD typically present during the neonatal period with hypotonia, seizures, and facial dysmorphism, followed by severe developmental delay and early mortality. While some patients have survived past two years of age, the detectable enzyme activity in these rare cases was likely a contributing factor. We report a D-BPD case and comment on challenges faced in diagnosis based on a narrative literature review. An overview of Romania's first patient diagnosed with D-BPD is provided, including clinical presentation, imaging, biochemical, molecular data, and clinical course. Establishing a diagnosis can be challenging, as the clinical picture is often incomplete or similar to many other conditions. Our patient was diagnosed with type I D-BPD based on whole-exome sequencing (WES) results revealing a pathogenic frameshift variant of the HSD17B4 gene, c788del, p(Pro263GInfs*2), previously identified in another D-BPD patient. WES also identified a variant of the SUOX gene with unclear significance. We advocate for using molecular diagnosis in critically ill newborns and infants to improve care, reduce healthcare costs, and allow for familial counseling.


Assuntos
Proteína Mitocondrial Trifuncional/deficiência , Proteína Multifuncional do Peroxissomo-2 , Humanos , Proteína Multifuncional do Peroxissomo-2/deficiência , Proteína Multifuncional do Peroxissomo-2/genética , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Recém-Nascido , Lactente , Masculino , Feminino , Sequenciamento do Exoma , Mutação da Fase de Leitura , 17-Hidroxiesteroide Desidrogenases/deficiência , 17-Hidroxiesteroide Desidrogenases/genética , Região de Recursos Limitados , Miopatias Mitocondriais , Cardiomiopatias , Doenças do Sistema Nervoso , Rabdomiólise
2.
Am J Med Genet A ; 188(1): 357-363, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623748

RESUMO

D-bifunctional protein (DBP) deficiency is a rare, autosomal recessive peroxisomal enzyme deficiency resulting in a high burden of morbidity and early mortality. Patients with DBP deficiency resemble those with a severe Zellweger phenotype, with neonatal hypotonia, seizures, craniofacial dysmorphisms, psychomotor delay, deafness, blindness, and death typically within the first 2 years of life, although patients with residual enzyme function can survive longer. The clinical severity of the disease depends on the degree of enzyme deficiency. Loss-of-function variants typically result in no residual enzyme activity; however, splice variants may result in protein with residual function. We describe a full-term newborn presenting with hypotonia, seizures, and unexplained hypoglycemia, who was later found to have rickets at follow up. Rapid whole genome sequencing identified two HSD17B4 variants in trans; one likely pathogenic variant and one variant of uncertain significance (VUS) located in the polypyrimidine tract of intron 13. To determine the functional consequence of the VUS, we analyzed RNA from the patient's father with RNA-seq which showed skipping of Exon 14, resulting in a frameshift mutation three amino acids from the new reading frame. This RNA-seq analysis was correlated with virtually absent enzyme activity, elevated very-long-chain fatty acids in fibroblasts, and a clinically severe phenotype. Both variants are reclassified as pathogenic. Due to the clinical spectrum of DBP deficiency, this provides important prognostic information, including early mortality. Furthermore, we add persistent hypoglycemia to the clinical spectrum of the disease, and advocate for the early management of fat-soluble vitamin deficiencies to reduce complications.


Assuntos
Perda Auditiva Neurossensorial , Hipoglicemia , Deficiência de Proteína , Éxons , Perda Auditiva Neurossensorial/genética , Humanos , Hipoglicemia/genética , Recém-Nascido , Proteína Multifuncional do Peroxissomo-2/genética , Deficiência de Proteína/genética
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(10): 1058-1063, 2021 Oct 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34719423

RESUMO

A 15-day-old boy was admitted to the hospital due to repeated convulsions for 14 days. The main clinical manifestations were uncontrolled seizures, hypoergia, feeding difficulties, limb hypotonia, and bilateral hearing impairment. Clinical neurophysiology showed reduced brainstem auditory evoked potential on both sides and burst-suppression pattern on electroencephalogram. Measurement of very-long-chain fatty acids in serum showed that C26:0 was significantly increased. Genetic testing showed a pathogenic compound heterozygous mutation, c.101C>T(p.Ala34Val) and c.1448_1460del(p.Ala483Aspfs*37), in the HSD17B4 gene. This article reports a case of D-bifunctional protein deficiency caused by HSD17B4 gene mutation and summarizes the epidemiological and clinical features, diagnosis, and treatment of this disease, with a focus on the differential diagnosis of this disease from Ohtahara syndrome.


Assuntos
Hipotonia Muscular , Deficiência de Proteína , Testes Genéticos , Humanos , Recém-Nascido , Masculino , Mutação , Proteína Multifuncional do Peroxissomo-2/genética , Deficiência de Proteína/genética
4.
Biochim Biophys Acta ; 1863(5): 934-55, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26686055

RESUMO

Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer's disease, autism and amyotrophic lateral sclerosis.


Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/deficiência , Transtornos Peroxissômicos/metabolismo , Peroxissomos/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética , Camundongos , Mutação , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/patologia , Peroxissomos/química , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Transmissão Sináptica
5.
Neurobiol Dis ; 58: 258-69, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23777740

RESUMO

Although peroxisome biogenesis and ß-oxidation disorders are well known for their neurodevelopmental defects, patients with these disorders are increasingly diagnosed with neurodegenerative pathologies. In order to investigate the cellular mechanisms of neurodegeneration in these patients, we developed a mouse model lacking multifunctional protein 2 (MFP2, also called D-bifunctional protein), a central enzyme of peroxisomal ß-oxidation, in all neural cells (Nestin-Mfp2(-/-)) or in oligodendrocytes (Cnp-Mfp2(-/-)) and compared these models with an already established general Mfp2 knockout. Nestin-Mfp2 but not Cnp-Mfp2 knockout mice develop motor disabilities and ataxia, similar to the general mutant. Deterioration of motor performance correlates with the demise of Purkinje cell axons in the cerebellum, which precedes loss of Purkinje cells and cerebellar atrophy. This closely mimics spinocerebellar ataxias of patients affected with mild peroxisome ß-oxidation disorders. However, general knockouts have a much shorter life span than Nestin-Mfp2 knockouts which is paralleled by a disparity in activation of the innate immune system. Whereas in general mutants a strong and chronic proinflammatory reaction proceeds throughout the brain, elimination of MFP2 from neural cells results in minor neuroinflammation. Neither the extent of the inflammatory reaction nor the cerebellar degeneration could be correlated with levels of very long chain fatty acids, substrates of peroxisomal ß-oxidation. In conclusion, MFP2 has multiple tasks in the adult brain, including the maintenance of Purkinje cells and the prevention of neuroinflammation but this is not mediated by its activity in oligodendrocytes nor by its role in very long chain fatty acid degradation.


Assuntos
Deficiências Nutricionais/complicações , Encefalite/etiologia , Ácidos Graxos/metabolismo , Degeneração Neural/etiologia , Proteína Multifuncional do Peroxissomo-2/deficiência , Células de Purkinje/patologia , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , Fatores Etários , Animais , Antígenos de Diferenciação/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica/genética , Locomoção/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteína Básica da Mielina/metabolismo , Nestina/genética , Proteína Multifuncional do Peroxissomo-2/genética
6.
Am J Cancer Res ; 13(5): 1884-1903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293151

RESUMO

Peroxisomal D-bifunctional protein (DBP) is an indispensable enzyme of the fatty acid ß-oxidation in the peroxisome of humans. However, the role of DBP in oncogenesis is poorly understood. Our previous studies have demonstrated that DBP overexpression promotes hepatocellular carcinoma (HCC) cell proliferation. In this study, we evaluated the expression of DBP in 75 primary HCC samples using RT-qPCR, immunohistochemistry, and Western blot, as well as its correlation with the prognosis of HCC. In addition, we explored the mechanisms by which DBP promotes HCC cell proliferation. We found that DBP expression was upregulated in HCC tumor tissues, and higher DBP expression was positively correlated with tumor size and TNM stage. Multinomial ordinal logistic regression analysis indicated that lower DBP mRNA level was an independent protective factor of HCC. Notably, DBP was overexpressed in the peroxisome and cytosol and mitochondria of tumor tissue cells. Xenograft tumor growth was promoted by overexpressing DBP outside peroxisome in vivo. Mechanistically, DBP overexpression in cytosol activated the PI3K/AKT signaling axis and promoted HCC cell proliferation by downregulating apoptosis via AKT/FOXO3a/Bim axis. In addition, overexpression of DBP increased glucose uptake and glycogen content via AKT/GSK3ß axis, as well as elevated the activity of mitochondrial respiratory chain complex III to increase ATP content via the mitochondrial translocation of p-GSK3ß in an AKT-dependent manner. Taken together, this study was the first to report the expression of DBP in peroxisome and cytosol, and that the cytosolic DBP has a critical role in the metabolic reprogramming and adaptation of HCC cells, which provides a valuable reference for instituting an HCC treatment plan.

7.
Front Pediatr ; 9: 679597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368026

RESUMO

Background: D-Bifunctional protein deficiency (D-BPD) is an autosomal recessive disorder caused by peroxisomal ß-oxidation defects. According to the different activities of 2-enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase protein units, D-bifunctional protein defects can be divided into four types. The typical symptoms include hypotonia and seizures. The gene that encodes D-BP was HSD17B4, which is located in chromosome 5q23.1. Case Presentation: We report the first case of D-BPD in a Chinese patient with neonatal onset. Cosmetic malformations, severe hypotonia and seizures are prominent. The blood bile acid profile showed increased taurocholic acid, glycocholic acid, and taurochenodeoxycholic acid. Very-long-chain fatty acids (VLCFAs) revealed significant increases in hexacosanoic acid (C26:0), tetracosanoic acid/docosanoic acid (C24:0/C22:0), and hexacosanoic acid/docosanoic acid (C26:0/C22:0). Cranial MRI revealed bilateral hemispheric and callosal dysplasia, with schizencephaly in the right hemisphere. EEG showed loss of sleep-wake cycle and epileptiform discharge. Other examinations include abnormal brainstem auditory evoked potentials (BAEPs) and temporal pigmented spots on the optic disc in the right eye. After analysis by whole-exome sequencing, heterozygous c.972+1G>T in the paternal allele and c.727T>A (p.W243R) in the maternal allele were discovered. He was treated with respiratory support, formula nasogastric feeding, and antiepileptic therapy during hospitalization and died at home due to food refusal and respiratory failure at the age of 5 months. Conclusions: Whole-exome sequencing should be performed in time to confirm the diagnosis when the newborn presents hypotonia, seizures, and associated cosmetic malformations. There is still a lack of effective radical treatment. Supportive care is the main treatment, aiming at controlling symptoms of central nervous system like seizures and improving nutrition and growth. The disease has a poor outcome, and infants often die of respiratory failure within 2 years of age. In addition, heterozygous deletion variant c.972+1G>T and missense mutations c.727T>A (p.W243R) are newly discovered pathogenic variants that deserve further study.

8.
Child Neurol Open ; 8: 2329048X211048613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660840

RESUMO

D-bifunctional protein (DBP) deficiency is a peroxisomal disorder with a high degree of phenotypic heterogeneity. Some patients with DBP deficiency develop progressive leukodystrophy in childhood. We report a 6-year-old boy with moderate hearing loss who presented with developmental regression. Brain magnetic resonance imaging demonstrated progressive leukodystrophy. However, very long chain fatty acids (VLCFAs) in the plasma were at normal levels. Whole-exome sequencing revealed compound heterozygous variants in HSD17B4 (NM_000414.3:c.[350A > T];[394C > T], p.[[Asp117Val]];[[Arg132Trp]]). The c.394C > T variant has been identified in patients with DBP deficiency and is classified as likely pathogenic, while the c.350A > T variant was novel and classified as uncertain significance. Although one of the two variants was classified as uncertain significance, an accumulation of phytanic and pristanic acids was identified in the patient, confirming type III DBP deficiency. DBP deficiency should be considered as a diagnosis in children with progressive leukodystrophy and hearing loss even if VLCFAs are within normal levels.

9.
Mol Genet Metab Rep ; 25: 100631, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32904102

RESUMO

INTRODUCTION: Peroxisomal D-bifunctional protein (DBP) deficiency is an autosomal recessive disorder historically described as a Zellweger-like syndrome comprising neonatal seizures, retinopathy, hearing loss, dysmorphic features, and other complications. The HSD17B4 gene encodes DBP which is essential for oxidation of peroxisomal substrates. We describe 4 patients - 2 unrelated female girls and 2 monozygotic twin sisters - with DBP deficiency and phenotypic diversity. PATIENT REPORTS: Patient 1 presented neonatally with hypotonia and seizures, and later on developed global developmental delay and regression, sensorineural hearing loss, nystagmus and cortical blindness. The brain MRI demonstrated bilateral peri-sylvian polymicrogyria. Whole exome sequencing revealed 2 mutations in the HSD17B4 gene (c.752G>A, p.(Arg251Gln); c.868 + 1delG).Patient 2 presented with hypotonia, motor delay, and sensorineural hearing loss in infancy, considerable developmental regression during her fourth year, nystagmus, and peripheral neuropathy. Brain MRI demonstrated cerebellar atrophy and abnormal basal ganglia and white matter signal, which appeared after the age of two years. Whole exome sequencing revealed 2 mutations in the HSD17B4 gene (c.14 T>G, p.(Leu5Arg); c.752G>A, p.(Arg251Gln)).Patients 3 and 4, two female monozygotic twins, presented with hypotonia, developmental delay, and macrocephaly from birth, and later on also sensorineural hearing loss, infantile spasms and hypsarrhythmia, and adrenal insufficiency. Brain MRI demonstrated delayed myelination, and an assay of peroxisomal beta oxidation suggested DBP deficiency. Sequencing of the HSD17B4 gene revealed the same 2 mutations as in patient 1. DISCUSSION: We describe 4 patients with variable and diverse clinical picture of DBP deficiency and particularly emphasize the clinical, biochemical, and neuroimaging characteristics. Interestingly, the clinical phenotype varied even between patients with the exact two mutations in the HSD17B4 gene. In addition, in two of the three patients in whom levels of VLCFA including phytanic acid were measured, the levels were within normal limits. This is expanding further the clinical spectrum of this disorder, which should be considered in the differential diagnosis of every patient with hypotonia and developmental delay especially if accompanied by polymicrogyria, seizures, sensorineural hearing loss, or adrenal insufficiency regardless of their VLCFA profile.

10.
Mol Syndromol ; 11(5-6): 309-314, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33510602

RESUMO

Peroxisomal disorders are a heterogeneous group of inborn errors of metabolism that result in impaired function of the peroxisome. Within this, single enzyme deficiencies are known to cause a constellation of symptoms not very different from the peroxisome biogenesis defects. Thus, there is a need to identify features that differentiate the two. We present 3 molecularly confirmed families: 1 with Acyl CoA oxidase deficiency and 2 with D-bifunctional protein deficiency. The clinical, biochemical, and radiological features of these patients have been discussed. We attempt to highlight the overlap in facial features as well as strikingly similar MRI findings of cerebellar atrophy and white matter hyperintensities. This unique clinical profile will not only help in reaching a quick diagnosis, but in this era of variants of uncertain significance, it will prove as supporting evidence. Finally, we expand the genotypic spectrum with a description of 3 homozygous novel mutations (HSD17B4: c.670C>T, c.1807T>C; ACOX1: 1.03-kb exonic deletion) and discuss the role of protein modeling its establishing pathogenicity.

11.
Mol Genet Metab Rep ; 19: 100459, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30815361

RESUMO

Zellweger spectrum disorders (ZSDs) are rare, debilitating genetic diseases of peroxisome biogenesis that require constant management and lifelong care. Nevertheless, the experience of family caregivers for children diagnosed with ZSD is not well understood. In this study, we sought to characterize the emotional experience of ZSD family caregivers. Three 90-min focus groups were conducted with thirty-seven parents (25 mothers and 12 fathers) of children with ZSD during a family advocacy conference. Focus groups were arranged by age of proband (Group 1: 0-4 years, Group 2: 5-10 years, Group 3: >11 years). Audio recordings of focus groups were transcribed and analyzed using software for coding purposes. Analyzed content was validated using peer debriefing, member checking, and method triangulation. Focus group results showed that nearly a third of ZSD caregivers described their overall emotional experience as a "rollercoaster." Additionally, three interconnected themes were identified: 1) range of emotions, 2) stressors, and 3) coping. Feeling overwhelmed and devastated were the most frequently described emotional responses. Corresponding stressors to these emotions included the burden of caregiver tasks associated with ZSD, and negative interactions with healthcare professionals. The most common coping strategies were acceptance of limitations of the diseases, redefining "normal" in the parenting experience, and advocating on behalf of the child and the patient community. This study underscores the profound emotional impact on parents who are caregivers for children with ZSDs, highlighting the utility of patient community feedback and qualitative approaches to fully characterize the overall family experience. Simple, targeted approaches focusing on improved communication between healthcare professionals and families, as well as offering resources for emotional support may greatly improve the lives of families living with ZSD and other rare pediatric diseases.

12.
J Neurol Sci ; 372: 6-10, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28017249

RESUMO

d-Bifunctional protein (DBP) deficiency is an autosomal recessive disorder of peroxisomal fatty acid oxidation caused by mutations in HSD17B4. It is typically fatal by the age of two years with symptom onset during the neonatal period, and survival until late childhood is rare. We herein report the case of a patient with DBP deficiency surviving until adulthood, who showed severe sensorineural deafness, disturbances in language acquisition, slowly progressive cerebellar ataxia, and peripheral neuropathy. This patient, in whom findings of prior investigations were nondiagnostic, had been followed up as having an early-onset spinocerebellar degeneration of unknown etiology. Whole-exome sequencing analysis at the age of 36 showed two heterozygous variants in the gene HSD17B4, which encodes DBP in this patient. A panel of peroxisomal investigations showed normal levels of very long chain fatty acids (VLCFAs) in plasma and elevated serum phytanic acid levels. Recently, an increasing number of patients with DBP deficiency surviving until adolescence/adulthood have been reported, in whom abnormalities in the levels of VLCFAs and other peroxisomal metabolites are marginal or nonexistent. Genetic analysis of HSD17B4 should be considered in adult patients with cerebellar ataxia, peripheral neuropathy, and pyramidal signs in addition to sensorineural auditory disturbance since childhood.


Assuntos
Proteína Multifuncional do Peroxissomo-2/deficiência , Proteína Multifuncional do Peroxissomo-2/genética , Deficiência de Proteína/diagnóstico , Deficiência de Proteína/genética , Adulto , Análise Mutacional de DNA , Progressão da Doença , Humanos , Masculino , Mutação , Proteína Multifuncional do Peroxissomo-2/sangue , Deficiência de Proteína/mortalidade
13.
Pediatr Neurol ; 52(5): 539-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25882080

RESUMO

BACKGROUND: Peroxisomal disorders are classified in two major groups: (1) peroxisome biogenesis disorders and (2) single peroxisomal enzyme/transporter deficiencies. D-bifunctional protein deficiency (OMIM #261515) is included in this last group of rare diseases and leads to an impaired peroxisomal beta-oxidation. D-bifunctional protein deficiencies are divided into four types based on the degree of activity of the 2-enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase protein units. PATIENT DESCRIPTION: We present the first Portuguese reported type II D-bifunctional protein deficiency patient, whose neonatal clinical picture is indistinguishable from a Zellweger spectrum disease. The clinical features and the neuroimaging findings of polymicrogyria raised suspicion of the diagnosis. After biochemical analysis, D-bifunctional protein deficiency was confirmed with the identification of a homozygous p.Asn457Tyr (N457Y) mutation of the HSD17B4 gene. The patient's parents were carriers of the mutated allele, confirming the patient homozygosity status and allowing prenatal diagnosis in future pregnancies. CONCLUSIONS: D-bifunctional protein deficiency is a rare, severe disease and the final diagnosis can only be accomplished after HSD17B4 gene sequencing. Treatment is supportive, aimed at improving nutrition and growth, controlling the central nervous system symptoms, and limiting the eventual progression of liver disease.


Assuntos
Encefalopatias Metabólicas Congênitas/complicações , Encefalopatias Metabólicas Congênitas/fisiopatologia , Hipotonia Muscular/etiologia , Proteína Multifuncional do Peroxissomo-2/deficiência , Convulsões/etiologia , Encefalopatias Metabólicas Congênitas/diagnóstico , Eletroencefalografia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino
14.
Mol Syndromol ; 6(3): 141-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26733776

RESUMO

D-Bifunctional protein deficiency, caused by recessive mutations in HSD17B4, is a severe disorder of peroxisomal fatty acid oxidation. Nonspecific clinical features may contribute to diagnostic challenges. We describe a newborn female with infantile-onset seizures and nonspecific mild dysmorphisms who underwent extensive genetic workup that resulted in the detection of a novel homozygous mutation (c.302+1_4delGTGA) in the HSD17B4 gene, consistent with a diagnosis of D-bifunctional protein deficiency. By comparing the standard clinical workup to diagnostic analysis performed through research-based whole-genome sequencing (WGS), which independently identified the causative mutation, we demonstrated the ability of genomic sequencing to serve as a timely and cost-effective diagnostic tool for the molecular diagnosis of apparent and occult newborn diseases. As genomic sequencing becomes more available and affordable, we anticipate that WGS and related omics technologies will eventually replace the traditional tiered approach to newborn diagnostic workup.

15.
Mol Genet Metab Rep ; 2: 41-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28649525

RESUMO

d-bifunctional protein (d-BP) deficiency is thought to lead to severe lipid metabolism disorders. To investigate the effect of naturally occurring missense mutations in the hydratase domain in d-BP, we constructed several d-BP hydratase variants and measured their activities. Missense mutations at sites whose conservation rates among 30 eukaryotes were < 70% did not affect hydratase activity. We predicted that missense mutations of highly conserved amino acids would markedly reduce activity. However, R562H and R562L, naturally occurring missense mutations of highly conserved amino acids, did not reduce activity. This result suggests that a missense mutation in a highly conserved amino acid does not always lead to severe lipid metabolism disorders. We also investigated the effect of G525V, which had been found in a mildly symptomatic patient with d-BP deficiency who was heterozygous for G525 and G658X. G525V markedly reduced hydratase activity. We had predicted that heterozygous G525V and G658X would lead to severely disordered lipid metabolism. However, the symptoms were inconsistent with this prediction. Characterizing mutations in the d-BP gene and the symptoms of d-BP deficiency may require pleiotropy, not only in vitro, studies.

16.
Gene ; 568(1): 61-8, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25967389

RESUMO

D-bifunctional protein deficiency (#OMIM 261515) is a rare autosomal recessive hereditary metabolic disorder causing severe clinical and biochemical abnormalities that are usually fatal in the course of the first years of life. This disease is classified as single enzyme peroxisomal disorder affecting the ß-oxidation pathway in this compartment. In this paper we present a full overview of the clinical presentation, magnetic resonance imaging, biochemical and molecular data of two Slovak D-bifunctional protein deficient patients. In the clinical presentation of both patients severe generalized hypotonia, depression of neonatal reflexes, craniofacial dysmorphism and seizures dominated starting from the second day of life. In both patients, who died up to two years of life, we found elevated plasma levels of very long chain fatty acids and we identified the presence of causative mutations in the HSD17B4 gene. In the first case, we found the homozygous mutation c.46G>A, which is responsible for a defect in the dehydrogenase domain. In the second patient, the heterozygous mutations c.1369A>G and c.1516C>T were present and functionally they are related to the hydratase domain of the protein. This combination of mutations in the second patient is very rare and has not been reported until now. The presence of mutations was examined in all family members, and the resulting data were successfully utilized for prenatal diagnosis.


Assuntos
Encefalopatias Metabólicas/diagnóstico , Proteína Multifuncional do Peroxissomo-2/deficiência , Sequência de Bases , Encefalopatias Metabólicas/genética , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Proteína Multifuncional do Peroxissomo-2/genética , Peroxissomos/enzimologia , Eslováquia
18.
Neurosci Lett ; 552: 71-5, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23933200

RESUMO

We studied the altered molecular species of lipids in brain and liver tissues, and fibroblasts from patients with Zellweger syndrome (ZS). ZS cerebellum samples contained a higher amount of sphingomyelin with shorter chain fatty acids compared to that in normal controls. The amount of phosphatidylethanolamine (PE) was less than half of that in controls, with the absence of the PE-type of plasmalogen. Gangliosides were accumulated in the brains and fibroblasts of ZS patients. To investigate whether or not impaired beta-oxidation of very long chain fatty acids and/or plasmalogen synthesis affects glycolipids metabolism, RNAi of peroxisomal acylCo-A oxidase (ACOX1) and glyceronephosphate O-acyltransferase (GNPAT) was performed using cultured neural cells. In neuronal F3-Ngn1 cells, ACOX1 and GNPAT silencing up-regulated ceramide galactosyltransferase (UGT8) mRNA expression, and down-regulated UDP-glucose ceramide glucosyltransferase (UGCG). These results suggest that both impaired beta-oxidation of very long chain fatty acids and plasmalogen synthesis affect glycolipid metabolism in neuronal cells.


Assuntos
Encéfalo/metabolismo , Fibroblastos/metabolismo , Glicolipídeos/metabolismo , Fígado/metabolismo , Fosfolipídeos/metabolismo , Síndrome de Zellweger/metabolismo , Acil-CoA Oxidase , Aciltransferases/genética , Estudos de Casos e Controles , Criança , Feminino , Inativação Gênica , Glucosiltransferases/biossíntese , Humanos , Lactente , Masculino , N-Acilesfingosina Galactosiltransferase/biossíntese , Neurônios/enzimologia , Neurônios/metabolismo , Oxirredutases/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA