Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(2): 1321-1328, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38159052

RESUMO

Disinfection byproducts (DBPs) are ubiquitous environmental contaminants, which are present in virtually all drinking water and linked to detrimental health effects. Iodinated-DBPs are more cytotoxic and genotoxic than chloro- and bromo-DBPs and are formed during disinfection of iodide-containing source water. Liquid-liquid extraction (LLE) paired with gas chromatography (GC)-mass spectrometry (MS) has been the method of choice in the study of low molecular weight iodinated-DBPs; however, this method is laborious and time-consuming and struggles with complex matrices. We developed an environmentally friendly method utilizing headspace solid phase extraction with the application of vacuum to measure six iodinated-trihalomethanes (I-THMs) in drinking water and urine. Vacuum-assisted sorbent extraction (VASE) has the ability to exhaustively and rapidly extract volatile and semivolatile compounds from liquid matrices without the use of solvent. Using VASE with GC-MS/MS provides improved analyte recovery and reduced matrix interference compared to LLE. Additionally, VASE enables extraction of 30 samples simultaneously with minimal sample handling and improved method reproducibility. Using VASE with GC-MS/MS, we achieved quantification limits of 3-4 ng/L. This technique was demonstrated on drinking water from four cities, where five I-THMs were quantified at levels 10-33 times below comparable LLE methods with 10 times lower volumes of sample (10 mL vs 100 mL).


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Água Potável/análise , Água Potável/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Reprodutibilidade dos Testes , Trialometanos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfetantes/análise , Halogenação
2.
Environ Sci Technol ; 58(3): 1700-1708, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38154042

RESUMO

Ozonation is universally used during water treatment but can form hazardous brominated disinfection byproducts (Br-DBPs). While sunlight exposure is advised to reduce the risk of Br-DBPs, their phototransformation pathways remain insufficiently understood. Here, sunlight irradiation was found to reduce adsorbable organic bromine by 63%. Applying high-resolution mass spectrometry, the study investigated transformations of dissolved organic matter in sunlit-ozonated reclaimed water, revealing the number and abundance of assigned formulas decreased after irradiation. The Br-DBPs with O/C < 0.6 and MW > 400 Da were decreased or removed after irradiation, with the majority being CHOBr compounds. The peak intensity reduction ratio of CHOBr compounds correlated positively with double bound equivalent minus oxygen ratios but negatively with O/C, suggesting that photo-susceptible CHOBr compounds were highly unsaturated. Mass difference analysis revealed that the photodegradation pathways were mainly oxidation aligned with debromination. Three typical CHOBr molecular structures were resolved, and their photoproducts were proposed. Toxicity estimates indicated decreased toxicity in these photoproducts compared to their parent compounds, in line with experimentally determined values. Our proposed phototransformation pathways for Br-DBPs enhance our comprehension of their degradation and irradiation-induced toxicity reduction in reclaimed water, further illuminating their transformation under sunlight in widespread environmental scenarios.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Desinfetantes/análise , Desinfetantes/química , Desinfetantes/toxicidade , Halogenação , Poluentes Químicos da Água/análise , Purificação da Água/métodos
3.
Environ Sci Technol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163399

RESUMO

Concerns over toxic nitrogenous disinfection byproducts (N-DBPs) necessitate identifying their precursors in source water. Natural organic amino compounds are known precursors to N-DBPs. Three Suwannee River (SR) standard reference materials (SRMs), humic acids (HA), fulvic acids (FA), and natural organic matter (NOM), are commonly used to study DBP formation, but the chemical makeup of amino compounds in SRSRMs remains largely unknown. To address this, we combined stable hydrogen/deuterium isotope labeling, HDPairFinder bioinformatics, and nontargeted high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) to characterize these compounds in SRSRMs. This method classifies reactive amines, provides accurate masses and MS/MS spectra, and quantifies intensities. We identified 2707 high-quality features with primary and/or secondary amines in SRSRMs and 75% of them having an m/z < 300. Across all three SRSRMs, 327 amino features were detected, while 856, 794, and 200 unique features were found in SRNOM, SRHA, and SRFA, respectively. In North Saskatchewan River (NSR) samples, a total of 6449 amino features were detected, 818 of them matched those in SRSRMs, and 87% of them were different between the two rivers. Using chemical standards, we confirmed 10 compounds and tentatively identified 5 more. This study highlights similarities and differences in reactive N-precursors in SRSRMs and local river water, enhancing the understanding of geo-differences in reactive N-precursors in different source waters.

4.
Ecotoxicol Environ Saf ; 269: 115854, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154210

RESUMO

Chlorination is a versatile technique to combat water-borne pathogens. Over the last years, there has been continued research interest to abate the formation of chlorinated disinfection by-products (DBPs). To prevent hazardous DBPs in drinking water, it is decided to diminish organic precursors, among which humic acids (HA) resulting from the decomposition and transformation of biomass. Metal-organic frameworks (MOFs) such as zeolitic imidazolate frameworks (ZIFs) have recently received tremendous attention in water purification. Herein, customized ZIF-67 MOFs possessing various physicochemical properties were prepared by changing the cobalt source. The HA removal by ZIF-67-Cl, ZIF-67-OAc, ZIF-67-NO3, and ZIF-67-SO4 were 85.6%, 68.9%, 86.1%, and 87.4%, respectively, evidently affected by the specific surface area. HA uptake by ZIF-67-SO4 indicated a removal efficiency beyond 90% in 4  90% after 60 min mixing the solution with 0.3 g L-1 ZIF-67-SO4. Notably, an acceptable removal performance (∼72.3%) was obtained even at HA concentrations up to 100 mg L-1. The equilibrium data fitted well with the isotherm models in the order of Langmuir> Hill > BET> Khan > Redlich-Peterson> Jovanovic> Freundlich > and Temkin. The maximum adsorption capacity qm for HA uptake by ZIF-67-SO4 was 175.89 mg g-1, well above the majority of adsorbents. The pseudo-first-order model described the rate of HA adsorption by time. In conclusion, ZIF-67-SO4 presented promising adsorptive properties against HA. Further studies would be needed to minimize cobalt leaching from the ZIF-67-SO4 structure and improve its reusability safely, to ensure its effectiveness and the economy of adsorption system.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Substâncias Húmicas , Cobalto , Adsorção , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 951: 175489, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142401

RESUMO

Only about 100 disinfection byproducts (DBPs) have been tested for their potential aquatic toxicity. It is not known which specific DBPs, DBP main groups, and DBP subgroups are more toxic due to the lack of experimental toxicity data. Herein, high priority specific DBPs, DBP main groups, DBP subgroups, most sensitive model aquatic species, potential PBT and PMT (persistent, bioaccumulative/mobile, and toxic) DBPs were virtually screened for 1187 updated DBPs inventory. Priority setting based on experimental and predicted acute and chronic aquatic toxicity data found that the aromatic and alicyclic DBPs in four DBPs main groups showed high priority because larger proportions of aromatic and alicyclic DBPs are in high hazard categories (i.e. Acute and/or Chronic Toxic-1 or Toxic-2) according to the criteria in GHS system compared to the aliphatic and heterocyclic DBPs. The halophenols, estrogen-DBPs, nonhalogenated esters, and nonhalogenated aldehydes were recognized as high priority DBPs subgroups. For specific DBPs, 19 and 31 DBPs should be highly concerned in the future study because both acute and chronic toxicity of those DBPs to all of the three aquatic life (algae, Daphnia magna, fish) were classified as Toxic-1 and Toxic-2, respectively. The Daphnia magna and algae were sensitive to the acute toxicity of DBPs, while the fish and Daphnia magna were sensitive to the chronic toxicity of DBPs. One potential PBT (Tetrachlorobisphenol A) and four potential PMT DBPs were identified. For verification, the acute toxicity of four DBPs on three aquatic organism were performed, and their tested acute toxicity data to three aquatic organisms were consistent with the predictions. Our results could be beneficial to government regulators to adopt effective measures to limit the discharge of high priority DBPs and help the scientific community to develop or improve disinfection processes to reduce the production of high priority DBPs.

6.
Chemosphere ; 364: 143062, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127188

RESUMO

Micro/nanoplastics can act as vectors for organic pollutants and enhance their toxicity, which has been attributed to the ingestion by organisms and the "Trojan horse effect". In this study, we disclosed a non-ingestion pathway for the toxicity enhancement effect of nanoplastics. Initially, the combined toxicity of polystyrene microplastics (40 µm) or nanoplastics (50 nm) with three disinfection byproducts (DBPs) to a marine polychaete, Platynereis dumerilii, was investigated. No toxic effect was observed for the micro/nanoplastics alone. The microplastics showed no effect on the toxicity of the three DBPs, whereas the nanoplastics significantly enhanced the toxicity of two aromatic DBPs when the polychaete was in its non-feeding early life stage throughout the exposure period. The microplastics showed no interaction with the P. dumerilii embryos, whereas the nanoplastics agglomerated strongly on the embryonic chorion and fully encapsulated the embryos. This could contribute to higher actual exposure concentrations in the microenvironment around the embryos, as the concentrations of the two aromatic DBPs on the nanoplastics were 1200 and 120 times higher than those in bulk solution. Our findings highlight an important and previously overlooked mechanism by which nanoplastics and organic pollutants, such as DBPs, pose a higher risk to marine species at their vulnerable early life stages. This study may contribute to a broader understanding of the environmental impacts of plastic pollution and underscore the necessity to mitigate their risks associated with DBPs.

7.
Chemosphere ; 363: 142761, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969215

RESUMO

The presence of microplastics (MPs) products and particles in the environment can significantly impact the human body. Most MPs that enter the environment also enter the water cycle. During sunlight light irradiation (especially ultraviolet (UV) part) or UV disinfection, many of these MPs, particularly those rich in surface functional groups like thermoplastic polyurethanes (TPU), undergo physicochemical changes that can affect the formation of disinfection byproducts (DBPs). This study investigates the physicochemical changes of TPU in water after exposure to UV irradiation and incubation in the dark, as well as the formation of DBPs after chlorination. The results show that TPU undergo chain breakage, oxidation, and cross-linking when exposed to UV irradiation in an aqueous system. This leads to fragmentation into smaller particles, which facilitates the synthesis of DBPs. Subsequent research has demonstrated that the TPU leaching solution produces a significantly higher DBP content than the chlorination of TPU MPs, particularly at high concentrations of CHCl3. Therefore, it is important to give greater consideration to the soluble DBP precursors released by TPU.


Assuntos
Desinfecção , Poliuretanos , Raios Ultravioleta , Poluentes Químicos da Água , Poliuretanos/química , Desinfecção/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Microplásticos/química , Halogenação , Desinfetantes/química , Desinfetantes/análise , Purificação da Água/métodos
8.
J Hazard Mater ; 475: 134918, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878428

RESUMO

Total organic halogen (TOX) is used to describe total amount of halogenated DBPs. Typically, once a chlor(am)inated water sample is collected, it is necessary to add a quenching agent to quench the residual disinfectant so that further reactions to form more DBPs during the holding time can be prevented. In this study, we evaluated the effects of four quenching agents: ammonium chloride (NH4Cl), ascorbic acid, sodium sulfite (Na2SO3), and sodium thiosulfate (Na2S2O3) on the decomposition of TOX, aliphatic and aromatic halogenated DBPs under various quenching conditions (quenching time, pH, quenching ratio, temperature). The results showed that ascorbic acid had the least impact on TOX. Ascorbic acid appeared to be the most suitable quenching agent for aliphatic halogenated DBPs, especially since it could preserve more haloacetonitriles than other quenching agents. Both ascorbic acid and Na2SO3 could be used for the analysis of aromatic halogenated DBPs. The lower pH (pH 6.0), not excessive quenching agents and lower temperature (4 ºC) were all conducive to the preservation of TOX and halogenated DBPs. Importantly, unknown TOX (UTOX) also contained significantly toxic components. It was also found that addition of quenching agents might lead to underestimation of UTOX by researchers. SYNOPSIS: The quenching agents and quenching conditions for the analysis of total organic halogen, aliphatic and aromatic halogenated DBPs formed from chlor(am)ination were investigated.

9.
Chemosphere ; 359: 142306, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734255

RESUMO

Amino acids (AAs) account for about 15-35% of dissolved organic nitrogen (DON), and are known as the important precursors of nitrogenous disinfection by-products (N-DBPs). Determining the formation potential (FP) of AAs to DBPs is used to reveal the key precursors of DBPs for further control, while the ideal method for N-DBPs FP of AAs during chlorination is not revealed. In this study, the ideal FP test models for five classes of priority DBPs during chlorination of four representative AAs (accounted for about 35% of total AAs) were analyzed. For haloaldehydes (HALs), haloketones (HKs), haloacetonitriles (HANs), haloacetamides (HAMs), and halonitromethanes (HNMs), their FPs during chlorination of four AAs were 0.1-13.0, 0.01-1.1, 0.1-104, not detectable (nd)-173, and nd-0.4 µg/mg, respectively. The FPs of priority DBPs had significant deviations between different FP test models and different tested AAs. For HALs, the model, whose chlorine dosage was determined by 15 × molar concentration of AAs [Cl (mM) = 15 × M](named: model II), was the ideal model. For HKs, model II was also the ideal FP test model for AAs with ≤3 carbons, while for AAs with 4 carbons, the model, whose chlorine dosage was determined by keeping the residual chlorine at 1 ± 0.2 mg/L after 24 h of reaction (named: model 4), was the ideal model. For HANs and HNMs, model 4 was the ideal FP test model for most of the studied AAs. The performance of HAMs during chlorination of amino acids was totally different from other P-DBPs, and model 3 was recommended to be the ideal model, in which chlorine dosage was determined by 3 × mass concentration of AAs [Cl (mg/L) = X × DOC]. This study is a reference that helps researchers select an ideal model for N-DBPs FP study of AAs.


Assuntos
Aminoácidos , Cloro , Desinfetantes , Desinfecção , Halogenação , Poluentes Químicos da Água , Aminoácidos/química , Aminoácidos/análise , Cloro/química , Desinfetantes/química , Desinfetantes/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
10.
Water Res ; 256: 121562, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604064

RESUMO

Halophenylacetamides (HPAcAms) have been identified as a new group of nitrogenous aromatic disinfection byproducts (DBPs) in drinking water, but the toxicity mechanisms associated with HPAcAms remain almost completely unknown. In this work, the cytotoxicity of HPAcAms in human hepatoma (HepG2) cells was evaluated, intracellular oxidative stress/damage levels were analyzed, their binding interactions with antioxidative enzyme were explored, and a quantitative structure-activity relationship (QSAR) model was established. Results indicated that the EC50 values of HPAcAms ranged from 2353 µM to 9780 µM, and the isomeric structure as well as the type and number of halogen substitutions could obviously induce the change in the cytotoxicity of HPAcAms. Upon exposure to 2-(3,4-dichlorophenyl)acetamide (3,4-DCPAcAm), various important biomarkers linked to oxidative stress and damage, such as reactive oxygen species, 8­hydroxy-2-deoxyguanosine, and cell apoptosis, exhibited a significant increase in a dose-dependent manner. Moreover, 3,4-DCPAcAm could directly bind with Cu/Zn-superoxide dismutase and induce the alterations in the structure and activity, and the formation of complexes was predominantly influenced by the van der Waals force and hydrogen bonding. The QSAR model supported that the nucleophilic reactivity as well as the molecular compactness might be highly important in their cytotoxicity mechanisms in HepG2 cells, and 2-(2,4-dibromophenyl)acetamide and 2-(3,4-dibromophenyl)acetamide deserved particular attention in future studies due to the relatively higher predicted cytotoxicity. This study provided the first comprehensive investigation on the cytotoxicity mechanisms of HPAcAm DBPs.


Assuntos
Desinfecção , Água Potável , Água Potável/química , Humanos , Células Hep G2 , Relação Quantitativa Estrutura-Atividade , Acetamidas/toxicidade , Acetamidas/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Estresse Oxidativo/efeitos dos fármacos , Desinfetantes/toxicidade , Desinfetantes/química , Espécies Reativas de Oxigênio/metabolismo
11.
J Hazard Mater ; 472: 134597, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38759281

RESUMO

The 10 µm polystyrene and polyethylene-terephthalate microplastics (MPs), prevalent in finished drink water, were employed to investigate the effect of normal dosage UVC-based advanced-oxidation-processes (UVC-AOPs) on the interaction between MPs and their derived disinfection-byproducts (DBPs) during subsequent chlorination-disinfection, in the presence of Br-, for the first time. The results indicated that UVC/H2O2 caused higher leaching of microplastic-derived dissolved-organic-matter (MP-DOM), with smaller and narrower molecular-weight-distribution than UVC and UVC/peroxymonosulfate (UVC/PMS). The trihalomethanes (as dominant DBPs) molar-formation-potentials (THMs-MFPs) for MP-DOM leached in different UVC-AOPs followed the order of UVC/H2O2>UVC/PMS>UVC. The adsorption of formed THMs, especially Br-THMs, back on MPs was observed in all MPs suspensions with or without UVC-AOPs pre-treatment. The Cl-THMs adsorption by MPs is more sensitive to UVC-AOPs than Br-THMs. The adsorption experiments showed that UVC-AOPs reduce the capacity but increase the rate of THMs adsorption by MPs, suggesting the halogen and hydrogen bonding forces governed the THMs adsorption rate while hydrophobic interaction determines their adsorption capacity. The UVC-AOPs pre-treatment sharply increased the total yield of THMs via both indirectly inducing MP-DOM leaching and directly increasing the THMs-MFPs of MPs by oxidation. 21.36-41.96% of formed THMs adsorbed back on the UVC-AOPs-pretreated MPs, which might increase the toxicity of MPs.

12.
Water Res ; 250: 121039, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142503

RESUMO

Ozone‒chlor(am)ine is a commonly used combination of disinfectants in drinking water treatment. Although there are quite a few studies on the formation of some individual DBPs in the ozone‒chlor(am)ine disinfection, an overall picture of the DBP formation in the combined disinfection is largely unavailable. In this study, the effects of ozone dose on the formation and speciation of organic brominated disinfection byproducts (DBPs) in subsequent chlorination, chloramination, or chlorination‒chloramination of simulated drinking water were investigated. High-molecular-weight, aliphatic, alicyclic and aromatic brominated DBPs were selectively detected and studied using a powerful precursor ion scan method with ultra performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (UPLC/ESI-tqMS). Two groups of unregulated yet relatively toxic DBPs, dihalonitromethanes and dihaloacetaldehydes, were detected by the UPLC/ESI-tqMS for the first time. With increasing ozone dose, the levels of high-molecular-weight (m/z 300-500) and alicyclic and aromatic brominated DBPs generally decreased, the levels of brominated aliphatic acids were slightly affected, and the levels of dihalonitromethanes and dihaloacetaldehydes generally increased in the subsequent disinfection processes. Despite different molecular compositions of the detected DBPs, increasing ozone dose generally shifted the formation of DBPs from chlorinated ones to brominated analogues in the subsequent disinfection processes. This study provided a comprehensive analysis of the impact of ozone dose on the DBP formation and speciation in subsequent chlor(am)ine disinfection.


Assuntos
Desinfetantes , Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Água Potável/análise , Poluentes Químicos da Água/química , Desinfetantes/análise , Purificação da Água/métodos , Halogenação
13.
Environ Pollut ; 344: 123394, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266699

RESUMO

Microplastics (MPs) are ubiquitously present in source water and undergo ultraviolet (UV) aging in aquatic environments before entering drinking water treatment plants. The presence of MPs in drinking water can impact the formation of halogenated disinfection byproducts (DBPs) during chlorine disinfection, yet the exact effect of MPs on DBP formation remain unclear. In this study, we conducted an investigation into the influence of non-aged and UV-aged MPs on halogenated DBP formation in drinking water and unveiled the underlying mechanisms. In comparison to source water samples devoid of MPs, the total organic halogen concentration was reduced by 19%-43% and 4%-13% in the drinking water samples containing non-aged and aged MPs, respectively. The differing effects on halogenated DBP formation can be attributed to the alternation in physical and chemical characteristics of MPs following UV aging. Aged MPs exhibited larger surface area with signs of wear and tear, heightened hydrophilicity, surface oxidation, increased oxygen-containing functional groups and dechlorination during the UV aging process. Both non-aged and aged MPs possess the capability to adsorb natural organic matter, leading to a reduction in the concentration of DBP precursors in the source water. However, the release of organic compounds from aged MPs outweighed the adsorption of organics. Furthermore, as a result of the surface activation of MPs through the UV aging process, the aged MPs themselves can also serve as DBP precursors. Consequently, the presence of halogenated DBP precursors in source water increased, contributing to a higher level of DBP formation compared to source water containing non-aged MPs. Overall, this study illuminates the intricate relationship among MPs, UV aging, and DBP formation in drinking water. It highlights the potential risks posed by aged MPs in influencing DBP formation and offers valuable insights for optimizing water treatment processes.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Cloro/química
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124739, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959692

RESUMO

Chlorine is a common disinfectant used in water treatment. However, its reaction with organic matter can lead to the formation of harmful byproducts, such as trihalomethanes (THMs), which are potentially carcinogenic. To address this issue, the aim of this work was to enhance a colorimetric method capable of quantifying THMs in drinking water through UV/Vis Spectrophotometry, using cost-effective equipment, and validate this methodology for the first time according to established validation protocols. The method's innovation involved replacing the solvent pentane with the more common hexane, along with adjusting the heating ramp, elucidating the mechanisms involved in the process. This method involves the reaction between THMs, pyridine, and NaOH to produce a colored compound, which is then monitored through molecular absorption spectroscopy in the visible region. The method was thoroughly validated, achieving a limit of detection of 13.41 µg L-1 and a limit of quantification of 40.65 µg L-1. Recovery assays ranged from 86.1 % to 90.7 %, demonstrating high accuracy. The quality of the linear fit for the analytical curve exceeded R2 > 0.98. The method was applied to real samples, revealing concentrations ranging from 13.58 to 55.46 µg L-1, all way below the legal limit in Brazil (Maximum Contaminant Levels (MCL) = 100 µg L-1). This cost-effective and straightforward method is suitable for integration into water treatment plant laboratories.


Assuntos
Água Potável , Trialometanos , Poluentes Químicos da Água , Purificação da Água , Trialometanos/análise , Água Potável/análise , Água Potável/química , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Limite de Detecção , Espectrofotometria Ultravioleta/métodos , Reprodutibilidade dos Testes , Colorimetria/métodos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38546922

RESUMO

Climate change affects the concentration and characteristics of dissolved organic matter (DOM) in surface water. The changes in composition of DOM have many implications to drinking water quality, especially in the case of formation of disinfection by-products (DBPs). The aim of this study was to investigate the formation of nitrogenous DBPs (N-DBPs) during chlorination and chloramination, caused by the alternation of surface water's DOM driven by climate change. For this reason, two different cases were examined: (a) rise of algal organic matter (AOM) due to water blooming and (b) water enrichment by humic substances. The target compounds were haloacetonitriles (HANs), haloacetamides (HAcAms), and halonitromethane (TCNM). The results showed that Anabaena appears to be a major precursor for HAcAms and TCNM, while humic acids are precursors for HANs. The results of the mixtures presented the same pattern. During the water blooming case, HAcAms and TCNM formation are in favor, while during water enrichment by humic substances case, HANs is the N-DBP group with higher formation yield. Cloraminated samples presented higher values of cytotoxicity and genotoxicity compared to the chlorinated.

16.
J Hazard Mater ; 474: 134766, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38833955

RESUMO

Under the condition that the residual chlorine is guaranteed, the biofilm still thrives in drinking water distribution systems through secreting a large number of extracellular polymeric substances (EPS), in which protein components are the primary precursor of disinfection byproducts (DBPs), mostly in the form of combined amino acids. The aim of this study is to investigate the action of CuO on the formation of halates (XO3-, ClO3- and BrO3-) and DBPs (trihalomethanes, THMs; haloacetonitriles, HANs) with aspartic acid tetrapeptide (TAsp) as protein surrogate. The presence of CuO promoted the self-decay rather than TAsp-induced decay of oxidants, resulting in an increase in XO3- yield and a decrease in DBPs yield. It was CuO-induced weaker production of cyanoacetic acid and 3-oxopropanoic acid that induced the decreased yields of HANs and THMs, respectively. The FTIR and Raman spectra indicate a weak complexation between CuO and TAsp. Given this, the CuO-HOX/OX- complexes were inferred to be reactive to HOX/OX- but less reactive to TAsp. The study helps to better understand the formation of XO3- and DBPs during the chlorination of EPS, and propose precise control strategies when biofilm boosts in water pipes.


Assuntos
Ácido Aspártico , Cobre , Desinfetantes , Desinfecção , Halogenação , Purificação da Água , Cobre/química , Ácido Aspártico/química , Desinfetantes/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Trialometanos/química , Peptídeos/química , Peptídeos/metabolismo
17.
J Hazard Mater ; 471: 134362, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643576

RESUMO

Cupric ions (Cu2+) are ubiquitous in surface waters and can influence disinfection byproducts (DBPs) formation in water disinfection processes. This work explored the effects of Cu2+ on chlorinated DBPs (Cl-DBPs) formation from six representative nitrophenol compounds (NCs) during UV irradiation followed by a subsequent chlorination (i.e., UV/post-chlorination), and the results showed Cu2+ enhanced chlorinated halonitromethane (Cl-HNMs) formation from five NCs (besides 2-methyl-3-nitrophenol) and dichloroacetonitrile (DCAN) and trichloromethane (TCM) formation from six NCs. Nevertheless, excessive Cu2+ might reduce Cl-DBPs formation. Increasing UV fluences displayed different influences on total Cl-DBPs formation from different NCs, and increasing chlorine dosages and NCs concentrations enhanced that. Moreover, a relatively low pH (5.8) or high pH (7.8) might control the yields of total Cl-DBPs produced from different NCs. Notably, Cu2+ enhanced Cl-DBPs formation from NCs during UV/post-chlorination mainly through the catalytic effect on nitro-benzoquinone production and the conversion of Cl-DBPs from nitro-benzoquinone. Additionally, Cu2+ could increase the toxicity of total Cl-DBPs produced from five NCs besides 2-methyl-3-nitrophenol. Finally, the impacts of Cu2+ on Cl-DBPs formation and toxicity in real waters were quite different from those in simulated waters. This study is conducive to further understanding how Cu2+ affected Cl-DBPs formation and toxicity in chlorine disinfection processes and controlling Cl-DBPs formation in copper containing water.

18.
Water Res ; 251: 121153, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246080

RESUMO

The chlorination of extracellular polymeric substances (EPS) secreted by biofilm often induces the formation of high-toxic disinfection byproducts (DBPs) in drinking water distribution systems. The protein components in EPS are the main precursors of DBPs, which mostly exist in the form of combined amino acids. The paper aimed to study the action of a pipe corrosion product (Cu2+) on the formation of DBPs (trihalomethanes, THMs; haloacetonitriles, HANs) with aspartic acid tetrapeptide (TAsp) as a precursor. Cu2+ mainly promoted the reaction of oxidants with TAsp (i.e., TAsp-induced decay) to produce DBPs, rather than self-decay of oxidants to generate BrO3‒ and ClO3‒. Cu2+ increased THMs yield, but decreased HANs yield due to the catalytic hydrolysis. Cu2+ was more prone to promote the reaction of TAsp with HOCl than with HOBr, leading to a DBPs shift from brominated to chlorinated species. The chemical characterizations of Cu2+-TAsp complexations demonstrate that Cu2+ combined with TAsp at the N and O sites in both amine and amide groups, and the intermediate identification suggests that Cu2+ enhanced the stepwise chlorination process by promoting the substitution of chlorine and the breakage of CC bonds. The effect of Cu2+ on THMs yield changed from promoting to inhibiting with the increase of pH, while that on HANs yield was inhibiting regardless of pH variation. Additionally, the impact of Cu2+ on the formation of DBPs was also affected by Cu2+ dose, Cl2/C ratio and Br- concentration. This study helps to understand the formation of EPS-derived DBPs in water pipes, and provides reference for formulating control strategies during biofilm outbreaks.


Assuntos
Desinfetantes , Fumar Cachimbo de Água , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/química , Cobre , Ácido Aspártico , Halogenação , Trialometanos , Oxidantes , Poluentes Químicos da Água/análise , Desinfecção , Cloro/química
19.
Sci Total Environ ; 927: 172200, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575027

RESUMO

Nitrophenol compounds (NCs) are widely distributed in water environments and regarded as important precursors of disinfection byproducts (DBPs). Herein, 4-nitrophenol and 2-amino-4-nitrophenol were selected as representative NCs to explore chlorinated DBPs (Cl-DBPs) formation during UV/post-chlorination. Dichloronitromethane (DCNM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), and trichloromethane (TCM) were formed from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination, and the yields of individual Cl-DBPs from 2-amino-4-nitrophenol were higher than those from 4-nitrophenol. Meantime, increasing chlorine contact time, UV fluence, and free chlorine dose could enhance Cl-DBPs formation, while much higher values of the three factors might decrease the yields of Cl-DBPs. Besides, alkaline pH could decrease the yields of halonitromethane (HNMs) and DCAN but increase the yields of TCM. Also, higher concentrations of 4-nitrophenol and 2-amino-4-nitrophenol would induce more Cl-DBPs formation. Subsequently, the possible formation pathways of DCNM, TCNM, DCAN, and TCM form 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination were proposed according to transformation products (TPs) and density functional theory (DFT) calculation. Notably, Cl-DBPs formed from 2-amino-4-nitrophenol presented higher toxicity than those from 4-nitrophenol. Among these generated Cl-DBPs, DCAN and TCNM posed higher cytotoxicity and genotoxicity, respectively. Furthermore, 4-nitrophenol, 2-amino-4-nitrophenol, and their TPs exhibited ecotoxicity. Finally, 4-nitrophenol and 2-amino-4-nitrophenol presented a high potential to produce DCNM, TCNM, DCAN, and TCM in actual waters during UV/post-chlorination, but the Cl-DBPs yields were markedly different from those in simulated waters. This work can help better understand Cl-DBPs formation from different NCs during UV/post-chlorination and is conducive to controlling Cl-DBPs formation.

20.
J Hazard Mater ; 472: 134544, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733788

RESUMO

Nitrophenol compounds (NCs) have high formation potentials of disinfection byproducts (DBPs) in water disinfection processes, however, the reaction mechanisms of DBPs formed from different NCs are not elucidated clearly. Herein, nitrobenzene, phenol, and six representative NCs were used to explore the formation mechanisms of chlorinated DBPs (Cl-DBPs) during chlor(am)ination and UV/post-chlor(am)ination. Consequently, the coexistence of nitro and hydroxy groups in NCs facilitated the electrophilic substitution to produce intermediates of Cl-DBPs, and the different positions of nitro and hydroxy groups also induced different yields and formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Besides, the amino, chlorine, and methyl groups significantly influenced the formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Furthermore, the total Cl-DBPs yields from the six NCs followed a decreasing order of 2-chloro-3-nitrophenol, 3-nitrophenol, 2-methyl-3-nitrophenol, 2-amino-4-nitrophenol, 2-nitrophenol, and 4-nitrophenol during chlorination and UV/post-chlorination. However, the total Cl-DBPs yields from the six NCs during chloramination and UV/post-chloramination followed a quite different order, which might be caused by additional reaction mechanisms, e.g., nucleophilic substitution or addition might occur to NCs in the presence of monochloramine (NH2Cl). This work can offer deep insights into the reaction mechanisms of Cl-DBPs from NCs during the chlor(am)ination and UV/post-chlor(am)ination processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA