Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(5): 157, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592517

RESUMO

This research investigated the physicochemical, microbiological, and bacterial diversity of Jben cheese, a popular artisanal variety in Morocco. The bacterial diversity was explored using culture-independent methods, including temporal temperature gel electrophoresis (TTGE), denaturing gradient gel electrophoresis (DGGE), and high-throughput sequencing (HTS). Significant intra-sample differences were observed for most physicochemical parameters within each milk type, while inter-sample differences occurred between cow and goat cheeses for dry matter and ash. Jben cheese exhibited distinct characteristics, with low pH values of 3.96, 4.16, and 4.18 for cow, goat, and mixed cheeses, respectively. Goat cheeses had higher fat (49.23 g/100 g), ash (1.91 g/100 g), and dry matter (36.39 g/100 g) than cow cheeses. All cheeses displayed high microbial counts, with a notable prevalence of the lactic acid bacteria (LAB) group, averaging 8.80 ± 0.92 log CFU/g. Jben cheese also displayed high contamination levels with total coliforms, faecal coliforms, yeast, and molds. Fatty acid profiling revealed fraudulent practices in Jben cheese marketing, with cow or mixed cheeses sold as goat cheese, as proven by low capric acid concentration. HTS analysis of Jben cheese identified ten genera and twenty-four species, highlighting Lactococcus lactis as predominant. TTGE and DGGE confirmed the presence of L. lactis but failed to provide the detailed profile achieved through HTS analysis. HTS has been demonstrated to be more reliable, whereas TTGE/DGGE methods, though informative, were more time-consuming and less reliable. Despite limitations, the combined use of TTGE, DGGE, and HTS provided a comprehensive view of indigenous bacterial communities in Jben cheese, identifying L. lactis as the main species.


Assuntos
Queijo , Animais , Bovinos , Feminino , RNA Ribossômico 16S/genética , Temperatura , Eletroforese , Cabras , Saccharomyces cerevisiae
2.
J Environ Sci Health B ; 59(3): 88-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189415

RESUMO

The relationship between bacterial diversity and the bioavailability of nutrients, toxic metals and the herbicide oxyfluorfen in a tropical vegetable growing area was evaluated. The study was conducted in a vegetable growing area located in the mountainous region of Rio de Janeiro (Brazil), and samples were collected in areas of vegetable cultivation and areas of environmental reserve. Fertility analyses and determination of the pseudototal levels of toxic metals in the soil samples were performed. The profile of the soil bacterial community was determined by amplification of the 16S rRNA gene and separation by DGGE. The results showed that the levels of toxic metals and elements associated with soil fertility were higher in vegetable production areas. These differences in the physical and chemical characteristics of the soil favored the presence of a greater number of OTUs in the cultivation areas (17.3-27 OTUs) than in the areas of environmental reserve (13-22 OTUs). Therefore, this study demonstrates that the presence of toxic metals and the herbicide oxyfluorfen and the increase in fertility in soils in areas with intensive vegetable cultivation resulting from the intensive management adopted in these areas promotes a differentiation of the bacterial profiles in soils in tropical vegetable growing areas.


Assuntos
Éteres Difenil Halogenados , Poluentes do Solo , Solo , Solo/química , Verduras , RNA Ribossômico 16S/genética , Brasil , Nutrientes/análise , Microbiologia do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
3.
Arch Microbiol ; 204(1): 109, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978623

RESUMO

Mangroves are highly productive unique ecosystems harboring diverse unexplored microbial communities that play crucial roles in nutrient cycling as well as in maintaining ecosystem services. The mangrove-associated microbial communities transform the dead vegetation into nutrient sources of nitrogen, phosphorus, potash, etc. To understand the genetic and functional diversity of the bacterial communities involved in nitrogen cycling of this ecosystem, this study explored the diversity and distribution of both the nitrogen fixers and denitrifiers associated with the rhizospheres of Avicennia marina, Rhizophora mucronata, Suaeda maritima, and Salicornia brachiata of the Pichavaram mangroves. A combination of both culturable and unculturable (PCR-DGGE) approaches was adopted to explore the bacterial communities involved in nitrogen fixation by targeting the nifH genes, and the denitrifiers were explored by targeting the nirS and nosZ genes. Across the rhizospheres, Gammaproteobacteria was found to be predominant representing both nitrogen fixers and denitrifiers as revealed by culturable and unculturable analyses. Sequence analysis of soil nifH, nirS and nosZ genes clustered to unculturable, with few groups clustering with culturable groups, viz., Pseudomonas sp. and Halomonas sp. A total of 16 different culturable genera were isolated and characterized in this study. Other phyla like Firmicutes and Actinobacteria were also observed. The PCR-DGGE analysis also revealed the presence of 29 novel nifH sequences that were not reported earlier. Thus, the mangrove ecosystems serve as potential source for identifying unexplored novel microbial communities that contribute to nutrient cycling.


Assuntos
Microbiota , Rizosfera , Microbiota/genética , Nitrogênio/análise , Ciclo do Nitrogênio , Solo , Microbiologia do Solo
4.
Arch Microbiol ; 204(12): 701, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370212

RESUMO

Waxy crude oil is a problem to the oil and gas industry because wax deposition in pipelines reduces the quality of the crude oil. Currently, the industry uses chemicals to solve the problem but it is not environmentally friendly. As an alternative, the biodegradation approach is one of the options. Previously eleven thermophilic bacteria were isolated and exhibited high ability to degrade hydrocarbon up to 70% of waxy crude oil. However, despite the successful study on these single bacteria strains, it is believed that biodegradation of paraffin wax requires more than a single species. Five consortia were developed based on the biodegradation efficiency of 11 bacterial strains. Consortium 3 showed the highest biodegradation (77.77%) with more long-chain alkane degraded throughout the incubation compared to other consortia. Enhancement of hydrocarbon degradation was observed for all consortia especially in long chain alkane (C18-C40). Consortium 3 exhibited higher alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase activities. Moreover, the dominant bacteria in the consortia were determined by denaturing gradient gel electrophoresis (DGGE), which showed the domination of genera Geobacillus, Parageobacillus, and Anoxybacillus. It can be concluded that the bacterial consortia showed higher biodegradation and improved degrading more long-chain hydrocarbon compared to a single isolate.


Assuntos
Petróleo , Petróleo/metabolismo , Ceras/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Alcanos/metabolismo
5.
Microb Ecol ; 83(2): 492-500, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33973059

RESUMO

Honey bees (Apis mellifera) provide invaluable benefits for food production and maintenance of biodiversity of natural environments through pollination. They are widely spread across the world, being adapted to different climatic conditions. To survive the winter in cold temperate regions, honey bees developed different strategies including storage of honey and pollen, confinement of individuals during the winter, and an annual cycle of colony growth and reproduction. Under these conditions, winter honey bees experience physiological changes, including changes in immunity and the composition of honey bee gut microbiota. However, under tropical or subtropical climates, the life cycle can experience alterations, i.e., queens lay eggs during almost all the year and new honey bees emerge constantly. In the present study, we characterized nurses' honey bee gut microbiota in colonies under subtropical region through a year, combining qPCR, PCR-DGGE, and 16S rDNA high-throughput sequencing. We also identified environmental variables involved in those changes. Our results showed that under the mentioned conditions, the number of bacteria is stable throughout the year. Diversity of gut microbiota is higher in spring and lower in summer and winter. Gradual changes in compositions occur between seasons: Lactobacillus spp. predominate in spring while Gilliamella apicola and Snodgrasella alvi predominate in summer and winter. Environmental variables (mainly precipitations) affected the composition of the honey bee gut microbiota. Our findings provide new insights into the dynamics of honey bee gut microbiota and may be useful to understand the adaptation of bees to different environmental conditions.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Abelhas , Biodiversidade , Microbioma Gastrointestinal/genética , Polinização , Estações do Ano
6.
Int J Phytoremediation ; 24(14): 1505-1517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35266855

RESUMO

To understand the plant (Vigna unguiculata) and plant-growth promoting bacteria (PGPB) (Microcococcus luteus WN01) interactions in crude oil contaminated soil, experiments were conducted based on the newly designed rhizobox system. The rhizobox was divided into three main compartments namely the rhizosphere zone, the mid-zone, and the bulk soil zone, in accordance with the distance from the plant. Plants were grown in these three-chambered pots for 30 days under natural conditions. The plant root exudates were determined by analyzing for carbohydrates, amino acids, and phenolic compounds. The degradation of alkane, polycyclic aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons (TPHs) were quantified by GC-FID. Soil catalase, dehydrogenase, and invertase activities were determined. The microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE). Results showed that the inoculation of M. luteus WN01 significantly enhanced cowpea root biomass and exudates, especially the phenolic compounds. Bioaugmented phytoremediation by cowpea and M. luteus promoted rhizodegradation of TPH. Cowpea stimulated microbial growth, soil dehydrogenase, and invertase activities and enhanced bacterial community diversity in oil contaminated soil. The rhizosphere zone of cowpea inoculated with M. luteus showed the highest removal efficiency, microbial activities, microbial population, and bacterial community diversity indicating the strong synergic interactions between M. luteus and cowpea.


This is the first study to characterize the rhizosphere effect of cowpea on microbial activities, population, and community structure in crude oil contaminated soil in the presence and absence of PGPB, M. luteus WN01. The rhizosphere of cowpea was found to be a degradation hotspot where microbial abundance and metabolic activities were most active. Cowpea-M. luteus association can be a good candidate that can be implemented in real field sites.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Petróleo/metabolismo , Rizosfera , Solo/química , beta-Frutofuranosidase/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo , Bactérias/metabolismo , Oxirredutases/metabolismo
7.
Arch Microbiol ; 203(6): 3171-3182, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33825934

RESUMO

The aim of this study was to investigate the lactic acid bacteria (LAB) and yeast community from home-made sauerkraut collected from Southwest China through culture-dependent and culture-independent technology. Forty-eight samples of home-made sauerkraut were collected from households at three different locations in Southwest China. The pH, total acidity and salt contents among these fermented vegetables were 3.69 ± 0.42, 0.86 ± 0.43 g/100 ml, and 3.86 ± 2.55 g/100 ml, respectively. The number of lactic acid bacteria (LAB) and yeasts were 7.25 ± 1.05 log10 colony-forming units (CFU)/ml and 3.74 ± 1.01 log CFU/ml, respectively. A total of 182 LAB and 81 yeast isolates were identified. The dominant isolates were Lactobacillus plantarum, L. brevis, Pediococcus ethanolidurans, Pichia membranifaciens, P. fermentans and Kazachstania bulderi. Denaturing gradient gel electrophoresis (DGGE) showed that L. plantarum, uncultured Lactobacillus sp, P. ethanolidurans, and K. exigua were the predominant microflora. Our studies demonstrated that the DGGE technique combined with a culture-dependent method is very effective for studying the LAB and yeast community in Chinese traditional fermentation vegetables. The results will give us an understanding of LAB and yeast community of Chinese sauerkraut and improve the knowledge of LAB and yeast community of Chinese sauerkraut.


Assuntos
Alimentos Fermentados , Microbiologia de Alimentos , Lactobacillales , Leveduras , China , Fermentação , Alimentos Fermentados/microbiologia , Lactobacillales/classificação , Lactobacillales/genética , Pediococcus/genética , Pichia/genética , Saccharomycetales/genética , Verduras/microbiologia , Leveduras/classificação , Leveduras/genética
8.
Arch Microbiol ; 203(3): 1089-1105, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33161466

RESUMO

This study aimed to evaluate the genetic diversity of bacterial community associated to different sugarcane genotypes, association habitat and phenological phase of the culture, as well as to isolate, to identify and to characterize your potential for plant growth-promoting. Root and rhizospheric soil samples from RB 92579 and RB 867515 varieties were collected at 120 and 300 days after regrowth (DAR). The diversity of bacterial was evaluated through of the 16S rRNA and nifH genes. We found greater genetic diversity in the root endophytic habitat at 120 DAR. We identify the genera Burkholderia sp., Pantoea sp., Erwinia sp., Stenotrophomonas sp., Enterobacter sp. and Pseudomonas sp. The genera Bacillus sp. and Dyella sp. were only identified in the variety RB 92579. We found indices above 50% for biological nitrogen fixation, production of indole acetic acid and phosphate solubilization, showing that the use of these bacteria in biotechnological products is very promising.


Assuntos
Bactérias/genética , Ecossistema , Variação Genética , Raízes de Plantas/microbiologia , Saccharum/microbiologia , Genótipo , Ácidos Indolacéticos , Fixação de Nitrogênio/fisiologia , Desenvolvimento Vegetal/fisiologia , RNA Ribossômico 16S/genética , Rizosfera
9.
Int J Legal Med ; 135(1): 107-115, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32975592

RESUMO

BACKGROUND: Elephant populations have greatly reduced mainly due to illegal poaching for their ivory. The trade in elephant products is protected by national laws and CITES agreements to prevent them from further decline. For instance, in Thailand, it is illegal to trade ivory from African elephants; however, the law allows possession of ivory from Asian elephants if permission has been obtained from the authorities. As such, means of enforcement of legislation are needed to classify the legal status of seized ivory products. Many DNA-based techniques have been previously reported for this purpose, although all have a limit of detection not suitable for extremely degraded samples. AIM: We report an assay based on nested PCR followed by DGGE to confirm the legal or illegal status of seized ivory samples where it is assumed that the DNA will be highly degraded. METHOD AND RESULTS: The assay was tested on aged ivory from which the assay was tested for reproducibility, specificity, and, importantly, sensitivity. Blind testing showed 100% identification accuracy. Correct assignment in all 304 samples tested was achieved including confirmation of the legal status of 227 highly degraded, aged ivories, thus underlining the high sensitivity of the assay. CONCLUSION AND RECOMMENDATION: The research output will be beneficial to analyze ivory casework samples in wildlife forensic laboratories.


Assuntos
Degradação Necrótica do DNA , DNA/genética , Eletroforese em Gel de Gradiente Desnaturante , Elefantes/genética , Animais , Conservação dos Recursos Naturais , Crime , Genética Forense/métodos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
10.
Microb Ecol ; 81(4): 954-964, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33392629

RESUMO

Methanotrophic bacteria can use methane as sole carbon and energy source. Its importance in the environment is related to the mitigation of methane emissions from soil and water to the atmosphere. Brazilian mangroves are highly productive, have potential to methane production, and it is inferred that methanotrophic community is of great importance for this ecosystem. The scope of this study was to investigate the functional and taxonomic diversity of methanotrophic bacteria present in the anthropogenic impacted sediments from Bertioga´s mangrove (SP, Brazil). Sediment sample was cultivated with methane and the microbiota actively involved in methane oxidation was identified by DNA-based stable isotope probing (DNA-SIP) using methane as a labeled substrate. After 4 days (96 h) of incubation and consumption of 0.7 mmol of methane, the most active microorganisms were related to methanotrophs Methylomonas and Methylobacter as well as to methylotrophic Methylotenera, indicating a possible association of these bacterial groups within a methane-derived food chain in the Bertioga mangrove. The abundance of genera Methylomonas, able to couple methane oxidation to nitrate reduction, may indicate that under low dissolved oxygen tensions, some aerobic methanotrophs could shift to intraerobic methane oxidation to avoid oxygen starvation.


Assuntos
Metano , Microbiota , Brasil , DNA , Isótopos , Oxirredução , Filogenia , Microbiologia do Solo
11.
J Appl Microbiol ; 131(6): 2941-2956, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34028142

RESUMO

AIM: Arbuscular mycorrhizal fungi (AMF) are often regarded as non-specific symbionts, but some AMF communities show host preference in various ecosystems including vineyards. Grapevine plants are very responsive to AMF colonization. Although these fungi have potentially significant applications for sustainable agricultural ecosystems, there is a gap in knowledge regarding AMF-grapevine interactions worldwide and especially in New Zealand. This study focused on identifying AMF taxa colonizing grapevines in New Zealand vineyards and investigated the effect of grapevine rootstocks on AMF community diversity and composition. METHODS AND RESULTS: Denaturing gradient gel electrophoresis (DGGE) and trap cultures were used to characterize the AMF communities. Grapevine roots from three vineyards and nine rootstocks were analysed by DGGE and used in trap cultures for AMF recovery. Trap cultures allowed the recovery of six AMF spore morphotypes that belonged to Ambispora sp., Claroideoglomus sp., Funneliformis sp. and Glomus sp. Bands excised, reamplified and sequenced from the DGGE were assigned to Glomus sp., Rhizophagus sp. and Claroideoglomus sp. The AMF community analyses demonstrated that rootstock significantly (P < 0·05) influenced the AMF community composition in all sites. CONCLUSIONS: The study showed that for a comprehensive identification of AMF, both results from trap culture and molecular work were needed and that the rootstock cultivar was the main driver of the arbuscular mycorrhizal community colonizing the roots. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides a firm foundation for future research exploring the beneficial use of AMF in enhancing grapevine production and sustainability.


Assuntos
Micorrizas , Ecossistema , Fazendas , Fungos , Micorrizas/genética , Nova Zelândia , Raízes de Plantas , Microbiologia do Solo
12.
J Appl Microbiol ; 131(5): 2325-2335, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33797823

RESUMO

AIMS: This study aimed to clarify the cause of quality reduction in Korean sourdough after successive back-slopping. METHODS AND RESULTS: We investigated the dynamic changes in lactic acid bacteria during the back-slopping process using genetic fingerprinting techniques. During the initial propagation phases, the dominant lactic acid bacteria were Fructilactobacillus sanfranciscensis (<5 log CFU per g sourdough), Latilactobacillus curvatus (9·5 log CFU per g sourdough) and Levilactobacillus brevis (6·5 log CFU per g sourdough). However, after the 11th propagation, F. sanfranciscensis became more prominent (>9·0 log CFU per g sourdough), whereas L. curvatus and L. brevis rapidly decreased. Monitoring these bacteria in the co-culture system revealed that acid-tolerant F. sanfranciscensis rapidly utilized maltose (1·65 g l-1  h-1 ) and produced large amounts of lactic acid, whereas L. brevis and L. curvatus consumed maltose slowly and L. curvatus was poorly tolerant to lactic acid. CONCLUSION: The results indicate that competition exists between the lactic acid bacteria in sourdough during the back-slopping process, and microbial succession by acid-tolerant species results in quality reduction of sourdough. SIGNIFICANCE AND IMPACT OF THE STUDY: This study uncovered the cause of microbial changes during the propagation of Korean sourdough and proposed a strategy to develop starters to produce high-quality bakery products.


Assuntos
Lactobacillales , Pão , Fermentação , Farinha/análise , Microbiologia de Alimentos , Lactobacillales/genética , República da Coreia
13.
BMC Vet Res ; 17(1): 325, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641885

RESUMO

BACKGROUND: Mycoplasma species have been associated with economically important diseases affecting ruminants worldwide and include contagious bovine pleuropneumonia (CBPP), contagious caprine pleuropneumonia (CCPP) and contagious agalactia, listed by the World Organisation for Animal Health (OIE). The Mycoplasma Team at the Animal and Plant Health Agency provides an identification service for Mycoplasma and Ureaplasma species of veterinary importance to the United Kingdom (UK), supporting the detection of new and emerging pathogens, as well as contributing to the surveillance of endemic, and the OIE listed diseases exotic to the UK. Mycoplasma and other Mollicutes species were identified from diagnostic samples from farmed ruminants in England and Wales using a combination of culture and 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis, submitted between 2005 and 2019. RESULTS: A total of 5578 mollicutes identifications, which include mycoplasmas and the related acholeoplasmas and ureaplasmas, were made from farmed ruminant animals during the study period. Throughout the study period, the pathogen Mycoplasma bovis was consistently the most frequently identified species, accounting for 1411 (32%) of 4447 molecular identifications in cattle, primarily detected in the lungs of pneumonic calves, followed by joints and milk of cattle showing signs of arthritis and mastitis, respectively. M. bovirhinis, M. alkalescens, M. dispar, M. arginini and Ureaplasma diversum, were also common. Mixed species, principally M. bovis with M. alkalescens, M. arginini or M. bovirhinis were also prevalent, particularly from respiratory samples. The non-cultivable blood-borne haemoplasmas Candidatus 'Mycoplasma haemobos' and Mycoplasma wenyonii were identified from cattle, with the latter species most often associated with milk-drop. M. ovipneumoniae was the predominant species identified from sheep and goats experiencing respiratory disease, while M. conjunctivae preponderated in ocular samples. The UK remains free of the ruminant mycoplasmas listed by OIE. CONCLUSIONS: The continued high prevalence of M. bovis identifications confirms its ongoing dominance and importance as a significant pathogen of cattle in England and Wales, particularly in association with respiratory disease. M. ovipneumoniae has seen a general increase in prevalence in recent years, notably in coughing lambs and should therefore be considered as a primary differential diagnosis of respiratory disease in small ruminants.


Assuntos
Doenças dos Animais/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma/isolamento & purificação , Ruminantes/microbiologia , Doenças dos Animais/epidemiologia , Animais , Inglaterra/epidemiologia , Mycoplasma/classificação , Mycoplasma/genética , Infecções por Mycoplasma/epidemiologia , RNA Ribossômico 16S , Tenericutes/classificação , Tenericutes/isolamento & purificação , País de Gales/epidemiologia
14.
J Environ Manage ; 277: 111487, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049609

RESUMO

Groundwater near refinery and natural gas plants often contain elevated concentrations of toxic sulfolane. Studies on any concentration of sulfolane are limited. Column experiment was conducted to investigate the effects of adding a low dose of H2O2 and nutrient on bioremediation. Vibrio fischeri light inhibition test was used evaluate the toxicity of effluents. The continuous column experiment conditions were sulfolane at 100 mg L-1, dissolved oxygen at 7 mg L-1, absence of phosphorus, and very short hydraulic retention time (7.9 h). A low dose of H2O2 (5.88 mM) enhanced the sulfolane (27.1%) and COD removal (11.8%) in comparison with the control set. Adding nutrient increased bicinchoninic acid protein assay levels, sulfolane removal (99.6%) and COD removal (80.3%). Addition of both H2O2 and nutrient further improved COD removal (90.3%) and COD/sulfolane ratio (0.90) and toxicity removal (Vibrio fischeri light inhibition ratio < 1%). Batch experiment indicated the degraders tolerated sulfolane up to 400 mg L-1. The DGGE method and dendrogram analysis were utilized to investigate the changes of degrader community structure.


Assuntos
Poluentes Ambientais , Água Subterrânea , Microbiota , Poluentes Químicos da Água , Biodegradação Ambiental , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
J Appl Biomed ; 19(1): 1-13, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34907711

RESUMO

Due to its aggressive nature and low survival rate, esophageal cancer is one of the deadliest cancer. While the intestinal microbiome significantly influences human health and disease. This research aimed to investigate and characterize the relative abundance of intestinal bacterial composition in esophageal cancer patients. The fecal samples were collected from esophageal cancer patients (n = 15) and healthy volunteers (n = 10). The PCR-DGGE was carried out by focusing on the V3 region of the 16S rRNA gene, and qPCR was performed for Bacteroides vulgatus, Escherichia coli, Bifidobacterium, Clostridium leptum and Lactobacillus. High-throughput sequencing of the 16S rRNA gene targeting the V3+V4 region was performed on 20 randomly selected samples. PCR-DGGE and High-throughput diversity results showed a significant alteration of gut bacterial composition between the experimental and control groups, which indicates the gut microbial dysbiosis in esophageal cancer patients. At the phylum level, there was significant enrichment of Bacteroidetes, while a non-significant decrease of Firmicutes in the experimental group. At family statistics, a significantly higher level of Bacteroidaceae and Enterobacteriaceae, while a significantly lower abundance of Prevotellaceae and Veillonellaceae were observed. There was a significantly high prevalence of genera Bacteroides, Escherichia-Shigella, while a significantly lower abundance of Prevotella_9 and Dialister in the experimental group as compared to the control group. Furthermore, the species analysis also showed significantly raised level of Bacteroides vulgatus and Escherichia coli in the experimental group. These findings revealed a significant gut microbial dysbiosis in esophageal cancer patients. So, the current study can be used for the understanding of esophageal cancer treatment, disease pathway, mechanism, and probiotic development.


Assuntos
Neoplasias Esofágicas , Microbioma Gastrointestinal , Bacteroides , Bacteroidetes/genética , Estudos de Casos e Controles , Disbiose/microbiologia , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genética
16.
Rev Argent Microbiol ; 53(4): 349-358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33551324

RESUMO

The driving forces behind many soil processes are microorganisms and they are able to respond immediately to environmental changes. The soil microbial community impacts on many soil properties. More than one-third of the terrestrial ecosystems are semiarid. However, a limited number of studies have been conducted to characterize soil fungal communities in semiarid grasslands, in particular those of agricultural fields. The aim of this study was to explore changes in the diversity and structure of soil fungal communities in semiarid grasslands, after different doses of glyphosate were applied under field conditions. Changes in soil fungal communities were examined using different approaches including culturing, calcofluor white stain and denaturing gradient gel electrophoresis (DGGE). The different approaches complement each other, revealing different aspects of the effect of glyphosate on soil fungal communities. We demonstrated a negative effect of glyphosate on soil fungal biomass at high doses and an early and transitory stimulatory effect on soil fungal biomass. We also found a negative effect of glyphosate on the species richness of cultivable fungi and changes in the molecular structure of soil fungal communities after double doses or long-term glyphosate application. In summary, our findings demonstrate an overall negative effect of glyphosate on soil fungal communities.


Assuntos
Microbiota , Micobioma , Fungos , Glicina/análogos & derivados , Solo , Microbiologia do Solo , Glifosato
17.
Arch Microbiol ; 202(10): 2607-2617, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32691102

RESUMO

Actinomycetales is an order of actinobacteria that have an important role in the decomposition of organic matter. Their abundance and distribution can reflect a good level of soil fertility as well as biological activity. In this research study, actinomycetal diversity in soil was investigated under various field treatments with biowastes. Initially, unvegetated agricultural soil plots of 4 m2 had been annually amended with increasing rates of municipal solid waste compost (MSWC at 40, 80 and 120 t ha-1 year-1) and farmyard manure (FM at 40 and 120 t ha-1 year-1) for eight consecutive years. Control consisted of unamended soil and all treatments were distributed in four randomized complete blocks. At the end of the experimental period, total DNA was extracted from fresh topsoil samples (0-20 cm) then nested PCR-DGGE sequencing method was applied to assess the long-term effect of treatments on the diversity of actinomycetes. Analytical outcomes revealed the presence of ten actinomycetal families with Streptomycetaceae, Pseudonocardiaceae and Nocardioidaceae being the most dominant regardless to changes in experimental conditions. Besides, the long-term accumulation of both biowastes in soil affected the diversity of actinomycetal communities in different ways including contribution, stimulation or inhibition. Interestingly, soil treated with MSWC at an equivalent rate of 40 t ha-1 year-1 was likely to provide optimal growth conditions for major identified genera because it showed the highest actinomycetal diversity as compared to the rest of the treatments.


Assuntos
Actinomycetales/classificação , Actinomycetales/genética , Agricultura/métodos , Biodiversidade , Perfil Genético , Microbiologia do Solo , Esterco
18.
J Appl Microbiol ; 128(6): 1735-1753, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31981438

RESUMO

AIMS: This research aimed to identify factors influencing endophyte community structure in apple shoots and the bioactivity of cultured representatives against the fungal pathogen Neonectria ditissima. METHODS AND RESULTS: The endophyte community in leaves and stems of the apple cultivars 'Royal Gala' and 'Braeburn' were analysed by a cultivation-independent method (PCR-DGGE) which showed that tissue type, cultivar and site were determinant factors, with the endophyte taxa in 'Royal Gala' more variable than that in 'Braeburn', with leaf endophyte communities typically differing from stems in both cultivars. Seasonal (spring vs autumn) and regional (Nelson vs Hawke's Bay) variations were not obvious in woody stems. A collection of 783 bacterial and 87 fungal endophytes were recovered from leaves and stems of 'Royal Gala', 'Braeburn', 'Scilate' and/or 'Scifresh' from Nelson (nine sites) and Hawke's Bay (five sites) in spring and from Nelson (three sites) in autumn. A dual culture plating assay was used to test their ability to inhibit the mycelial growth of N. ditissima. Thirteen bacterial (mean of percent inhibition ≥20%) and 17 fungal isolates were antagonistic towards N. ditissima. These isolates belonged to the bacterial genera Bacillus and Pseudomonas, and fungal genera Chaetomium, Epicoccum, Biscogniauxia, Penicillium, Diaporthe, Phlyctema and two unidentified fungal isolates. CONCLUSIONS: Endophyte communities in apple shoots were determined by tissue type, cultivar and site. Endophytic bacterial and fungal isolates inhibiting N. ditissima growth in vitro were found. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provided new evidence of factors influencing apple endophyte community in New Zealand. Endophytes with potential to reduce N. ditissima infection were identified, with the potential to be developed into a biocontrol strategy for European canker.


Assuntos
Endófitos/fisiologia , Hypocreales/fisiologia , Malus/microbiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/prevenção & controle , Antibiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Endófitos/classificação , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Nova Zelândia , Componentes Aéreos da Planta/microbiologia , Doenças das Plantas/microbiologia
19.
Food Microbiol ; 86: 103339, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703886

RESUMO

The study of microbial communities associated with spontaneous fermentation of agave juice for tequila production is required to develop starter cultures that improve both yield and quality of the final product. Quantification by HPLC of primary metabolites produced during the fermentations was determined. A polyphasic approach using plate count, isolation and identification of microorganisms, denaturing gradient gel electrophoresis and next generation sequencing was carried out to describe the diversity and dynamics of yeasts and bacteria during small-scale spontaneous fermentations of agave juice from two-year samplings. High heterogeneity in microbial populations and fermentation parameters were observed, with bacteria showing higher diversity than yeast. The core microorganisms identified were Saccharomyces cerevisiae and Lactobacillus fermentum. Practices in tequila production changed during the two-year period, which affected microbial community structure and the time to end fermentation. Bacterial growth and concomitant lactic acid production were associated with low ethanol production, thus bacteria could be defined as contaminants in tequila fermentation and efforts to control them should be implemented.


Assuntos
Bebidas Alcoólicas/microbiologia , Bactérias/metabolismo , Leveduras/isolamento & purificação , Agave/química , Agave/microbiologia , Bebidas Alcoólicas/análise , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Etanol/metabolismo , Fermentação , Cinética , Limosilactobacillus fermentum/química , Limosilactobacillus fermentum/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Leveduras/química , Leveduras/genética , Leveduras/metabolismo
20.
Food Microbiol ; 89: 103457, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32139001

RESUMO

Monitoring L. helveticus strain dynamics in natural whey starters is of great interest at the industrial level due to the key role that this bacterial population plays in Grana Padano cheese production. In this study, we aimed to develop a PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) assay based on the slpH locus, in parallel with performing culture-dependent analysis of whey samples using optimized media to maximize the number of isolated strains. We designed new primers targeting the slpH locus to amplify a gene region that would be suitable for PCR-DGGE analysis and discriminating strains. Our results confirmed that the developed PCR-DGGE method was rapid and reliable for monitoring the L. helveticus population in whey starter cultures. All sequences of bands detected in the PCR-DGGE profiles from whey samples showed high similarity to S-layer genes of L. helveticus, and perfectly matched with the slpH locus sequences of dominant strains. Overall, our findings indicated that the target region of the slpH locus was sufficiently heterologous to discriminate L. helveticus strains, and that our PCR-DGGE analysis provided a more accurate picture of the population composition of whey starters compared to culture-dependent techniques that often fail to isolate the most abundant strains.


Assuntos
Eletroforese em Gel de Gradiente Desnaturante/métodos , Lactobacillus helveticus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Soro do Leite/microbiologia , Técnicas de Tipagem Bacteriana , Queijo , DNA Bacteriano/análise , Lactobacillus helveticus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA