RESUMO
The guanine-rich stretch of single-stranded DNA (ssDNA) forms a G-quadruplex (G4) in a fraction of genic and intergenic chromosomal regions. The probability of G4 formation increases during events causing ssDNA generation, such as transcription and replication. In turn, G4 abrogates these events, leading to DNA damage. DHX36 unwinds G4-DNA in vitro and in human cells. However, its spatial correlation with G4-DNA in vivo and its role in genome maintenance remain unclear. Here, we demonstrate a connection between DHX36 and G4-DNA and its implications for genomic integrity. The nuclear localization of DHX36 overlapped with that of G4-DNA, RNA polymerase II, and a splicing-related factor. Depletion of DHX36 resulted in accumulated DNA damage, slower cell growth, and enhanced cell growth inhibition upon treatment with a G4-stabilizing compound; DHX36 expression reversed these defects. In contrast, the reversal upon expression of DHX36 mutants that could not bind G4 was imperfect. Thus, DHX36 may suppress DNA damage by promoting the clearance of G4-DNA for cell growth and survival. Our findings deepen the understanding of G4 resolution in the maintenance of genomic integrity.
RESUMO
G-quadruplexes (G4s) are secondary DNA and RNA structures stabilized by positive cations in a central channel formed by stacked tetrads of Hoogsteen base-paired guanines. G4s form from G-rich sequences across the genome, whose biased distribution in regulatory regions points towards a gene-regulatory role. G4s can themselves be regulated by helicases, such as DHX36 (aliases: G4R1 and RHAU), which possess the necessary activity to resolve these stable structures. G4s have been shown to both positively and negatively regulate gene expression when stabilized by ligands, or through the loss of helicase activity. Using DHX36 knockout Jurkat cell lines, we identified widespread, although often subtle, effects on gene expression that are associated with the presence or number of observed G-quadruplexes in promoters or gene regions. Genes that significantly change their expression, particularly those that show a significant increase in RNA abundance under DHX36 knockout, are associated with a range of cellular functions and processes, including numerous transcription factors and oncogenes, and are linked to several cancers. Our work highlights the direct and indirect role of DHX36 in the transcriptome of T-lymphocyte leukemia cells and the potential for DHX36 dysregulation in cancer.
Assuntos
RNA Helicases DEAD-box , Quadruplex G , Neoplasias , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , RNA/metabolismo , Células Jurkat/metabolismoRESUMO
The development of site-specific, target-selective and biocompatible small molecule ligands as a fluorescent tool for real-time study of cellular functions of RNA G-quadruplexes (G4s), which are associated with human cancers, is of significance in cancer biology. We report a fluorescent ligand that is a cytoplasm-specific and RNA G4-selective fluorescent biosensor in live HeLa cells. The inâ vitro results show that the ligand is highly selective targeting RNA G4s including VEGF, NRAS, BCL2 and TERRA. These G4s are recognized as human cancer hallmarks. Moreover, intracellular competition studies with BRACO19 and PDS, and the colocalization study with G4-specific antibody (BG4) in HeLa cells may support that the ligand selectively binds to G4s in cellulo. Furthermore, the ligand was demonstrated for the first time in the visualization and monitoring of dynamic resolving process of RNA G4s by the overexpressed RFP-tagged DHX36 helicase in live HeLa cells.
Assuntos
Quadruplex G , Neoplasias , Humanos , Células HeLa , Ligantes , RNA/metabolismo , Citoplasma/metabolismoRESUMO
G-quadruplex structures (G4s) form readily in DNA and RNA and play diverse roles in gene expression and other processes, and their inappropriate formation and stabilization are linked to human diseases. G4s are inherently long-lived, such that their timely unfolding depends on a suite of DNA and RNA helicase proteins. Biochemical analysis of G4 binding and unfolding by individual helicase proteins is important for establishing their levels of activity, affinity, and specificity for G4s, including individual G4s of varying sequence and structure. Here we describe a set of simple, accessible methods in which electrophoretic mobility shift assays (EMSA) are used to measure the kinetics of G4 binding, dissociation, and unfolding by helicase proteins. We focus on practical considerations and the pitfalls that are most likely to arise when these methods are used to study the activities of helicases on G4s.
Assuntos
RNA Helicases DEAD-box , Quadruplex G , RNA Helicases DEAD-box/química , DNA/química , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Cinética , RNA/genéticaRESUMO
GGGGCC (G4C2) hexanucleotide repeat expansions in the endosomal trafficking gene C9orf72 are the most common genetic cause of ALS and frontotemporal dementia. Repeat-associated non-AUG (RAN) translation of this expansion through near-cognate initiation codon usage and internal ribosomal entry generates toxic proteins that accumulate in patients' brains and contribute to disease pathogenesis. The helicase protein DEAH-box helicase 36 (DHX36-G4R1) plays active roles in RNA and DNA G-quadruplex (G4) resolution in cells. As G4C2 repeats are known to form G4 structures in vitro, we sought to determine the impact of manipulating DHX36 expression on repeat transcription and RAN translation. Using a series of luciferase reporter assays both in cells and in vitro, we found that DHX36 depletion suppresses RAN translation in a repeat length-dependent manner, whereas overexpression of DHX36 enhances RAN translation from G4C2 reporter RNAs. Moreover, upregulation of RAN translation that is typically triggered by integrated stress response activation is prevented by loss of DHX36. These results suggest that DHX36 is active in regulating G4C2 repeat translation, providing potential implications for therapeutic development in nucleotide repeat expansion disorders.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , RNA Helicases DEAD-box/metabolismo , Expansão das Repetições de DNA , Quadruplex G , RNA Helicases/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/metabolismo , Linhagem Celular Tumoral , Demência Frontotemporal/enzimologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Biossíntese de ProteínasRESUMO
RNA G-quadruplex (rG4) structures in the 5' untranslated region (5'UTR) play crucial roles in fundamental cellular processes. ADAR is an important enzyme that binds to double-strand RNA and accounts for the conversion of Adenosine to Inosine in RNA editing. However, so far there is no report on the formation and regulatory role of rG4 on ADAR expression. Here, we identify and characterize a thermostable rG4 structure within the 5'UTR of the ADAR1 mRNA and demonstrate its formation and inhibitory role on translation in reporter gene and native gene constructs. We reveal rG4-specific helicase DHX36 interacts with this rG4 in vitro and in cells under knockdown and knockout conditions by GTFH (G-quadruplex-triggered fluorogenic hybridization) probes and modulates translation in an rG4-dependent manner. Our results further substantiate the rG4 structure-DHX36 protein interaction in cells and highlight rG4 to be a key player in controlling ADAR1 translation.
Assuntos
Quadruplex G , Regiões 5' não Traduzidas , RNA Mensageiro/metabolismoRESUMO
Specific microRNAs (miRNAs), including miR-134, localize to neuronal dendrites, where they control synaptic protein synthesis and plasticity. However, the mechanism of miRNA transport is unknown. We found that the neuronal precursor-miRNA-134 (pre-miR-134) accumulates in dendrites of hippocampal neurons and at synapses in vivo. Dendritic localization of pre-miR-134 is mediated by the DEAH-box helicase DHX36, which directly associates with the pre-miR-134 terminal loop. DHX36 function is required for miR-134-dependent inhibition of target gene expression and the control of dendritic spine size. Dendritically localized pre-miR-134 could provide a local source of miR-134 that can be mobilized in an activity-dependent manner during plasticity.
Assuntos
RNA Helicases DEAD-box/metabolismo , Dendritos/enzimologia , MicroRNAs/metabolismo , Animais , Células Cultivadas , RNA Helicases DEAD-box/genética , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Ratos , Sinaptossomos/metabolismoRESUMO
G-quadruplexes (G4) are secondary structures of nucleic acids that can form in cells and have diverse biological functions. Several biologically important proteins interact with G-quadruplexes, of which RHAU (or DHX36) - a helicase from the DEAH-box superfamily, was shown to bind and unwind G-quadruplexes efficiently. We report a X-ray co-crystal structure at 1.5â¯Å resolution of an N-terminal fragment of RHAU bound to an exposed tetrad of a parallel-stranded G-quadruplex. The RHAU peptide folds into an L-shaped α-helix, and binds to a G-quadruplex through π-stacking and electrostatic interactions. X-ray crystal structure of our complex identified key amino acid residues important for G-quadruplex-peptide binding interaction at the 3'-end Gâ¢Gâ¢Gâ¢G tetrad. Together with previous solution and crystal structures of RHAU bound to the 5'-end Gâ¢Gâ¢Gâ¢G and Gâ¢Gâ¢Aâ¢T tetrads, our crystal structure highlights the occurrence of a robust G-quadruplex recognition motif within RHAU that can adapt to different accessible tetrads.
Assuntos
RNA Helicases DEAD-box/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Quadruplex G , Conformação de Ácido Nucleico , Motivos de Aminoácidos/genética , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Humanos , Peptídeos/química , Peptídeos/genética , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice/genéticaRESUMO
BACKGROUND & AIMS: RNA G-quadruplexes (RG4s) appear to be important in post-transcriptional gene regulation, but their pathophysiological functions remain unknown. MicroRNA-26a (miR-26a) is emerging as a therapeutic target for various human diseases, however the mechanisms underlying endogenous miR-26a regulation are poorly understood. Herein, we study the role of RG4 in miR-26a expression and function in vitro and in vivo. METHODS: Putative RG4s within liver-enriched miRNAs were predicted by bioinformatic analysis, and the presence of an RG4 structure in the miR-26a-1 precursor (pre-miR-26a-1) was further analyzed by biophysical and biochemical methods. RG4 stabilizers, pre-miR-26a-1 overexpression plasmids, and luciferase reporter assays were used to assess the effect of RG4 on pre-miR-26a-1 maturation. Both miR-26a knock-in and knockout mouse models were employed to investigate the influence of this RG4 on miR-26a expression and function. Moreover, the interaction between RG4 in pre-miR-26a-1 and DEAH-box helicase 36 (DHX36) was determined by biophysical and molecular methods. Finally, miR-26a processing and DHX36 expression were quantified in the livers of obese mice. RESULTS: We identify a guanine-rich sequence in pre-miR-26a-1 that can fold into an RG4 structure. This RG4 impairs pre-miR-26a-1 maturation, resulting in a decrease in miR-26a expression and subsequently an increase in miR-26a cognate targets. In line with known miR-26a functions, this RG4 can regulate hepatic insulin sensitivity and lipid metabolism in vitro and in vivo. Furthermore, we reveal that DHX36 can bind and unwind this RG4 structure, thereby enhancing miR-26a maturation. Intriguingly, there is a concordant decrease of miR-26a maturation and DHX36 expression in obese mouse livers. CONCLUSIONS: Our findings define a dynamic DHX36/RG4/miR-26a regulatory axis during obesity, highlighting an important role of RG4 in physiology and pathology. LAY SUMMARY: Specific RNA sequences called G-quadruplexes (or RG4) appear to be important in post-transcriptional gene regulation. Obesity leads to the formation of these RG4 structures in pre-miR-26a-1 molecules, impairing the maturation and function of miR-26a, which has emerged as a therapeutic target in several diseases. This contributes to hepatic insulin resistance and the dysregulation of liver metabolism.
Assuntos
RNA Helicases DEAD-box/metabolismo , Quadruplex G , Fígado/metabolismo , MicroRNAs/metabolismo , Obesidade/metabolismo , Animais , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Regulação da Expressão Gênica , Técnicas de Introdução de Genes/métodos , Técnicas de Inativação de Genes/métodos , Resistência à Insulina/genética , Camundongos , Modelos Animais , Estrutura MolecularRESUMO
DExD (DDX)- and DExH (DHX)-box RNA helicases, named after their Asp-Glu-x-Asp/His motifs, are integral to almost all RNA metabolic processes in eukaryotic cells. They play myriad roles in processes ranging from transcription and mRNA-protein complex remodeling, to RNA decay and translation. This last facet, translation, is an intricate process that involves DDX/DHX helicases and presents a regulatory node that is highly targetable. Studies aimed at better understanding this family of conserved proteins have revealed insights into their structures, catalytic mechanisms, and biological roles. They have also led to the development of chemical modulators that seek to exploit their essential roles in diseases. Herein, we review the most recent insights on several general and target-specific DDX/DHX helicases in eukaryotic translation initiation.
Assuntos
Eucariotos/enzimologia , Biossíntese de Proteínas , RNA Helicases/metabolismo , Animais , Eucariotos/genética , Humanos , Modelos Moleculares , Conformação Proteica , RNA Helicases/química , Estabilidade de RNARESUMO
Four-stranded nucleic acid structures called G-quadruplexes have been associated with important cellular processes, which should require G-quadruplex-protein interaction. However, the structural basis for specific G-quadruplex recognition by proteins has not been understood. The DEAH (Asp-Glu-Ala-His) box RNA helicase associated with AU-rich element (RHAU) (also named DHX36 or G4R1) specifically binds to and resolves parallel-stranded G-quadruplexes. Here we identified an 18-amino acid G-quadruplex-binding domain of RHAU and determined the structure of this peptide bound to a parallel DNA G-quadruplex. Our structure explains how RHAU specifically recognizes parallel G-quadruplexes. The peptide covers a terminal guanine base tetrad (G-tetrad), and clamps the G-quadruplex using three-anchor-point electrostatic interactions between three positively charged amino acids and negatively charged phosphate groups. This binding mode is strikingly similar to that of most ligands selected for specific G-quadruplex targeting. Binding to an exposed G-tetrad represents a simple and efficient way to specifically target G-quadruplex structures.
Assuntos
RNA Helicases DEAD-box/metabolismo , Quadruplex G , Peptídeos/química , Sequência de Aminoácidos , RNA Helicases DEAD-box/química , Eletroforese em Gel de Ágar , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , SoluçõesRESUMO
RNA helicase associated with AU-rich element (RHAU) is an ATP-dependent RNA helicase that demonstrates high affinity for quadruplex structures in DNA and RNA. To elucidate the significance of these quadruplex-RHAU interactions, we have performed RNA co-immunoprecipitation screens to identify novel RNAs bound to RHAU and characterize their function. In the course of this study, we have identified the non-coding RNA BC200 (BCYRN1) as specifically enriched upon RHAU immunoprecipitation. Although BC200 does not adopt a quadruplex structure and does not bind the quadruplex-interacting motif of RHAU, it has direct affinity for RHAU in vitro. Specifically designed BC200 truncations and RNase footprinting assays demonstrate that RHAU binds to an adenosine-rich region near the 3'-end of the RNA. RHAU truncations support binding that is dependent upon a region within the C terminus and is specific to RHAU isoform 1. Tests performed to assess whether BC200 interferes with RHAU helicase activity have demonstrated the ability of BC200 to act as an acceptor of unwound quadruplexes via a cytosine-rich region near the 3'-end of the RNA. Furthermore, an interaction between BC200 and the quadruplex-containing telomerase RNA was confirmed by pull-down assays of the endogenous RNAs. This leads to the possibility that RHAU may direct BC200 to bind and exert regulatory functions at quadruplex-containing RNA or DNA sequences.
Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Longo não Codificante/metabolismo , Sequência de Bases , Sítios de Ligação , RNA Helicases DEAD-box/genética , Quadruplex G , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Dados de Sequência Molecular , Ligação Proteica , RNA Longo não Codificante/química , RNA Longo não Codificante/genéticaRESUMO
G-quadruplexes (G4) are RNA and DNA secondary structures formed by the stacking of guanine quartets in guanine rich sequences. Quadruplex-prone motifs may be found in key genomic regions such as telomeres, ribosomal DNA, transcriptional activators and regulators or oncogene promoters. A number of proteins involved in various biological processes are able to interact with G4s. Among them, proteins dedicated to nucleic acids unwinding such as WRN, BLM, FANCJ or PIF1, can unfold G4 structures. Mutations of these helicases are linked to genome instability and to increases in cancer risks. Here, we present a high-throughput fluorescence-based reliable, inexpensive and fast assay to study G4/RHAU interaction. RHAU is an RNA helicase known as the major source of G4 resolution in HeLa cells. Our assay allows to monitor the unfolding properties of RHAU towards DNA and RNA quadruplexes in parallel and to screen for the optimal conditions for its activity. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Assuntos
RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Quadruplex G , RNA/metabolismo , RNA Helicases DEAD-box/genética , DNA/química , Ensaios de Triagem em Larga Escala , Humanos , Desnaturação de Ácido Nucleico , Potássio/química , Potássio/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , RNA/química , Estabilidade de RNA , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Telômero/química , Telômero/metabolismo , TemperaturaRESUMO
Polynucleotides containing consecutive tracts of guanines can adopt an intramolecular G-quadruplex structure where multiple planar tetrads of hydrogen-bound guanines stack on top of each other. Remodeling of G-quadruplexes impacts numerous aspects of nucleotide biology including transcriptional and translational control. RNA helicase associated with AU-rich element (RHAU), a member of the ATP-dependent DEX(H/D) family of RNA helicases, has been established as a major cellular quadruplex resolvase. RHAU contains a core helicase domain responsible for ATP binding/hydrolysis/helicase activity and is flanked on either side by N- and C-terminal extensions. The N-terminal extension is required for quadruplex recognition, and we have previously demonstrated complex formation between this domain and a quadruplex from human telomerase RNA. Here we used an integrated approach that includes small angle x-ray scattering, nuclear magnetic resonance spectroscopy, circular dichroism, and dynamic light scattering methods to demonstrate the recognition of G-quadruplexes by the N-terminal domain of RHAU. Based on our results, we conclude that (i) quadruplex from the human telomerase RNA and its DNA analog both adopt a disc shape in solution, (ii) RHAU53-105 adopts a defined and extended conformation in solution, and (iii) the N-terminal domain mediates an interaction with a guanine tetrad face of quadruplexes. Together, these data form the foundation for understanding the recognition of quadruplexes by the N-terminal domain of RHAU.
Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Quadruplex G , RNA/química , RNA/metabolismo , Telomerase/química , Telomerase/metabolismo , Elementos Ricos em Adenilato e Uridilato , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Dicroísmo Circular , RNA Helicases DEAD-box/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Telomerase/genéticaRESUMO
It is estimated that 15 % of couples at reproductive age worldwide suffer from infertility, approximately 50 % of cases are caused by male factors. Significant progress has been made in the diagnosis and treatment of male infertility through assisted reproductive technology and molecular genetics methods. However, there is still inadequate research on the underlying mechanisms of gene regulation in the process of spermatogenesis. Guanine-quadruplexes (G4s) are a class of non-canonical secondary structures of nucleic acid commonly found in genomes and RNAs that play important roles in various biological processes. Interestingly, the DEAH-box helicase 36 (DHX36) displays high specificity for the G4s which can unwind both DNA G4s and RNA G4s enzymatically and is highly expressed in testis, thereby regulating multiple cellular functions including transcription, pre-mRNA splicing, translation, telomere maintenance, genomic stability, and RNA metabolism in development and male infertility. This review provides an overview of the roles of G4s and DHX36 in reproduction and development. We mainly focus on the potential role of DHX36 in male infertility. We also discuss possible future research directions regarding the mechanism of spermatogenesis mediated by DHX36 through G4s in spermatogenesis-related genes and provide new targets for gene therapy of male infertility.
Assuntos
RNA Helicases DEAD-box , Quadruplex G , Infertilidade Masculina , Espermatogênese , Masculino , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/química , Infertilidade Masculina/genética , Espermatogênese/genética , Animais , RNA/genética , RNA/metabolismoRESUMO
Background: PIWI-interacting RNAs (piRNAs) are a class of noncoding RNAs originally reported in the reproductive system of mammals and later found to be aberrantly expressed in tumors. However, the function and mechanism of piRNAs in testicular cancer are not very clear. Methods: The expression level and distribution of piR-36249 were detected by RT-qPCR and immunofluorescence staining assay. Testicular cancer cell (NT2) progression was measured by CCK8 assay, colony formation assay and wound healing assay. Cell apoptosis was assessed by flow cytometry and western blot. RNA sequencing and dual-luciferase reporter assay were conducted to identify the potential targets of piR-36249. The relationship between piR-36249 and OAS2 or DHX36 was confirmed using overexpression assay, knockdown assay, pull-down assay and RIP assay. Results: piR-36249 is significantly downregulated in testicular cancer tissues compared to tumor-adjacent tissues. Functional studies demonstrate that piR-36249 inhibits testicular cancer cell proliferation, migration and activates the cell apoptosis pathway. Mechanically, we identify that piR-36249 binds to the 3'UTR of 2'-5'-oligoadenylate synthetase 2 (OAS2) mRNA. OAS2 has been shown in the literature to be a tumor suppressor modulating the occurrence and development of some tumors. Here, we show that OAS2 knockdown also promotes testicular cancer cell proliferation and migration. Furthermore, piR-36249 interacts with DHX36, which has been reported to promote translation. DHX36 can also bind to OAS2 mRNA, and knockdown of DHX36 increases OAS2 mRNA but downregulates its protein, indicating the enhancing effect of DHX36 on OAS2 protein expression. Conclusion: All these data suggest that piR-36249, together with DHX36, functions in inhibiting the malignant phenotype of testicular cancer cells by upregulating OAS2 protein and that piR-36249 may be used as a suppressor factor to regulate the development of testicular cancer.
RESUMO
Spermatogenesis is a highly complex developmental process that typically consists of mitosis, meiosis, and spermiogenesis. DNA/RNA helicase DHX36, a unique guanine-quadruplex (G4) resolvase, plays crucial roles in a variety of biological processes. We previously showed that DHX36 is highly expressed in male germ cells with the highest level in zygotene spermatocytes. Here, we deleted Dhx36 in advanced germ cells with Stra8-GFPCre and found that a Dhx36 deficiency in the differentiated spermatogonia leads to meiotic defects and abnormal spermiogenesis. These defects in late stages of spermatogenesis arise from dysregulated transcription of G4-harboring genes, which are required for meiosis. Thus, this study reveals that Dhx36 plays crucial roles in late stages of spermatogenesis.
Assuntos
RNA Helicases , RNA , Masculino , DNA/genética , DNA Helicases/genética , Meiose , RNA Helicases/genética , Espermatócitos , Espermatogênese/genética , Animais , CamundongosRESUMO
The G-quadruplex (G4) sequences are short fragments of 4-interval triple guanine (G) with frequent and ubiquitous distribution in the genome and RNA transcripts. The G4 sequences are usually folded into secondary "knot" structure via Hoogsteen hydrogen bond to exert negative regulation on a variety of biological processes, including DNA replication and transcription, mRNA translation, and telomere maintenance. Recent structural biological and mouse genetics studies have demonstrated that RHAU (DHX36) can bind and unwind the G4 "knots" to modulate embryonic development and postnatal organ function. Deficiency of RHAU gives rise to embryonic lethality, impaired organogenesis, and organ dysfunction. These studies uncovered the pivotal G4 resolvase function of RHAU to release the G4 barrier, which plays fundamental roles in development and physiological homeostasis. This review discusses the latest advancements and findings in deciphering RHAU functions using animal models.
Assuntos
Quadruplex G , RNA , Animais , Camundongos , RNA/genética , RNA/química , RNA/metabolismo , Recombinases/química , Recombinases/genética , Recombinases/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/química , DNA/metabolismoRESUMO
The destiny of a messenger RNA is determined from a combination of in cis elements, like peculiar secondary structures, and in trans modulators, such as RNA binding proteins and non-coding, regulatory RNAs. RNA guanine quadruplexes belong to the first group: these strong secondary structures have been characterized in many mRNAs, and their stabilization or unwinding provides an additional step for the fine tuning of mRNA stability and translation. On the other hand, many cytoplasmic long non-coding RNAs intervene in post-transcriptional regulation, frequently by direct base-pairing with their mRNA targets. We have previously identified the lncRNA SMaRT as a key modulator of the correct timing of murine skeletal muscle differentiation; when expressed, lnc-SMaRT interacts with a G-quadruplex-containing region of Mlx-γ mRNA, therefore inhibiting its translation by counteracting the DHX36 helicase activity. The "smart" mode of action of lnc-SMaRT led us to speculate whether this molecular mechanism could be extended to other targets and conserved in other species. Here, we show that the molecular complex composed by lnc-SMaRT and DHX36 also includes other mRNAs. We prove that lnc-SMaRT is able to repress Spire1 translation through base-pairing with its G-quadruplex-forming sequence, and that Spire1 modulation participates to the regulation of proper skeletal muscle differentiation. Moreover, we demonstrate that the interaction between DHX36 and lnc-SMaRT is indirect and mediated by the mRNAs present in the complex. Finally, we suggest an extendibility of the molecular mechanism of lnc-SMaRT from the mouse model to humans, identifying potential functional analogues.
Assuntos
Diferenciação Celular/genética , Proteínas dos Microfilamentos/metabolismo , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Acil-CoA Desidrogenases , Animais , RNA Helicases DEAD-box , Quadruplex G , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Conformação Proteica , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/genética , RNA Mensageiro , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Adult muscle stem cells, also known as satellite cells (SCs), play pivotal roles in muscle regeneration, and long non-coding RNA (lncRNA) functions in SCs remain largely unknown. Here, we identify a lncRNA, Lockd, which is induced in activated SCs upon acute muscle injury. We demonstrate that Lockd promotes SC proliferation; deletion of Lockd leads to cell-cycle arrest, and in vivo repression of Lockd in mouse muscles hinders regeneration process. Mechanistically, we show that Lockd directly interacts with RNA helicase DHX36 and the 5'end of Lockd possesses the strongest binding with DHX36. Furthermore, we demonstrate that Lockd stabilizes the interaction between DHX36 and EIF3B proteins; synergistically, this complex unwinds the RNA G-quadruplex (rG4) structure formed at Anp32e mRNA 5' UTR and promotes the translation of ANP32E protein, which is required for myoblast proliferation. Altogether, our findings identify a regulatory Lockd/DHX36/Anp32e axis that promotes myoblast proliferation and acute-injury-induced muscle regeneration.