Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Mol Ecol ; 33(12): e17372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709214

RESUMO

The NC10 phylum links anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophic pathway. Although numerous amplicon-based studies revealed the distribution of this phylum, comprehensive genomic insights and niche characterization in deep-sea environments were still largely unknown. In this study, we extensively surveyed the NC10 bacteria across diverse deep-sea environments, including waters, sediments, cold seeps, biofilms, rocky substrates, and subseafloor aquifers. We then reconstructed and analysed 38 metagenome-assembled genomes (MAGs), and revealed the extensive distribution of NC10 bacteria and their intense selective pressure in these harsh environments. Isotopic analyses combined with gene expression profiling confirmed that active nitrite-dependent anaerobic methane oxidation (n-DAMO) occurs within deep-sea sediments. In addition, the identification of the Wood-Ljungdahl (WL) and 3-hydroxypropionate/4-hydroxybutyrat (3HB/4HP) pathways in these MAGs suggests their capability for carbon fixation as chemoautotrophs in these deep-sea environments. Indeed, we found that for their survival in the oligotrophic deep-sea biosphere, NC10 bacteria encode two branches of the WL pathway, utilizing acetyl-CoA from the carbonyl branch for citric acid cycle-based energy production and methane from the methyl branch for n-DAMO. The observed low ratios of non-synonymous substitutions to synonymous substitutions (pN/pS) in n-DAMO-related genes across these habitats suggest a pronounced purifying selection that is critical for the survival of NC10 bacteria in oligotrophic deep-sea environments. These findings not only advance our understanding of the evolutionary adaptations of NC10 bacteria but also underscore the intricate coupling between the carbon and nitrogen cycles within deep-sea ecosystems, driven by this bacterial phylum.


Assuntos
Desnitrificação , Sedimentos Geológicos , Metano , Metano/metabolismo , Sedimentos Geológicos/microbiologia , Desnitrificação/genética , Água do Mar/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Metagenoma , Filogenia , Nitritos/metabolismo , Oxirredução
2.
Environ Sci Technol ; 58(2): 1152-1163, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166438

RESUMO

Coastal wetlands are hotspots for methane (CH4) production, reducing their potential for global warming mitigation. Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays a crucial role in bridging carbon and nitrogen cycles, contributing significantly to CH4 consumption. However, the role of n-DAMO in reducing CH4 emissions in coastal wetlands is poorly understood. Here, the ecological functions of the n-DAMO process in different saltmarsh vegetation habitats as well as bare mudflats were quantified, and the underlying microbial mechanisms were explored. Results showed that n-DAMO rates were significantly higher in vegetated habitats (Scirpus mariqueter and Spartina alterniflora) than those in bare mudflats (P < 0.05), leading to an enhanced contribution to CH4 consumption. Compared with other habitats, the contribution of n-DAMO to the total anaerobic CH4 oxidation was significantly lower in the Phragmites australis wetland (15.0%), where the anaerobic CH4 oxidation was primarily driven by ferric iron (Fe3+). Genetic and statistical analyses suggested that the different roles of n-DAMO in various saltmarsh wetlands may be related to divergent n-DAMO microbial communities as well as environmental parameters such as sediment pH and total organic carbon. This study provides an important scientific basis for a more accurate estimation of the role of coastal wetlands in mitigating climate change.


Assuntos
Nitratos , Áreas Alagadas , Metano , Anaerobiose , Poaceae , Oxirredução , Carbono , Nitritos
3.
J Environ Manage ; 357: 120843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588621

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Assuntos
Óxido Ferroso-Férrico , Nitritos , Nitritos/metabolismo , Transporte de Elétrons , Anaerobiose , Metano , Elétrons , Desnitrificação , Oxirredução , Bactérias/metabolismo , Bactérias Anaeróbias/metabolismo , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia
4.
J Environ Manage ; 369: 122389, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241602

RESUMO

Nitrate-dependent anaerobic methane oxidation (Nitrate-DAMO) is a novel and sustainable process that removes both nitrogen and methane. Previously, the metabolic pathway of Nitrate-DAMO has been intensively studied with some results. However, the production and consumption of nitrous oxide (N2O) in the Nitrate-DAMO system were widely disregarded. In this study, a Nitrate-DAMO system was used to investigate the effect of operational parameters (C/N ratio, pH, and temperature) on N2O accumulation, and the optimal operating conditions were determined (C/N = 3, pH = 6.5, and temperature = 20 °C). In this study, an enzyme kinetic model was used to fit the nitrate nitrogen degradation and the nitrous oxide production and elimination under different operating conditions. The thermodynamic model of N2O production and elimination in the system also has been constructed. Multiple linear regression analysis found that pH was the most important factor influencing N2O accumulation. The Metagenomics sequencing results showed that alkaline pH promoted the abundance of Nor genes and denitrifying bacteria, which were significantly and positively correlated with N2O emissions. And alkaline pH also promoted the production of Mdo genes related to the N2O-driven AOM reaction, indicating that part of the N2O was consumed by denitrifying bacteria and the other part was consumed by the N2O-driven AOM reaction. These findings reveal the mechanism of N2O production and consumption in DAMO systems and provide a theoretical basis for reducing N2O production and greenhouse gas emissions in actual operation.

5.
Environ Sci Technol ; 57(11): 4608-4618, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36826448

RESUMO

A methane-based membrane biofilm reactor (MBfR) has a suitable configuration to incorporate anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) processes because of its high gas-transfer efficiency and efficient biomass retention. In this study, the spatial distribution of microorganisms along with the biofilm depth in methane-based MBfRs was experimentally revealed, showing the dominance of anammox bacteria, n-DAMO bacteria, and n-DAMO archaea in the outer layer, middle layer, and inner layer of biofilms, respectively. The long-term and short-term experimental investigations in conjunction with mathematical modeling collectively revealed that microorganisms living in the outer layer of biofilms tend to use substrates from wastewater, while microorganisms inhabiting the inner layer of biofilms tend to use substrates originating from biofilm substratum. Specifically, anammox bacteria dominating the biofilm surface preferentially removed the nitrite provided from wastewater, while n-DAMO bacteria mostly utilized the nitrite generated from n-DAMO archaea as these two methane-related populations spatially clustered together inside the biofilm. Likewise, the methane supplied from the membrane was mostly consumed by n-DAMO archaea, while the dissolved methane in wastewater would be primarily utilized by n-DAMO bacteria. This study offers novel insights into the impacts of microbial stratification in biofilm systems, not only expanding the fundamental understanding of biofilms and microbial interactions therein but also providing a rationale for the potential applications of methane-based MBfRs in sewage treatment.


Assuntos
Nitratos , Nitritos , Águas Residuárias , Metano , Nitrogênio , Oxidação Anaeróbia da Amônia , Anaerobiose , Desnitrificação , Bactérias , Archaea , Biofilmes , Oxirredução , Reatores Biológicos/microbiologia
6.
Environ Res ; 216(Pt 4): 114802, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375502

RESUMO

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been recognized as a sustainable process for simultaneous removal of nitrogen and methane. The metabolisms of denitrifying anaerobic methanotrophs, including Candidatus Methanoperedens and Candidatus Methylomirabilis, have been well studied. However, potential roles of heterotrophs co-existing with these anaerobic methanotrophs are generally overlooked. In this study, we pulse-fed methane and nitrate into an anaerobic laboratory sequencing batch bioreactor and enriched a mixed culture with stable nitrate removal rate (NRR) of ∼28 mg NO3--N L-1 d-1. Microbial community analysis indicates abundant heterotrophs, e.g., Arenimonas (5.3%-18.9%) and Fimbriimonadales ATM1 (6.4%), were enriched together with denitrifying anaerobic methanotrophs Ca. Methanoperedens (10.8%-13.2%) and Ca. Methylomirabilis (27.4%-34.3%). The results of metagenomics and batch tests suggested that the denitrifying anaerobic methanotrophs were capable of generating methane-derived intermediates (i.e., formate and acetate), which were employed by non-methanotrophic heterotrophs for denitrification and biomass growth. These findings offer new insights into the roles of heterotrophs in n-DAMO mixed culture, which may help to optimize n-DAMO process for nitrogen removal from wastewater.


Assuntos
Desnitrificação , Metano , Nitrogênio/metabolismo , Nitratos , Anaerobiose , Reatores Biológicos , Oxirredução , Bactérias/metabolismo , Nitritos
7.
Environ Res ; 220: 115184, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586714

RESUMO

As a promising technology, the combination of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) with Anammox offers a solution to achieve effective and sustainable wastewater treatment. However, this sustainable process faces challenges to accumulate sufficient biomass for reaching practical nitrogen removal performance. This study developed an innovative membrane aerated moving bed biofilm reactor (MAMBBR), which supported sufficient methane supply and excellent biofilm attachment, for cultivating biofilms coupling n-DAMO with Anammox. Biofilms were developed rapidly on the polyurethane foam with the supply of ammonium and nitrate, achieving the bioreactor performance of 275 g N m-3 d-1 within 102 days. After the preservation at -20 °C for 8 months, the biofilm was successfully reactivated and achieved 315 g N m-3 d-1 after 188 days. After reactivation, MAMBBR was applied to treat synthetic sidestream wastewater. Up to 99.9% of total nitrogen was removed with the bioreactor performance of 4.0 kg N m-3 d-1. Microbial community analysis and mass balance calculation demonstrated that n-DAMO microorganisms and Anammox bacteria collectively contributed to nitrogen removal in MAMBBR. The MAMBBR developed in this study provides an ideal system of integrating n-DAMO with Anammox for sustainable wastewater treatment.


Assuntos
Compostos de Amônio , Nitratos , Desnitrificação , Metano , Nitrogênio , Oxidação Anaeróbia da Amônia , Anaerobiose , Reatores Biológicos/microbiologia , Oxirredução , Biofilmes
8.
J Environ Manage ; 340: 118001, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105103

RESUMO

Anaerobic ammonium oxidation (Anammox) coupled with Denitrifying anaerobic methane oxidation (DAMO) is an attractive technology to simultaneously remove nitrogen and mitigate methane emissions from wastewater. However, its nitrogen removal rate is usually limited due to the low methane mass transfer efficiency, low metabolic activity and slow growth rate of functional microorganisms. In this study, GAC and Fe-modified GAC (Fe-GAC) were added into Anammox-DAMO process to investigate their effects on nitrogen removal rates and then reveal the mechanism. The results showed that after 80-day experiments, the total nitrogen removal rate was slightly improved in the presence of GAC (3.94 mg L-1·d-1), while it reached high as 16.66 mg L-1·d-1 in the presence of Fe-GAC, which was ca.17 times that of non-amended control group (0.96 mg L-1·d-1). The addition of Fe-GAC stimulated the secretion of extracellular polymeric substance (EPS), improved the electron transfer capability and promoted the production of Cytochrome C. Besides, the key functional enzyme activities (HZS, HDH and NAR) were highest in the Fe-GAC group, which were approximately 1.06-1.56 times higher than those of GAC-amended and blank control groups. Microbial community analysis showed that the abundance of the DAMO archaea (Candidatus Methanoperedens) and Anammox bacteria (Candidatus Brocadia) were remarkably increased with the addition of Fe-GAC. Functional genes associated with nitrogen removal and methane oxidation in Fe-GAC system were up-regulated. This study provides a promising strategy for achieving high rate of nitrogen removal upon Anammox-DAMO process.


Assuntos
Compostos de Amônio , Carvão Vegetal , Metano , Nitrogênio/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Desnitrificação , Oxidação Anaeróbia da Amônia , Anaerobiose , Oxirredução , Reatores Biológicos/microbiologia , Compostos de Amônio/metabolismo , Nitritos/metabolismo
9.
Crit Rev Biotechnol ; 42(1): 145-161, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34157918

RESUMO

Anaerobic technologies are consolidated for sewage treatment and are the core processes for mining marketable products from waste streams. However, anaerobic effluents are supersaturated with methane, which represents a liability regarding greenhouse gas emissions. Meanwhile, anaerobic technologies are not capable of nitrogen removal, which is required to ensure environmental protection. Methane oxidation and denitrification processes can be combined to address both issues concurrently. Aerobic methane oxidizers can release intermediate organic compounds that can be used by conventional denitrifiers as electron donors. Alternatively, anoxic methanotrophic species combine methane oxidation with either nitrate or nitrite reduction in the same metabolism. Engineered systems need to overcome the long doubling times and low NOx consumption rates of anoxic methanotrophic microorganisms. Another commonly reported bottleneck of methanotrophic denitrification relates to gas-liquid mass transfer limitations. Although anaerobic effluents are supersaturated with methane, experimental setups usually rely on methane supply in a gaseous mode. Hence, possibilities for the application of methane-oxidation coupled to denitrification in full scale might be overlooked. Moreover, syntrophic relationships among methane oxidizers, denitrifiers, nitrifiers, and other microorganisms (such as anammox) are not well understood. Integrating mixed populations with various metabolic abilities could allow for more robust methane-driven wastewater denitrification systems. This review presents an overview of the metabolic capabilities of methane oxidation and denitrification and discusses technological aspects that allow for the application of methanotrophic denitrification at larger scales.


Assuntos
Desnitrificação , Águas Residuárias , Oxidação Anaeróbia da Amônia , Anaerobiose , Reatores Biológicos , Metano , Nitrogênio , Oxirredução
10.
Int Microbiol ; 25(3): 457-469, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35094192

RESUMO

Tangxun Lake is the largest urban lake in China, which is polluted by multiple wastewaters, and now is severely eutrophic. We detected diversity, abundance, and the coexistence of Candidatus Methylomirabilis oxyfera-like and anammox bacteria in different horizontal and vertical directions of the lake sediments through qPCR and clone library. Phylogenetic tree analysis showed that the Ca. Methylomirabilis oxyfera-like and anammox bacteria exhibited high diversity, and they belonged to group B-E and Ca. Brocadia genus, respectively. These two bacteria displayed higher diversity in polluted area than in other areas. Furthermore, they had great spatial variation of abundance both horizontally and vertically. The abundance of anammox bacteria was significantly higher than that of Ca. Methylomirabilis oxyfera-like bacteria. The stronger the human interference were, the higher abundances these two bacteria exhibited horizontally, whereas both their abundances and the ratio of anammox to Ca. Methylomirabilis oxyfera-like bacteria decreased with the increasing depth. Redundancy analysis indicated that nitrate was the most influential environmental factor to the abundance of these two bacteria. Ammonia, nitrite, total nitrogen, and organic matters were in positive correlation with the abundance of these two bacteria. Nitrate was slightly negatively correlated with the abundance of Ca. Methylomirabilis oxyfera-like bacteria, while it was positively correlated with that of anammox bacteria. Our results provided an insight into the effects of environmental factors such as ammonia, nitrite, and nitrate on the diversity and abundances of these two bacteria and theoretical basis for restoration of water.


Assuntos
Lagos , Nitritos , Amônia , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias/genética , Humanos , Metano , Nitratos , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
11.
Environ Res ; 214(Pt 3): 114069, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35964668

RESUMO

Denitrifying anaerobic methane oxidation (DAMO) is a novel biological process which could decrease nitrogen pollution and methane emission simultaneously in wastewater treatment. Salinity as a key environmental factor has important effects on microbial community and activity, however, it remains unclear for DAMO microorganisms. In this study, response of the enrichment of DAMO archaea and bacteria to different salinity was investigated from the aspect of process and microbiology. The results showed that the increasing salinity from 0.14% to 25% evidently deteriorated DAMO process, with the average removal rate of nitrate and methane decreased from 1.91 mg N/(L·d) to 0.07 mg N/(L·d) and 3.22 µmol/d to 0.59 µmol/d, respectively. The observed IC50 value of salinity on the DAMO culture was 1.73%. Further microbial analyses at the gene level suggested that the relative abundance of DAMO archaea in the enrichment decreased to 46%, 39%, 38% and 33% of the initial value. However, DAMO bacteria suffered less impact with the relative abundance maintaining over 75% of the initial value (except 1% salinity). In functional genes of DAMO bacteria, pmoA, decreased gradually from 100% to 86%, 43%, 15% and 2%, while mcrA (DAMO archaea) maintained at 67%-97%. This difference probably indicated DAMO bacteria appeared functional inhibition prior to community inhibition, which was opposite for the DAMO archaea. Results above-mentioned concluded that, though the process of nitrate-dependent anaerobic methane oxidation was driven by the couple of DAMO archaea and bacteria, they individually featured different response to high salinity stress. These findings could be helpful for the application of DAMO-based process in high salinity wastewater treatment, and also the understanding to DAMO microorganisms.


Assuntos
Metano , Nitratos , Anaerobiose , Archaea/genética , Bactérias/genética , Oxirredução , Estresse Salino
12.
Appl Microbiol Biotechnol ; 106(2): 743-754, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34982194

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) acts as a crucial link between biogeochemical carbon and nitrogen cycles. Nevertheless, very few studies have characterized n-damo microorganisms in high-latitude permafrost regions. Therefore, this study investigated the vertical distribution and diversity of n-damo bacterial communities in soil from three forest types in the permafrost regions of the Daxing'an Mountains. A total of 11 and 8 operational taxonomic units (OTUs) of n-damo 16S rRNA and pmoA genes were observed, respectively. Remarkable spatial variations in n-damo bacteria community richness, diversity, and structure were observed at different soil depths. Moreover, the abundances of n-damo bacteria (16S rRNA and pmoA genes) varied between 1.55 × 104 to 1.47 × 105 and 1.31 × 103 to 3.11 × 104 copies g-1 dry soil (ds), as demonstrated by quantitative PCR analyses. 13CH4 stable isotope tracer assays indicated that the potential n-damo rates varied from 0 to 1.26 nmol g-1 day-1, with the middle layers (20-40 cm and 40-60 cm) exhibiting significantly higher values than the upper (0-20 cm) and deeper layers (80-100 cm) in all three forest types. Redundancy analyses (RDA) indicated that total organic carbon (TOC), nitrate (NO3--N), and nitrite (NO2--N) were key modulators of the distribution of n-damo bacterial communities. This study thus demonstrated the widespread occurrence of n-damo bacteria in cold and high-latitude regions of forest ecosystems and provided important insights into the global distribution of these bacteria. KEY POINTS: • This study detected n-damo bacteria in soil samples obtained from the permafrost region of three forest types in the Daxing'an Mountains. • The community composition of n-damo bacteria was mainly affected by soil depth and not forest type. • The abundances of n-damo bacteria first increased and then decreased at higher soil depths.


Assuntos
Nitritos , Pergelissolo , Anaerobiose , Bactérias/genética , Ecossistema , Metano , Oxirredução , RNA Ribossômico 16S/genética
13.
J Environ Manage ; 318: 115527, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35759969

RESUMO

In this study, single-chamber three-electrode electrochemical sequencing batch reactor (ESBR) was set up to investigate the impact of applying potential on denitrifying anaerobic methane oxidation (DAMO) process. When the applied potential was +0.8 V, the conversion rate of nitrite to nitrogen was superior to those of other potentials. With the optimal potential of +0.8 V for 60 days, the nitrite removal rate of ESBR could reach 3.34 ± 0.28 mg N/L/d, which was 4.5 times more than that of the non-current control (0.74 ± 0.16 mg N/L/d). The DAMO functional bacteria Candidatus Methylomirabilis exhibited noticeable enrichment under applying potential, and its functional gene of pmoA was significantly expressed. Through untargeted LC-MS metabolomics analysis, applied potential was shown to affect the regulation of prior metabolites including spermidine, spermine and glycerophosphocholine that were related to the metabolic pathways of glycerophospholipid metabolism and arginine and proline metabolism, which had positive effects on DAMO process. These results show that applying electric potential could be a useful strategy in DAMO process used for methane and nitrogen removal.


Assuntos
Metano , Nitritos , Anaerobiose , Bactérias Anaeróbias/metabolismo , Reatores Biológicos , Desnitrificação , Metano/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredução
14.
Environ Res ; 193: 110533, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285154

RESUMO

Combining nitrate/nitrite dependent anaerobic methane oxidation (n-DAMO) and anaerobic ammonium oxidation (Anammox) is a promising sustainable wastewater treatment technology, which simultaneously achieve nitrogen removal and methane emission mitigation. However, the practical application of n-DAMO has been greatly limited by its extremely slow growth-rate and low reaction rate. This work proposes an innovative Membrane BioTrickling Filter (MBTF), which consist of hollow fiber membrane for effective methane supplementation and polyurethane sponge as support media for the attachment and growth of biofilm coupling n-DAMO with Anammox. When steady state with a hydraulic retention time (HRT) of 6.00 h was reached, above 99.9% of nitrogen was removed from synthetic sidestream wastewater at a rate of 3.99 g N L-1 d-1. This system presented robust capacity to withstand unstable partial nitritation effluent, achieving complete nitrogen removal at a varied nitrite to ammonium ratio in the range of 1.10-1.40. It is confirmed that n-DAMO and Anammox microorganisms jointly dominated the microbial community by pyrosequencing technology. The complete nitrogen removal potential at high-rate and efficient biomass retention (12.4 g VSS L-1) of MBTF offers promising alternative for sustainable wastewater treatment by the combination of n-DAMO and Anammox.


Assuntos
Compostos de Amônio , Metano , Anaerobiose , Reatores Biológicos , Desnitrificação , Nitratos , Nitritos , Nitrogênio , Oxirredução
15.
J Environ Manage ; 295: 113070, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153588

RESUMO

The recently discovered process, denitrifying anaerobic methane oxidation (DAMO), links the carbon and nitrogen biogeochemical cycles via coupling the anaerobic oxidation of methane to denitrification. The DAMO process, in this respect, has the potential to mitigate the greenhouse effect through the assimilation of dissolved methane. Denitrification via methane oxidation rather than organic matter, provides a new perspective to performing this once thought to be well established process. The two main species responsible for this process are "Candidatus Methylomirabilis oxyfera (M. oxyfera), and "Candidatus Methanoperedens nitroreducens" (M. nitroreducens). M. oxyfera is responsible of reducing nitrite while M. nitroreducens reduces nitrate to nitrite. These two microorganisms, despite their different pathways, were found to exist together in nature through a syntrophic relationship. Their co-existence with anaerobic ammonium oxidation (Anammox) bacteria was also revealed in the last decade. Anammox bacteria are chemolithoautotrophs, converting ammonium and nitrite to N2 and nitrate. They are responsible for the release of more than 50% of oceanic N2, hence play an important role in the global nitrogen cycle. Factors leading to the enrichment of DAMO cultures and their cultivation with Anammox cultures are of significance for improved nitrogen removal systems with decreased greenhouse effect, and even for further full-scale applications. This study, therefore, aims to present an updated review of the DAMO process, by focusing on the factors that might have a significant role in enrichment of DAMO microorganisms and their co-existence with Anammox bacteria. Factors such as temperature, pH, inoculum and feed type, trace metals and reactor configuration are among the ones discussed in detail. Factors, which have not been investigated, are also elucidated to provide a better understanding of the process and set research goals that will aid in the development of DAMO-centered wastewater treatment alternatives.


Assuntos
Compostos de Amônio , Metano , Anaerobiose , Bactérias/genética , Reatores Biológicos , Desnitrificação , Nitritos , Oxirredução
16.
Environ Res ; 186: 109612, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32668552

RESUMO

Nitrate (NO3-) reduction partitioning between denitrification, anaerobic ammonium oxidation (anammox), denitrifying anaerobic methane oxidation (DAMO), and dissimilatory nitrate reduction to ammonium (DNRA), can influence the nitrogen (N) use efficiency and crop production in arid farmland. The microbial structure, function and potential rates of denitrification, anammox, DAMO and DNRA, and their respective contributions to total NO3- reduction were investigated in rhizosphere and non-rhizosphere soil of four typical crops in north China by functional gene amplification, high-throughput sequencing, network analysis and isotopic tracing technique. The measured denitrification and DNRA rate varied from 0.0294 to 20.769 nmol N g-1 h-1and 2.4125-58.682 nmol N g-1 h-1, respectively, based on which DNRA pathway contributed to 84.44 ± 14.40% of dissimilatory NO3- reduction, hence dominated NO3- reduction processes compared to denitrification. Anammox and DAMO were not detected. High-throughput sequencing analysis on DNRA nrfA gene, and denitrification nirS and nirK genes demonstrated that these two processes did not correlate to corresponding gene abundance or dominant genus. RDA and Pearson's correlation analysis illustrated that DNRA rate was significantly correlated with the abundance of Chthiniobacter, as well as total organic matter (TOM); denitrification rate was significantly correlated with the abundance of Lautropia, so did TOM. Network analysis showed that the genus performed DNRA was the key connector in the microbial community of dissimilatory nitrate reducers. This study simultaneously investigated the dissimilatory nitrate reduction processes in rhizosphere and non-rhizosphere soils in arid farmland, highlighting that DNRA dominated NO3- reduction processes against denitrification. As denitrification results in N loss, whereas DNRA contributes to N retention, the relative contributions of DNRA versus denitrification activities should be considered appropriately when assessing N transformation processes and N fertilizer management in arid farmland fields.


Assuntos
Compostos de Amônio , China , Desnitrificação , Fazendas , Nitratos/análise , Nitritos , Nitrogênio , Oxirredução , Rizosfera , Solo
17.
Mikrochim Acta ; 187(6): 341, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444888

RESUMO

N-Doped silicon quantum dots (N-SiQD) were synthesized using N-[3-(trimethoxysily)propyl]-ethylenediamine and citric acid as silicon source and reduction agent, respectively. The N-SiQD shows a strong blue fluorescence with a high quantum yield of about 53%. It is found that a selective static quenching process occurs between N-SiQDs and Cu2+. Glyphosate can inhibit this phenomenon and trigger the rapid fluorescence enhancement of the quenched N-SiQDs/Cu2+ system due to the specific interaction between Cu2+ and glyphosate. With such a design, a turn-on fluorescent nanoprobe based on N-SiQD/Cu2+ system was established for rapid determination of glyphosate. The determination signal of N-SiQD/Cu2+ was measured at the optimum emission wavelength of 460 nm after excitation at 360 nm. Under optimal conditions, the turn-on nanoprobe showed a linear relationship between fluorescent response and glyphosate concentrations in the range 0.1 to 1 µg mL-1. The limit of determination was calculated to 7.8 ng mL-1 (3σ/S). Satisfactory recoveries were obtained in the determination of spiked water samples, indicating the potential use for environmental monitoring. Graphical abstract Schematic representation of N-SiQD/Cu2+ system for glyphosate determination. Fluorescence quenching of N-SiQDs induced by copper ions and the succedent fluorescent "turn on" triggered by glyphosate.


Assuntos
Corantes Fluorescentes/química , Glicina/análogos & derivados , Pontos Quânticos/química , Cobre/química , Fluorescência , Glicina/análise , Lagos/análise , Nitrogênio/química , Rios/química , Silício/química , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise , Glifosato
18.
J Environ Manage ; 273: 111151, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758912

RESUMO

Anaerobic oxidation of methane with denitrification (DAMO), as an important microbial process regulating methane emission, has been widely reported in freshwater ecosystems. However, the DAMO process and associated biogeochemical controls in estuaries remain poorly understood. Here, we used 13C- and 15N-labelling experiments to quantify the potential rates of DAMO and determined the crucial factors controlling the DAMO rates in the sediment of Yangtze Estuary. Potential rates of DAMO varied greatly across the estuary, ranging from 0.07 to 0.28 nmol CO2 g-1 d-1. Salinity negatively affected the DAMO and also showed an indirectly negative influence on DAMO process by high salinity inhibition on NO3- availability and denitrification. Nitrate concentrations were significantly correlated with the DAMO rates. Denitrification rates showed positive correlation with DAMO rates, implying that nitrate reduction drives the DAMO process. Sediment total organic carbon and NH4+ had important effects on DAMO rates. These results together indicate that DAMO process can occur and the DAMO rates were mainly controlled by sediment NO3- and denitrification in estuary. We further conclude that increasing NO3- load can drive the DAMO process with more important implications on methane sink in estuarine ecosystems.


Assuntos
Estuários , Metano , Anaerobiose , Desnitrificação , Ecossistema , Sedimentos Geológicos , Nitritos , Oxirredução , RNA Ribossômico 16S
19.
Crit Rev Biotechnol ; 39(5): 732-745, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30971140

RESUMO

Due to serious eutrophication in water bodies, nitrogen removal has become a critical stage for wastewater treatment plants (WWTPs) over past decades. Conventional biological nitrogen removal processes are based on nitrification and denitrification (N/DN), and are suffering from several major drawbacks, including substantial aeration consumption, high fugitive greenhouse gas emissions, a requirement for external carbon sources, excessive sludge production and low energy recovery efficiency, and thus unable to satisfy the escalating public needs. Recently, the discovery of anaerobic ammonium oxidation (anammox) bacteria has promoted an update of conventional N/DN-based processes to autotrophic nitrogen removal. However, the application of anammox to treat domestic wastewater has been hindered mainly by unsatisfactory effluent quality with nitrogen removal efficiency below 80%. The discovery of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) during the last decade has provided new opportunities to remove this barrier and to achieve a robust system with high-level nitrogen removal from municipal wastewater, by utilizing methane as an alternative carbon source. In the present review, opportunities and challenges for nitrate/nitrite-dependent anaerobic methane oxidation are discussed. Particularly, the prospective technologies driven by the cooperation of anammox and n-DAMO microorganisms are put forward based on previous experimental and modeling studies. Finally, a novel WWTP system acting as an energy exporter is delineated.


Assuntos
Metano/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Compostos de Amônio/metabolismo , Anaerobiose , Fontes Geradoras de Energia , Oxirredução , Eliminação de Resíduos Líquidos/métodos
20.
Appl Microbiol Biotechnol ; 102(5): 2441-2454, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29387953

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 106 to 2.09 × 107 and 2.07 × 106 to 3.38 × 107copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.


Assuntos
Sedimentos Geológicos/microbiologia , Methylococcaceae/isolamento & purificação , Methylococcaceae/metabolismo , Nitritos/metabolismo , Anaerobiose , China , DNA Bacteriano/genética , Estuários , Metano/metabolismo , Methylococcaceae/classificação , Methylococcaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA