Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Cell ; 175(2): 558-570.e11, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245011

RESUMO

Given that genomic DNA exerts its function by being transcribed, it is critical for the maintenance of homeostasis that DNA damage, such as double-strand breaks (DSBs), within transcriptionally active regions undergoes accurate repair. However, it remains unclear how this is achieved. Here, we describe a mechanism for transcription-associated homologous recombination repair (TA-HRR) in human cells. The process is initiated by R-loops formed upon DSB induction. We identify Rad52, which is recruited to the DSB site in a DNA-RNA-hybrid-dependent manner, as playing pivotal roles in promoting XPG-mediated R-loop processing and initiating subsequent repair by HRR. Importantly, dysfunction of TA-HRR promotes DSB repair via non-homologous end joining, leading to a striking increase in genomic aberrations. Thus, our data suggest that the presence of R-loops around DSBs within transcriptionally active regions promotes accurate repair of DSBs via processing by Rad52 and XPG to protect genomic information in these critical regions from gene alterations.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteínas Nucleares/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Reparo de DNA por Recombinação/fisiologia , Fatores de Transcrição/metabolismo , Linhagem Celular , DNA/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Recombinação Homóloga , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , RNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Fatores de Transcrição/fisiologia
2.
Genes Dev ; 38(11-12): 504-527, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38986581

RESUMO

Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.


Assuntos
Instabilidade Genômica , Estruturas R-Loop , RNA , Instabilidade Genômica/genética , RNA/metabolismo , RNA/genética , Replicação do DNA/genética , Animais , Humanos , Transcrição Gênica/genética
3.
Mol Cell ; 82(21): 3985-4000.e4, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265486

RESUMO

Alternative lengthening of telomeres (ALT), a telomerase-independent process maintaining telomeres, is mediated by break-induced replication (BIR). RAD52 promotes ALT by facilitating D-loop formation, but ALT also occurs through a RAD52-independent BIR pathway. Here, we show that the telomere non-coding RNA TERRA forms dynamic telomeric R-loops and contributes to ALT activity in RAD52 knockout cells. TERRA forms R-loops in vitro and at telomeres in a RAD51AP1-dependent manner. The formation of R-loops by TERRA increases G-quadruplexes (G4s) at telomeres. G4 stabilization enhances ALT even when TERRA is depleted, suggesting that G4s act downstream of R-loops to promote BIR. In vitro, the telomeric R-loops assembled by TERRA and RAD51AP1 generate G4s, which persist after R-loop resolution and allow formation of telomeric D-loops without RAD52. Thus, the dynamic telomeric R-loops formed by TERRA and RAD51AP1 enable the RAD52-independent ALT pathway, and G4s orchestrate an R- to D-loop switch at telomeres to stimulate BIR.


Assuntos
RNA Longo não Codificante , Telomerase , Homeostase do Telômero , Telômero/genética , Telômero/metabolismo , Telomerase/genética , Telomerase/metabolismo , Estruturas R-Loop/genética , Reparo do DNA
4.
Annu Rev Biochem ; 83: 585-614, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905787

RESUMO

The importance of eukaryotic DNA methylation [5-methylcytosine (5mC)] in transcriptional regulation and development was first suggested almost 40 years ago. However, the molecular mechanism underlying the dynamic nature of this epigenetic mark was not understood until recently, following the discovery that the TET proteins, a family of AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, can oxidize 5mC to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since then, several mechanisms that are responsible for processing oxidized 5mC derivatives to achieve DNA demethylation have emerged. Our biochemical understanding of the DNA demethylation process has prompted new investigations into the biological functions of DNA demethylation. Characterization of two additional AlkB family proteins, FTO and ALKBH5, showed that they possess demethylase activity toward N(6)-methyladenosine (m(6)A) in RNA, indicating that members of this subfamily of dioxygenases have a general function in demethylating nucleic acids. In this review, we discuss recent advances in this emerging field, focusing on the mechanism and function of TET-mediated DNA demethylation.


Assuntos
Metilação de DNA , DNA/química , Regulação da Expressão Gênica , Oxigênio/química , RNA/química , 5-Metilcitosina/química , Animais , Citosina/análogos & derivados , Citosina/química , Escherichia coli/metabolismo , Genoma , Células Germinativas/citologia , Células HEK293 , Humanos , Metilação , Camundongos , Neoplasias/genética , Células-Tronco/citologia , Transcriptoma
5.
EMBO J ; 43(12): 2453-2485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719994

RESUMO

Double-strand breaks (DSBs) are the most lethal form of DNA damage. Transcriptional activity at DSBs, as well as transcriptional repression around DSBs, are both required for efficient DNA repair. The chromatin landscape defines and coordinates these two opposing events. However, how the open and condensed chromatin architecture is regulated remains unclear. Here, we show that the GATAD2B-NuRD complex associates with DSBs in a transcription- and DNA:RNA hybrid-dependent manner, to promote histone deacetylation and chromatin condensation. This activity establishes a spatio-temporal boundary between open and closed chromatin, which is necessary for the correct termination of DNA end resection. The lack of the GATAD2B-NuRD complex leads to chromatin hyperrelaxation and extended DNA end resection, resulting in homologous recombination (HR) repair failure. Our results suggest that the GATAD2B-NuRD complex is a key coordinator of the dynamic interplay between transcription and the chromatin landscape, underscoring its biological significance in the RNA-dependent DNA damage response.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Cromatina/metabolismo , Cromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , RNA/metabolismo , RNA/genética , Dano ao DNA , DNA/metabolismo , DNA/genética , Animais , Humanos , Transcrição Gênica , Reparo do DNA , Camundongos
6.
Mol Cell ; 79(3): 425-442.e7, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615088

RESUMO

Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.


Assuntos
Adenosina/análogos & derivados , Neoplasias de Cabeça e Pescoço/genética , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adenosina/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Bleomicina/farmacologia , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Células HEK293 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Hibridização de Ácido Nucleico , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cell ; 77(5): 1055-1065.e4, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31952990

RESUMO

In eukaryotes, three-dimensional genome organization is critical for transcriptional regulation of gene expression. Long noncoding RNAs (lncRNAs) can modulate chromatin conformation of spatially related genomic locations within the nucleus. Here, we show that the lncRNA APOLO (AUXIN-REGULATED PROMOTER LOOP) recognizes multiple distant independent loci in the Arabidopsis thaliana genome. We found that APOLO targets are not spatially associated in the nucleus and that APOLO recognizes its targets by short sequence complementarity and the formation of DNA-RNA duplexes (R-loops). The invasion of APOLO to the target DNA decoys the plant Polycomb Repressive Complex 1 component LHP1, modulating local chromatin 3D conformation. APOLO lncRNA coordinates the expression of distal unrelated auxin-responsive genes during lateral root development in Arabidopsis. Hence, R-loop formation and chromatin protein decoy mediate trans action of lncRNAs on distant loci. VIDEO ABSTRACT.


Assuntos
Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Modelos Genéticos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Estruturas R-Loop , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , RNA de Plantas/genética , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Genes Dev ; 34(15-16): 1065-1074, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561545

RESUMO

RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Estruturas R-Loop , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Cromatina/metabolismo , Humanos , Estresse Fisiológico , Inibidores da Topoisomerase I/farmacologia
9.
Trends Biochem Sci ; 48(7): 618-628, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37069045

RESUMO

During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Inteligência Artificial , Núcleo Celular/metabolismo , DNA/genética , Senescência Celular/genética
10.
Mol Cell ; 76(1): 57-69.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31519522

RESUMO

Although correlations between RNA polymerase II (RNAPII) transcription stress, R-loops, and genome instability have been established, the mechanisms underlying these connections remain poorly understood. Here, we used a mutant version of the transcription elongation factor TFIIS (TFIISmut), aiming to specifically induce increased levels of RNAPII pausing, arrest, and/or backtracking in human cells. Indeed, TFIISmut expression results in slower elongation rates, relative depletion of polymerases from the end of genes, and increased levels of stopped RNAPII; it affects mRNA splicing and termination as well. Remarkably, TFIISmut expression also dramatically increases R-loops, which may form at the anterior end of backtracked RNAPII and trigger genome instability, including DNA strand breaks. These results shed light on the relationship between transcription stress and R-loops and suggest that different classes of R-loops may exist, potentially with distinct consequences for genome stability.


Assuntos
Instabilidade Genômica , Estruturas R-Loop , RNA Mensageiro/genética , Estresse Fisiológico , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mutação , RNA Polimerase II/metabolismo , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética
11.
Genes Dev ; 33(15-16): 1008-1026, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31123061

RESUMO

Genome replication involves dealing with obstacles that can result from DNA damage but also from chromatin alterations, topological stress, tightly bound proteins or non-B DNA structures such as R loops. Experimental evidence reveals that an engaged transcription machinery at the DNA can either enhance such obstacles or be an obstacle itself. Thus, transcription can become a potentially hazardous process promoting localized replication fork hindrance and stress, which would ultimately cause genome instability, a hallmark of cancer cells. Understanding the causes behind transcription-replication conflicts as well as how the cell resolves them to sustain genome integrity is the aim of this review.


Assuntos
Replicação do DNA/fisiologia , Instabilidade Genômica/genética , Transcrição Gênica/fisiologia , Genoma/genética , Humanos , Neoplasias/fisiopatologia , Elongação da Transcrição Genética/fisiologia
12.
EMBO J ; 41(22): e108040, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36215697

RESUMO

The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double-strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double-strand breaks, hampering DSB repair. DIS3-inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro-inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid-dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Ribonucleases/metabolismo , Reparo de DNA por Recombinação , Recombinação Homóloga , Instabilidade Genômica , Reparo do DNA , DNA/metabolismo , RNA , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
13.
Immunity ; 46(4): 621-634, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423339

RESUMO

Cytosolic sensing of nucleic acids initiates tightly regulated programs to limit infection. Oocyte fertilization represents a scenario wherein inappropriate responses to exogenous yet non-pathogen-derived nucleic acids would have negative consequences. We hypothesized that germ cells express negative regulators of nucleic acid sensing (NAS) in steady state and applied an integrated data-mining and functional genomics approach to identify a rheostat of DNA and RNA sensing-the inflammasome component NLRP14. We demonstrated that NLRP14 interacted physically with the nucleic acid sensing pathway and targeted TBK1 (TANK binding kinase 1) for ubiquitination and degradation. We further mapped domains in NLRP14 and TBK1 that mediated the inhibitory function. Finally, we identified a human nonsense germline variant associated with male sterility that results in loss of NLRP14 function and hyper-responsiveness to nucleic acids. The discovery points to a mechanism of nucleic acid sensing regulation that may be of particular importance in fertilization.


Assuntos
Fertilização/imunologia , Células Germinativas/imunologia , Inflamassomos/imunologia , Ácidos Nucleicos/imunologia , Nucleosídeo-Trifosfatase/imunologia , Células A549 , Animais , Chlorocebus aethiops , Citosol/imunologia , Citosol/metabolismo , Feminino , Fertilização/genética , Expressão Gênica/imunologia , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa/imunologia , Células HEK293 , Humanos , Immunoblotting , Infertilidade Masculina/genética , Infertilidade Masculina/imunologia , Inflamassomos/genética , Inflamassomos/metabolismo , Masculino , Ácidos Nucleicos/metabolismo , Nucleosídeo-Trifosfatase/genética , Nucleosídeo-Trifosfatase/metabolismo , Ligação Proteica/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Vero
14.
Mol Cell ; 71(4): 487-497.e3, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30078723

RESUMO

DNA-RNA hybrids associated with R-loops promote DNA damage and genomic instability. The capacity of hybrids at different genomic sites to cause DNA damage was not known, and the mechanisms leading from hybrid to damage were poorly understood. Here, we adopt a new strategy to map and characterize the sites of hybrid-induced damage genome-wide in budding yeast. We show that hybrid removal is essential for life because persistent hybrids cause irreparable DNA damage and cell death. We identify that a subset of hybrids is prone to cause damage, and the chromosomal context of hybrids dramatically impacts their ability to induce damage. Furthermore, persistent hybrids affect the repair pathway, generating large regions of single-stranded DNA (ssDNA) by two distinct mechanisms, likely resection and re-replication. These damaged regions may act as potential precursors to gross chromosomal rearrangements like deletions and duplications that are associated with R-loops and cancers.


Assuntos
DNA de Cadeia Simples/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Instabilidade Genômica , RNA/genética , Saccharomyces cerevisiae/genética , Clivagem do DNA , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Hidroxiureia/farmacologia , Ácidos Indolacéticos/farmacologia , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA/química , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Genes Dev ; 32(11-12): 836-848, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29907651

RESUMO

Attenuation of pre-rRNA synthesis in response to elevated temperature is accompanied by increased levels of PAPAS ("promoter and pre-rRNA antisense"), a long noncoding RNA (lncRNA) that is transcribed in an orientation antisense to pre-rRNA. Here we show that PAPAS interacts directly with DNA, forming a DNA-RNA triplex structure that tethers PAPAS to a stretch of purines within the enhancer region, thereby guiding associated CHD4/NuRD (nucleosome remodeling and deacetylation) to the rDNA promoter. Protein-RNA interaction experiments combined with RNA secondary structure mapping revealed that the N-terminal part of CHD4 interacts with an unstructured A-rich region in PAPAS. Deletion or mutation of this sequence abolishes the interaction with CHD4. Stress-dependent up-regulation of PAPAS is accompanied by dephosphorylation of CHD4 at three serine residues, which enhances the interaction of CHD4/NuRD with RNA and reinforces repression of rDNA transcription. The results emphasize the function of lncRNAs in guiding chromatin remodeling complexes to specific genomic loci and uncover a phosphorylation-dependent mechanism of CHD4/NuRD-mediated transcriptional regulation.


Assuntos
DNA Ribossômico/genética , Regulação da Expressão Gênica/genética , Temperatura Alta , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/metabolismo , RNA Ribossômico/genética , Estresse Fisiológico/genética , Animais , Elementos Facilitadores Genéticos , Células HEK293 , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação , Estrutura Secundária de Proteína , RNA Ribossômico/biossíntese
16.
J Biol Chem ; 300(7): 107439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838774

RESUMO

The therapeutic application of CRISPR-Cas9 is limited due to its off-target activity. To have a better understanding of this off-target effect, we focused on its mismatch-prone PAM distal end. The off-target activity of SpCas9 depends directly on the nature of mismatches, which in turn results in deviation of the active site of SpCas9 due to structural instability in the RNA-DNA duplex strand. In order to test the hypothesis, we designed an array of mismatched target sites at the PAM distal end and performed in vitro and cell line-based experiments, which showed a strong correlation for Cas9 activity. We found that target sites having multiple mismatches in the 18th to 15th position upstream of the PAM showed no to little activity. For further mechanistic validation, Molecular Dynamics simulations were performed, which revealed that certain mismatches showed elevated root mean square deviation values that can be attributed to conformational instability within the RNA-DNA duplex. Therefore, for successful prediction of the off-target effect of SpCas9, along with complementation-derived energy, the RNA-DNA duplex stability should be taken into account.


Assuntos
Pareamento Incorreto de Bases , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Humanos , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/química , DNA/química , DNA/metabolismo , Simulação de Dinâmica Molecular , RNA/química , RNA/metabolismo , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/química , Células HEK293 , Edição de Genes
17.
Trends Genet ; 38(3): 246-257, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34711425

RESUMO

Nanopore sequencing provides signal data corresponding to the nucleotide motifs sequenced. Through machine learning-based methods, these signals are translated into long-read sequences that overcome the read size limit of short-read sequencing. However, analyzing the raw nanopore signal data provides many more opportunities beyond just sequencing genomes and transcriptomes: algorithms that use machine learning approaches to extract biological information from these signals allow the detection of DNA and RNA modifications, the estimation of poly(A) tail length, and the prediction of RNA secondary structures. In this review, we discuss how developments in machine learning methodologies contributed to more accurate basecalling and lower error rates, and how these methods enable new biological discoveries. We argue that direct nanopore sequencing of DNA and RNA provides a new dimensionality for genomics experiments and highlight challenges and future directions for computational approaches to extract the additional information provided by nanopore signal data.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Algoritmos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Aprendizado de Máquina , Análise de Sequência de DNA/métodos
18.
EMBO J ; 40(7): e106018, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33634895

RESUMO

The BRCA2 tumor suppressor is a DNA double-strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2-deficient cells spontaneously accumulate DNA-RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood. Here we identified the DEAD-box RNA helicase DDX5 as a BRCA2-interacting protein. DDX5 associates with DNA-RNA hybrids that form in the vicinity of DSBs, and this association is enhanced by BRCA2. Notably, BRCA2 stimulates the DNA-RNA hybrid-unwinding activity of DDX5 helicase. An impaired BRCA2-DDX5 interaction, as observed in cells expressing the breast cancer variant BRCA2-T207A, reduces the association of DDX5 with DNA-RNA hybrids, decreases the number of RPA foci, and alters the kinetics of appearance of RAD51 foci upon irradiation. Our findings are consistent with DNA-RNA hybrids constituting an impediment for the repair of DSBs by homologous recombination and reveal BRCA2 and DDX5 as active players in their removal.


Assuntos
Proteína BRCA2/metabolismo , RNA Helicases DEAD-box/metabolismo , Reparo de DNA por Recombinação , Proteína BRCA2/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Quebras de DNA de Cadeia Dupla , Células HEK293 , Humanos , Ácidos Nucleicos Heteroduplexes , Ligação Proteica
19.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36682003

RESUMO

Cryo-electron microscopy (cryo-EM) allows a macromolecular structure such as protein-DNA/RNA complexes to be reconstructed in a three-dimensional coulomb potential map. The structural information of these macromolecular complexes forms the foundation for understanding the molecular mechanism including many human diseases. However, the model building of large macromolecular complexes is often difficult and time-consuming. We recently developed DeepTracer-2.0, an artificial-intelligence-based pipeline that can build amino acid and nucleic acid backbones from a single cryo-EM map, and even predict the best-fitting residues according to the density of side chains. The experiments showed improved accuracy and efficiency when benchmarking the performance on independent experimental maps of protein-DNA/RNA complexes and demonstrated the promising future of macromolecular modeling from cryo-EM maps. Our method and pipeline could benefit researchers worldwide who work in molecular biomedicine and drug discovery, and substantially increase the throughput of the cryo-EM model building. The pipeline has been integrated into the web portal https://deeptracer.uw.edu/.


Assuntos
DNA , RNA , Humanos , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Conformação Proteica , Substâncias Macromoleculares/química
20.
EMBO Rep ; 24(12): e57801, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37818834

RESUMO

Double-strand breaks (DSBs) are the most harmful DNA lesions, with a strong impact on cell proliferation and genome integrity. Depending on cell cycle stage, DSBs are preferentially repaired by non-homologous end joining or homologous recombination (HR). In recent years, numerous reports have revealed that DSBs enhance DNA-RNA hybrid formation around the break site. We call these hybrids "break-induced RNA-DNA hybrids" (BIRDHs) to differentiate them from sporadic R-loops consisting of DNA-RNA hybrids and a displaced single-strand DNA occurring co-transcriptionally in intact DNA. Here, we review and discuss the most relevant data about BIRDHs, with a focus on two main questions raised: (i) whether BIRDHs form by de novo transcription after a DSB or by a pre-existing nascent RNA in DNA regions undergoing transcription and (ii) whether they have a positive role in HR or are just obstacles to HR accidentally generated as an intrinsic risk of transcription. We aim to provide a comprehensive view of the exciting and yet unresolved questions about the source and impact of BIRDHs in the cell.


Assuntos
Quebras de DNA de Cadeia Dupla , RNA , RNA/genética , Recombinação Homóloga , Reparo do DNA , DNA/genética , Reparo do DNA por Junção de Extremidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA