Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 400: 130652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575096

RESUMO

The primary objective of this study is to explore the application of a deep eutectic solvent, synthesized from lactic acid and choline chloride, in combination with a pre-treatment involving ZSM-5 catalytic fast pyrolysis, aimed at upgrading the quality of bio-oil. Characterization results demonstrate a reduction in lignin content post-treatment, alongside a significant decrease in carboxyls and carbonyls, leading to an increase in the C/O ratio and noticeable enhancement in crystallinity. During catalytic fast pyrolysis experiments, the pre-treatment facilitates the production of oil fractions, achieving yields of 54.53% for total hydrocarbons and 39.99% for aromatics hydrocarbons under optimized conditions. These findings validate the positive influence of the deep eutectic solvent pre-treatment combined with ZSM-5 catalytic fast pyrolysis on the efficient production of bio-oil and high-value chemical derivatives. .


Assuntos
Biocombustíveis , Biomassa , Solventes Eutéticos Profundos , Óleos de Plantas , Polifenóis , Pirólise , Zeolitas , Catálise , Zeolitas/química , Solventes Eutéticos Profundos/química , Lignina/química , Colina/química , Solventes/química
2.
Bioresour Technol ; 400: 130702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615968

RESUMO

The bioconversion of lignocellulosic biomass into novel bioproducts is crucial for sustainable biorefineries, providing an integrated solution for circular economy objectives. The current study investigated a novel microwave-assisted acidic deep eutectic solvent (DES) pretreatment of waste cocoa pod husk (CPH) biomass to extract xylooligosaccharides (XOS). The sequential DES (choline chloride/citric acid, molar ratio 1:1) and microwave (450W) pretreatment of CPH biomass was effective in 67.3% xylan removal with a 52% XOS yield from total xylan. Among different XOS of varying degrees of polymerization, a higher xylobiose content corresponding to 69.3% of the total XOS (68.22 mg/g CPH) from liquid fraction was observed. Enzymatic hydrolysis of residual xylan from pretreated CPH biomass with low commercial xylanase (10 IU/g) concentration yielded 24.2% XOS. The MW-ChCl/citric acid synergistic pretreatment approach holds great promise for developing a cost-effective and environmentally friendly method contributing to the sustainable production of XOS from agricultural waste streams.


Assuntos
Biomassa , Cacau , Solventes Eutéticos Profundos , Glucuronatos , Micro-Ondas , Oligossacarídeos , Oligossacarídeos/química , Cacau/química , Cacau/metabolismo , Hidrólise , Solventes Eutéticos Profundos/química , Xilanos , Biotecnologia/métodos , Ácidos/química , Solventes/química
3.
Int J Biol Macromol ; 259(Pt 2): 129354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218303

RESUMO

To effectively convert the fermentable sugars present in lignocellulosic biomass into biofuels and additional value-added products, it is crucial to remove lignin from the biomass. With the intention of expeditiously remove lignin from poplar wood and improve cellulose saccharification, an innovative ternary deep eutectic solvent (DES) benzyl triethyl ammonium chloride-ethylene glycol-FeCl3 (T-EG-F) was studied for the pretreatment of poplar hydrolyzed residue (PHR). The results revealed that following T-EG-F DES pretreatment at 130 °C for 4 h, the lignin removal rate reached 91.88 %. The effect of DES on PHR and regenerated lignin was comprehensively investigated using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Thermogravimetric (TG) and other characterization methods, providing valuable insights into the mechanism of this innovative biomass pretreatment. Moreover, there was a significant improvement in the enzyme digestibility of the DES pretreatment residue. At 48 h, the enzyme load of 30 FPU/g cellulose achieved a remarkable enzyme digestibility of 97.31 %, and this value exhibited a notable increase of 6.56 times compared to the untreated poplar sample. In addition, the T-EG-F could be recycled and reused. This study demonstrates that the potential of T-EG-F DES pretreatment as a green and efficient method for lignin dissociation from lignocellulosic biomass, offering a promising approach for biomass component separation.


Assuntos
Lignina , Populus , Lignina/química , Solventes Eutéticos Profundos , Solventes/química , Hidrólise , Celulose/química , Biomassa
4.
J Colloid Interface Sci ; 658: 648-659, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134673

RESUMO

Integration of polylactic acid (PLA) textiles with conductive MXene holds great promise for fabricating green electronic textiles (e-textiles) and reducing the risk of electronic waste. However, constructing robust conductive networks on PLA fibers remains challenging due to the susceptibility of MXene to oxidation and the hydrophobicity of PLA fibers. Here, we demonstrate a versatile, degradable, and durable e-textile by decorating the deep eutectic solvent (DES) micro-etched PLA textile with MXene and sericin-modified carbon nanotube hybrid (MXene@SSCNT). The co-assembly of MXene with SSCNT in water not only enhanced its oxidative stability but also formed synergistic conductive networks with biomimetic leaf-like nanostructures on PLA fiber. Consequently, the MXene@SSCNT coated PLA textile (MCP-textile) exhibited high electrical conductivity (5.5 Ω·sq-1), high electromagnetic interference (EMI) shielding efficiency (34.20 dB over X-band), excellent electrical heating performance (66.8 ℃, 5 V), and sensitive humidity response. Importantly, the interfacial bonding between the MXene@SSCNT and fibers was significantly enhanced by DES micro-etching, resulting in superior wash durability of MCP-textile. Furthermore, the MCP-textile also showed satisfactory breathability, flame retardancy, and degradability. Given these outstanding features, MCP-textile can serve as a green and versatile e-textile with tremendous potential in EMI shielding, personal thermal management, and respiratory monitoring.

5.
Carbohydr Polym ; 326: 121593, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142091

RESUMO

Biomass conversion aims at degrading the structural polysaccharides of lignocellulose into reducing sugars. Pretreatment is necessary to overcome the recalcitrance of lignocellulose. The DES La/ChCl in this paper was selected based on our previous study. To examine cellulase adsorption of lignocellulose after DES pretreatment, sorghum straw was pretreated with DES under different condition. The adsorption improvement of cellulase on lignocellulose after DES pretreatment has positive impact on reducing sugar production of biomass. After DES pretreatment, 1. pore corrosion caused the upward trend of pore radius and the downward trend of SSA. 2. the hydrogen bounding force of pretreated sorghum straw and MCC decreased, the hydrogen bounding force of pretreated lignin increased. 3. although the unsaturation of pretreated lignin increased, DES pretreatment is helpful for the removal of lignin. 4. The decrease in the hydrophobicity of sorghum straw make it easier to disperse. 5. the Zeta potential of pretreated sorghum straw shifted towards the positively charged region, while pretreated lignin shifted towards the negatively charged region. 6. different adsorption behaviors were observed in specific components of cellulase mixtures (BGs, CBHs, EGs and xlylanase). These results revealing the mechanism of enzyme adsorption are conductive for understanding the role of pretreatment in biomass conversion.


Assuntos
Celulase , Sorghum , Lignina/química , Celulase/química , Adsorção , Polissacarídeos/química , Hidrogênio , Digestão , Hidrólise
6.
Bioresour Technol ; 380: 129110, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37127170

RESUMO

Lignocellulosic biorefineries depended on effective pretreatment strategies to improve the conversion efficiency of the enzymatic hydrolysis. Here, this study coupled brown rot fungi and deep eutectic solvent (DES) to pretreat Pinus massoniana. The results showed that compared to fungal pretreatment and DES pretreatment alone, the combined ChCl-Lac/fungal pretreatments could effectively improve enzymatic saccharification of Pinus massoniana. The highest content of releasing reducing sugar reached 510.3 mg/g substrate. Environmental scanning electron micrograph (ESEM) showed that the surface structure of Pinus massoniana was almost completely torn and loose and FT-IR spectra and component analysis revealed that most of hemicellulose and lignin were selected removed and cellulose was enriched after ChCl-Lac/fungal pretreatments, which could account for the enhanced hydrolysis efficiency. The combination of biological pretreatment with DES pretreatment could be a mild and promising pretreatment approach for enzymatic saccharification of lignocellulose and had an extensive application prospect in the field of biorefinery.


Assuntos
Solventes Eutéticos Profundos , Pinus , Pinus/química , Espectroscopia de Infravermelho com Transformada de Fourier , Lignina/química , Celulose/química , Carboidratos , Hidrólise , Solventes , Biomassa
7.
Int J Biol Macromol ; 236: 123977, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906200

RESUMO

Deep eutectic solvents (DESs) have been extensively applied to pretreat lignocellulose; however, comparative research on acidic and alkaline DES pretreatment is relatively lacking. Herein, pretreatment of grapevine agricultural by-products with seven DESs were compared in terms of removal of lignin and hemicellulose and component analysis of the pretreated residues. Among the tested DESs, both acidic choline chloride-lactic (CHCl-LA), and alkaline potassium carbonate-ethylene glycol (K2CO3-EG) were effective in delignification. Thereafter, the CHCl-LA and K2CO3-EG extracted lignin was compared by analyzing their physicochemical structure changes and antioxidant properties. The results showed that the thermal stability, molecular weight, and phenol hydroxyl percentage of CHCl-LA lignin were inferior to K2CO3-EG lignin. It was found that the high antioxidant activity of K2CO3-EG lignin was mainly attributed to the abundant phenol hydroxyl, guaiacyl (G), and para-hydroxy-phenyl (H). By comparing acidic and alkaline DES pretreatments and their lignin nuances in biorefining, novel insights are derived for the scheduling and selection of DES for lignocellulosic pretreatment.


Assuntos
Antioxidantes , Lignina , Lignina/química , Antioxidantes/farmacologia , Solventes Eutéticos Profundos , Solventes/química , Biomassa , Colina/química , Fenóis , Hidrólise
8.
Ultrason Sonochem ; 100: 106628, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793201

RESUMO

This study pursued the goal of creating value-added co-products through an environmentally friendly biorefinery approach, employing ultrasonically assisted deep eutectic solvent (DES)-pretreated Chlorella biomass. The primary focus was on generating enriched biodiesel feedstock with exceptional fuel properties and developing hydroponic biofertilizer. The results demonstrated the effectiveness of a two-step process involving a 5-minute ultrasound-assisted DES pretreatment followed by ultrasound-assisted solvent extraction, which efficiently extracted lipids from Chlorella biomass, yielding biodiesel-quality lipids with good cetane number (59.42) and high heating value (40.11 MJ/kg). Notably, this two-step approach (78.04 mg-lipid/g-microalgal biomass) led to a significant 2.10-fold increase in lipid extraction compared to a one-step process (37.15 mg-lipid/g-microalgal biomass) that combined ultrasound-assisted DES pretreatment and solvent extraction. Importantly, the aqueous extract derived from lipid-extracted microalgal biomass residues (LMBRs) showed promise as a component in hydroponic biofertilizer production, supporting lettuce growth in hydroponic deep water culture system. Consequently, microalgae biorefinery co-products hold tremendous potential in enhancing the profitability and sustainability of interconnected sectors, encompassing renewable energy, agriculture, and the environment.


Assuntos
Chlorella , Microalgas , Biocombustíveis , Biomassa , Lipídeos , Solventes
9.
Bioresour Technol ; 345: 126460, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863844

RESUMO

This work evaluates the efficiency of three deep eutectic solvents constituted of choline chloride and urea or glycerol or ethylene glycol in the pretreatment of the miscanthus in view of extracting cellulose. Analysis of experiments shows that basicity and polarity of the hydrogen bond donor of these DESs are directly related to the miscanthus solubility. The best efficient process was found using {Choline chloride/glycerol} mixture for the pretreatment at a temperature of 373 K and a duration of about 6 h. This may be explained by the fact that {Choline chloride/glycerol} pretreatment allows to obtain an amorphous cellulose. {Choline chloride/glycerol} was as efficiently as IL pretreatments with an ethanol production of about 72%. This study shows that Choline chloride based DESs pretreatment for biomass could be a key point to enhance the efficiency of biorefinery.


Assuntos
Colina , Lignina , Celulose , Solventes Eutéticos Profundos , Solventes
10.
Bioresour Technol ; 351: 126993, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35288268

RESUMO

Herein, a short-time alkaline enhanced aqueous DES (AaDES) pretreatment using choline chloride/ethylene glycol was reported, aiming at enhancing cellulose and xylan enzymatic digestibility. Simultaneously, saccharification efficiency of cellulose and xylan was reached to 91.2% and 99.0%, respectively, ∼4 and âˆ¼ 24 times that of raw poplar. Pretreatment time was substantially shortened from 15-24 h to 4 h. Notably, 43.00 kg fermentable sugars (73% of the theoretical maximum) and 12.98 kg lignin with rich ß-O-4' linkages were obtained based on 100 kg poplar. The complete removal of acetyl and partial removal of lignin and mannan contributed to excellent pretreatment performance. It was found that enzymatic digestibility of xylan/cellulose was positively correlated with removal of mannan (R2 = 0.9719; R2 = 0.9010) and delignification (R2 = 0.6888; R2 = 0.8293). Drastic reduction in pretreatment time along with high-yield sugars in AaDES system will provide strength towards industrial level biorefinery.


Assuntos
Lignina , Populus , Celulose , Solventes Eutéticos Profundos , Hidrólise , Mananas , Solventes , Açúcares , Xilanos
11.
Int J Biol Macromol ; 209(Pt B): 1882-1892, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489620

RESUMO

Elucidating the structural variations of lignin during the pretreatment is very important for lignin valorization. Herein, poplar wood was pretreated with an integrated process, which was composed of AlCl3-catalyzed hydrothermal pretreatment (HTP, 130-150 °C, 1.0 h) and mild deep-eutectic solvents (DES, 100 °C, 10 min) delignification for recycling lignin fractions. Confocal Raman Microscopy (CRM) was developed to visually monitor the delignification process during the HTP-DES pretreatment. NMR characterizations (2D-HSQC and 31P NMR) and elemental analysis demonstrated that the lignin fractions had undergone the following structural changes, such as dehydration, depolymerization, condensation. Molecular weights (GPC), microstructure (SEM and TEM), and antioxidant activity (DPPH analysis) of the lignins revealed that the DES delignification resulted in homogeneous lignin fragments (1.32 < PDI < 1.58) and facilitated the rapid assemblage of lignin nanoparticles (LNPs) with controllable nanoscale sizes (30-210 nm) and excellent antioxidant activity. These findings will enhance the understanding of structural transformations of the lignin during the integrated process and maximize the lignin valorization in a current biorefinery process.


Assuntos
Lignina , Populus , Antioxidantes/farmacologia , Biomassa , Solventes Eutéticos Profundos , Hidrólise , Lignina/química , Solventes/química
12.
Bioresour Technol ; 349: 126837, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35150854

RESUMO

Recovering lignin with high ß-O-4 content is of prime interest for further high yield depolymerization in low molecular weight phenolic compounds. Pretreatment of lignocellulosic biomass with deep eutectic solvents (DES) was studied to extract this type of tailored lignin from softwood and brewer's spent grains. In this work, choline chloride (ChCl) based DES with two different hydrogen bond donors (HBD) (lactic acid (LA) and Glycerol (Gly)), were investigated at mild temperatures (60 and 80 °C). The influence of DES pretreatment on extracted lignin molecular weight and structural characteristics was analysed. The acidity and density of DES were proved to affect lignin extraction yield and its features. The lignin characteristics (type of interunits, accessibility) were shown to impact their ability to be recovered. Acidic-DES ChCl:LA at 80 °C with woody biomass gave promising results with 78% of lignin extracted exclusively composed of G units with 61% of ß-O-4 linkages with narrow molecular weights distribution.


Assuntos
Solventes Eutéticos Profundos , Lignina , Biomassa , Ligação de Hidrogênio , Lignina/química , Solventes/química , Temperatura
13.
Bioresour Technol ; 352: 127065, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351557

RESUMO

An aspirational pretreatment method for efficient fractionation and tailored valorization of large industrial biomass can ensure the realizability of sustainable biorefinery strategies. In this study, an ultrafast alkaline deep eutectic solvents (DES) pretreatment strategy was developed to efficiently extract the lignin nanoparticles and retain cellulose residues that could be readily enzymatic saccharified to obtain fermentative glucose for the bioenergy production from industrial xylose residue. Results showed that the DES pretreatment had excellent delignification performance and the regenerated DES lignin nanoparticles exhibited well-preserved structures and excellent antioxidant activity, as well as low molecular weights and relatively uniform size distribution, which could facilitate downstream catalytic degradation for production of chemicals and preparation of lignin-based materials. Under the optimal condition (DES pretreatment: 80 °C, 10 min; saccharification: 10 FPU/g, 5 wt%, 100 mg/g Tween 80), the glucose yield of 90.12% could be achieved, which was dramatically increased compared to raw materials.


Assuntos
Lignina , Xilose , Biomassa , Solventes Eutéticos Profundos , Glucose , Hidrólise , Lignina/química , Solventes/química
14.
Int J Biol Macromol ; 193(Pt A): 319-327, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34699892

RESUMO

Deep eutectic solvent (DES) is a kind of green solvent for biorefinery, which favors the progress of being more environmentally friendly and effective. A better understanding of structural changes of lignin is necessary to optimize pretreatment conditions and efficient utilization of the resultant lignin. The current study reported the structural features of lignin recovered from alkaline ChCl/imidazole and ChCl/urea DES pretreatment, and the mechanism of lignin modification was revealed. The profiling demonstrated that lignin samples possessed a high purity (>94.4%), low molecular weight ranging from 1544 to 2562 g/mol and an excellent uniformity (PDI < 1.6). Noteworthy, the content of ß-O-4' linkages in lignin was over 75% (i.e. 72.2%-77.4% retention); S/G ratio was increased whereas the content of -OCH3 groups were decreased. It was revealed that slight cleavage of ß-O-4' linkages, preferential breakdown of G units, and demethylation reaction were occurred during alkaline ChCl-based DES pretreatment. Specifically, cleavage of ester linkages between PB and lignin macromolecule was taking place during ChCl/imidazole pretreatment at a high temperature; whereas oxidation only appeared in ChCl/urea system. Despite the modification, well ß-O-4' preserved and less condensed lignin samples were recovered after low-temperature pretreatment. Consequently, high contents of phenol derivatives (26.3-30.6%) were achieved in lignin oil. The present study provides critical information on alkaline ChCl-based DES pretreatment, which will contribute to the valorization of lignin by-products and will be beneficial to the development of biorefineries.


Assuntos
Solventes Eutéticos Profundos/química , Lignina/química , Populus/química , Hidrólise , Solventes/química
15.
Int J Biol Macromol ; 192: 417-425, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582914

RESUMO

Deep eutectic solvents (DES) pretreatment is a promising approach to decrease "biomass recalcitrance" and boost the cellulose bioconversion as well as lignin valorization. In this study, a short-time DES pretreatment strategy was performed to enhance the production of high-yield fermentable sugars and tailored lignin nanoparticles (LNPs) from abaca. The glucose yield reached 92.4% under the optimal pretreatment condition (110 °C, 30 min), which was dramatically increased in comparison with that (9.5%) of control abaca. Simultaneously, nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques indicated that the removed and regenerated DES lignin fractions displayed depolymerized structures and have relatively low molecular weight with relatively homogeneous morphology and narrow size distribution. Transmission electron microscope (TEM) analysis indicated that these lignin fractions are LNPs and the size of the optimal LNPs fraction is ranged from 30 nm to 50 nm. Moreover, all the DES lignin exhibited excellent antioxidant activities as compared to the commercial antioxidant butylated hydroxytoluene (BHT), which can be used as a promising natural antioxidant in industry. In short, this study demonstrated that the short-time DES pretreatment will improve the enzymatic digestibility and facilitate the controllable production and valorization of LNPs from abaca biomass, which will further promote the economic and overall benefits of biorefinery.


Assuntos
Solventes Eutéticos Profundos/química , Lignina/química , Musa/química , Nanopartículas/química , Açúcares/química , Antioxidantes/química , Antioxidantes/farmacologia , Biomassa , Celulose/química , Fermentação , Hidrólise , Estrutura Molecular , Peso Molecular , Análise Espectral
16.
Bioresour Technol ; 341: 125828, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34461401

RESUMO

A synergistic pretreatment that realizing effective fractionation and targeted valorization can guarantee the implementability to future biorefinery scenario. In the present study, a stepwise approach using hydrothermal and deep eutectic solvents (DES) pretreatment was developed to preferentially dissociate hemicelluloses and further remove lignin from poplar, while retaining a cellulose-rich substrate that can be easily digested via enzymatic saccharification to obtain glucose. Results showed that the hydrothermal filtrate is mainly composed of xylooligosaccharide (XOS), monosaccharides, byproducts, and xylan-type hemicelluloses, which have homogenous structures and uniform molecular weights distribution as well as excellent antioxidant activity. Subsequent DES pretreatment further removed the lignin barriers, leading to a remarkable increase in the saccharification efficiency from 15.72% to 96.33% under optimum conditions for enzymatic hydrolysis. In short, the integrated pretreatment is effective for dissociating and chemical conversion of poplar wood, which was reasonable to promote the frontier of highly available biorefinery.


Assuntos
Celulose , Madeira , Biomassa , Hidrólise , Lignina , Polissacarídeos , Solventes
17.
Bioresour Technol ; 305: 123025, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32114299

RESUMO

Discovering green solvents and their inner mechanisms for efficient deconstruction of lignocellulosic biomass recalcitrance are receiving growing interests. In this work, eco-friendly levulinic acid (LA) based deep eutectic solvents (DES) were proposed for pretreatment on moso bamboo by combining acetamide (Am), betaine (Ba) and choline chloride (ChCl) as hydrogen bonding acceptors. LA/ChCl pretreated materials showed optimal enzymatic accessibility with the highest glucose yield (79.07%) because of its higher lignin removal, morphological disruption and decreased crystallinity. Moreover, the microvoids (averagely 30 nm) and cracks were observed for cellulose microfibrils in anisotropic directions, which resulted in shorter microfibrils and crystallites facilitating the enzymatic hydrolysis. The studies on recyclability revealed that LA/Ba DES had better recycling performance due to its maintaining capability of lignin extraction. Series of supramolecular changes on oriented crystalline cellulose were determined in this work by novel LA based DES, which may provide new alternatives for biomass pretreatments.

18.
Bioresour Technol ; 306: 123163, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32182471

RESUMO

Deep eutectic solvent (DES) is a promising pretreatment for improving enzymatic digestibility of lignocellulosic material by altering the physicochemical properties. However, few work has been done to quantitatively analysis the physicochemical properties changes of lignocellulosic material with enzymatic digestibility. In this work, DES pretreatment with different molar ratios of choline chloride/lactic acid was carried out on bamboo residues and respective enzymatic digestibility was investigated and linearly fitted with corresponding physicochemical features changes of the pretreated bamboo residues. Results showed that enzymatic digestibility of DES-pretreated bamboo residues was enhanced with the increasing molar ratio of choline chloride/lactic acid, which was due to DES pretreatment's ability to remove lignin and xylan, reduce the degree of polymerization of cellulose, enhance the crystallite size of cellulose, and improve cellulose accessibility. Several compelling linear correlations (R2 = 0.6-0.9) were observable between enzymatic digestibility and these changes of physicochemical properties, demonstrating how DES pretreatment improve the enzymatic digestibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA