Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Genes Dev ; 37(13-14): 621-639, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541760

RESUMO

Punctuated bursts of structural genomic variations (SVs) have been described in various organisms, but their etiology remains incompletely understood. Homologous recombination (HR) is a template-guided mechanism of repair of DNA double-strand breaks and stalled or collapsed replication forks. We recently identified a DNA break amplification and genome rearrangement pathway originating from the endonucleolytic processing of a multi-invasion (MI) DNA joint molecule formed during HR. Genome-wide approaches confirmed that multi-invasion-induced rearrangement (MIR) frequently leads to several repeat-mediated SVs and aneuploidies. Using molecular and genetic analysis and a novel, highly sensitive proximity ligation-based assay for chromosomal rearrangement quantification, we further delineate two MIR subpathways. MIR1 is a universal pathway occurring in any sequence context, which generates secondary breaks and frequently leads to additional SVs. MIR2 occurs only if recombining donors exhibit substantial homology and results in sequence insertion without additional breaks or SVs. The most detrimental MIR1 pathway occurs late on a subset of persisting DNA joint molecules in a PCNA/Polδ-independent manner, unlike recombinational DNA synthesis. This work provides a refined mechanistic understanding of these HR-based SV formation pathways and shows that complex repeat-mediated SVs can occur without displacement DNA synthesis. Sequence signatures for inferring MIR1 from long-read data are proposed.


Assuntos
Instabilidade Genômica , Rearranjo Gênico , Recombinação Homóloga , Seleção Genética , DNA/genética , DNA/metabolismo , Cromossomos Fúngicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 72(1): 127-139.e8, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244837

RESUMO

The BRCA1 tumor suppressor preserves genome integrity through both homology-directed repair (HDR) and stalled fork protection (SFP). In vivo, BRCA1 exists as a heterodimer with the BARD1 tumor suppressor, and both proteins harbor a phosphate-binding BRCT domain. Here, we compare mice with mutations that ablate BRCT phospho-recognition by Bard1 (Bard1S563F and Bard1K607A) or Brca1 (Brca1S1598F). Brca1S1598F abrogates both HDR and SFP, suggesting that both pathways are likely impaired in most BRCA1 mutant tumors. Although not affecting HDR, the Bard1 mutations ablate poly(ADP-ribose)-dependent recruitment of BRCA1/BARD1 to stalled replication forks, resulting in fork degradation and chromosome instability. Nonetheless, Bard1S563F/S563F and Bard1K607A/K607A mice, unlike Brca1S1598F/S1598F mice, are not tumor prone, indicating that HDR alone is sufficient to suppress tumor formation in the absence of SFP. Nevertheless, because SFP, unlike HDR, is also impaired in heterozygous Brca1/Bard1 mutant cells, SFP and HDR may contribute to distinct stages of tumorigenesis in BRCA1/BARD1 mutation carriers.


Assuntos
Reparo do DNA/genética , Reparo de DNA por Recombinação/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteína BRCA1 , Instabilidade Cromossômica/genética , Quebras de DNA de Cadeia Dupla , Feminino , Humanos , Camundongos , Mutação , Domínios Proteicos/genética
3.
J Biol Chem ; 300(9): 107657, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128729

RESUMO

Damage to the genetic material of the cell poses a universal threat to all forms of life. The DNA damage response is a coordinated cellular response to a DNA break, key to which is the phosphorylation signaling cascade. Identifying which proteins are phosphorylated is therefore crucial to understanding the mechanisms that underlie it. We have used stable isotopic labeling of amino acids in cell culture-based quantitative phosphoproteomics to profile changes in phosphorylation site abundance following double stranded DNA breaks, at two distinct loci in the genome of the single cell eukaryote Trypanosoma brucei. Here, we report on the T. brucei phosphoproteome following a single double-strand break at either a chromosome internal or subtelomeric locus, specifically the bloodstream form expression site. We detected >6500 phosphorylation sites, of which 211 form a core set of double-strand break responsive phosphorylation sites. Along with phosphorylation of canonical DNA damage factors, we have identified two novel phosphorylation events on histone H2A and found that in response to a chromosome internal break, proteins are predominantly phosphorylated, while a greater proportion of proteins dephosphorylated following a DNA break at a subtelomeric bloodstream form expression site. Our data represent the first DNA damage phosphoproteome and provides novel insights into repair at distinct chromosomal contexts in T. brucei.

4.
J Biol Chem ; 300(9): 107720, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39214308

RESUMO

Site-specific nucleases are crucial for genome engineering applications in medicine and agriculture. The ideal site-specific nucleases are easily reprogrammable, highly specific in target site recognition, and robust in nuclease activities. Prokaryotic Argonaute (pAgo) proteins have received much attention as biotechnological tools due to their ability to recognize specific target sequences without a protospacer adjacent motif, but their lack of intrinsic dsDNA unwinding activity limits their utility in key applications such as gene editing. Recently, we developed a pAgo-based system for site-specific DNA cleavage at physiological temperatures independently of the DNA form, using peptide nucleic acids (PNAs) to facilitate unwinding dsDNA targets. Here, we fused catalytically dead pAgos with the nuclease domain of the restriction endonuclease FokI and named this modified platform PNA-assisted FokI-(d)pAgo (PNFP) editors. In the PNFP system, catalytically inactive pAgo recognizes and binds to a specific target DNA sequence based on a programmable guide DNA sequence; upon binding to the target site, the FokI domains dimerize and introduce precise dsDNA breaks. We explored key parameters of the PNFP system including the requirements of PNA and guide DNAs, the specificity of PNA and guide DNA on target cleavage, the optimal concentration of different components, reaction time for invasion and cleavage, and ideal temperature and reaction buffer, to ensure efficient DNA editing in vitro. The results demonstrated robust site-specific target cleavage by PNFP system at optimal conditions in vitro. We envision that the PNFP system will provide higher editing efficiency and specificity with fewer off-target effects in vivo.

5.
BMC Genomics ; 25(1): 368, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622509

RESUMO

BACKGROUND: We recently developed two high-resolution methods for genome-wide mapping of two prominent types of DNA damage, single-strand DNA breaks (SSBs) and abasic (AP) sites and found highly complex and non-random patterns of these lesions in mammalian genomes. One salient feature of SSB and AP sites was the existence of single-nucleotide hotspots for both lesions. RESULTS: In this work, we show that SSB hotspots are enriched in the immediate vicinity of transcriptional start sites (TSSs) in multiple normal mammalian tissues, however the magnitude of enrichment varies significantly with tissue type and appears to be limited to a subset of genes. SSB hotspots around TSSs are enriched on the template strand and associate with higher expression of the corresponding genes. Interestingly, SSB hotspots appear to be at least in part generated by the base-excision repair (BER) pathway from the AP sites. CONCLUSIONS: Our results highlight complex relationship between DNA damage and regulation of gene expression and suggest an exciting possibility that SSBs at TSSs might function as sensors of DNA damage to activate genes important for DNA damage response.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA , Animais , Reparo do DNA/genética , Dano ao DNA , DNA de Cadeia Simples , Mamíferos
6.
Mol Cell ; 64(5): 940-950, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889449

RESUMO

To repair a DNA double-strand break (DSB) by homologous recombination (HR), the 5'-terminated strand of the DSB must be resected. The human MRE11-RAD50-NBS1 (MRN) and CtIP proteins were implicated in the initiation of DNA end resection, but the underlying mechanism remained undefined. Here, we show that CtIP is a co-factor of the MRE11 endonuclease activity within the MRN complex. This function is absolutely dependent on CtIP phosphorylation that includes the key cyclin-dependent kinase target motif at Thr-847. Unlike in yeast, where the Xrs2/NBS1 subunit is dispensable in vitro, NBS1 is absolutely required in the human system. The MRE11 endonuclease in conjunction with RAD50, NBS1, and phosphorylated CtIP preferentially cleaves 5'-terminated DNA strands near DSBs. Our results define the initial step of HR that is particularly relevant for the processing of DSBs bearing protein blocks.


Assuntos
Proteínas de Ciclo Celular/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Helicases/genética , Recombinação Homóloga/genética , Complexos Multiproteicos/genética , Hidrolases Anidrido Ácido , Proteínas de Transporte , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , Endodesoxirribonucleases , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Trends Genet ; 36(5): 337-346, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32294414

RESUMO

During scientific investigations, the explanation of remarkably interesting phenomena must often await development of new methods or accrual of new observations that in retrospect can lead to lucid answers to the initial problem. A case in point is the control of genetic recombination during meiosis, which leads to crossovers between chromosomes critical for production of healthy offspring. Crossovers must be properly placed along meiotic chromosomes for their accurate segregation. Here, we review observations on two aspects of meiotic crossover control - crossover interference and repression of crossovers near centromeres, both observed more than 85 years ago. Only recently have relatively simple molecular mechanisms for these phenomena become clear through advances in both methods and understanding the molecular basis of meiotic recombination.


Assuntos
Centrômero/genética , Segregação de Cromossomos/genética , Troca Genética/genética , Meiose/genética , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética
8.
Proc Natl Acad Sci U S A ; 117(19): 10541-10546, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332169

RESUMO

Mild replication stress enhances appearance of dozens of robust recurrent genomic break clusters, termed RDCs, in cultured primary mouse neural stem and progenitor cells (NSPCs). Robust RDCs occur within genes ("RDC-genes") that are long and have roles in neural cell communications and/or have been implicated in neuropsychiatric diseases or cancer. We sought to develop an in vitro approach to determine whether specific RDC formation is associated with neural development. For this purpose, we adapted a system to induce neural progenitor cell (NPC) development from mouse embryonic stem cell (ESC) lines deficient for XRCC4 plus p53, a genotype that enhances DNA double-strand break (DSB) persistence to enhance detection. We tested for RDCs by our genome-wide DSB identification approach that captures DSBs via their ability to join to specific genomic Cas9/single-guide RNA-generated bait DSBs. In XRCC4/p53-deficient ESCs, we detected seven RDCs, all of which were in genes and two of which were robust. In contrast, in NPCs derived from these ESC lines we detected 29 RDCs, a large fraction of which were robust and associated with long, transcribed neural genes that were also robust RDC-genes in primary NSPCs. These studies suggest that many RDCs present in NSPCs are developmentally influenced to occur in this cell type and indicate that induced development of NPCs from ESCs provides an approach to rapidly elucidate mechanistic aspects of NPC RDC formation.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Quebras de DNA , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genes p53/genética , Genoma , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Família Multigênica/genética , Neurogênese , Neurônios/citologia
9.
Genes Dev ; 29(15): 1593-8, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253534

RESUMO

Upon genome damage, large-scale protein sumoylation occurs from yeast to humans to promote DNA repair. Currently, the underlying mechanism is largely unknown. Here we show that, upon DNA break induction, the budding yeast SUMO ligase Siz2 collaborates with the ssDNA-binding complex RPA (replication protein A) to induce the sumoylation of recombination factors and confer damage resistance. Both RPA and nuclease-generated ssDNA promote Siz2-mediated sumoylation. Mechanistically, the conserved Siz2 interaction with RPA enables Siz2 localization to damage sites. These findings provide a molecular basis for recruiting SUMO ligases to the vicinity of their substrates to induce sumoylation upon DNA damage.


Assuntos
Reparo do DNA/fisiologia , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Bleomicina/farmacologia , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Reparo do DNA/genética , Mutagênicos/farmacologia , Transporte Proteico , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sumoilação
10.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958890

RESUMO

Over the course of long-term evolution, cells have developed intricate defense mechanisms in response to DNA damage; these mechanisms play a pivotal role in maintaining genomic stability. Defects in the DNA damage response pathways can give rise to various diseases, including cancer. The DNA damage response (DDR) system is instrumental in safeguarding genomic stability. The accumulation of DNA damage and the weakening of DDR function both promote the initiation and progression of tumors. Simultaneously, they offer opportunities and targets for cancer therapeutics. This article primarily elucidates the DNA damage repair pathways and the progress made in targeting key proteins within these pathways for cancer treatment. Among them, poly (ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DDR, and inhibitors targeting PARP1 have garnered extensive attention in anticancer research. By delving into the realms of DNA damage and repair, we aspire to explore more precise and effective strategies for cancer therapy and to seek novel avenues for intervention.


Assuntos
Reparo do DNA , Neoplasias , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Instabilidade Genômica
11.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361615

RESUMO

The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11lip), the photodynamic agent protoporphyrin IX (PpIXlip), or their combination (CPT11-PpIXlip). The effects of individual and bimodal (chemo-phototherapeutic) treatments on HeLa cells have been studied by a combination of biological and photophysical studies. Bimodal treatments show synergistic cytotoxic effects on HeLa cells at relatively low doses of PpIX/PDT and CPT11. Mechanistic cell inactivation studies revealed mitotic catastrophe, apoptosis, and senescence contributions. The enhanced anticancer activity is due to a sustained generation of reactive oxygen species, which increases the number of double-strand DNA breaks. Bimodal chemo-phototherapeutic liposomes may have a very promising future in oncological therapy, potentially allowing a reduction in the CPT11 concentration required to achieve a therapeutic effect and overcoming resistance to individual cancer treatments.


Assuntos
Fotoquimioterapia , Humanos , Células HeLa , Irinotecano , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia
12.
Biol Reprod ; 104(2): 325-335, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246328

RESUMO

Zinc finger domains of the Cys-Cys-Cys-His (CCCH) class are evolutionarily conserved proteins that bind nucleic acids and are involved in various biological processes. Nearly 60 CCCH-type zinc finger proteins have been identified in humans and mice, most have not been functionally characterized. Here, we provide the first in vivo functional characterization of ZC3H4-a novel CCCH-type zinc finger protein. Our results show that although Zc3h4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting implantation failure. Outgrowth assays reveal that mutant blastocysts either fail to hatch from the zona pellucida, or can hatch but do not form a typical inner cell mass colony, the source of embryonic stem cells (ESCs). Although there is no change in levels of reactive oxygen species, Zc3h4 mutants display severe DNA breaks and reduced cell proliferation. Analysis of lineage specification reveals that both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification in the mutant blastocysts. In summary, these findings demonstrate the essential role of ZC3H4 during early mammalian embryogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Animais , Proliferação de Células/genética , Quebras de DNA , Proteínas de Ligação a DNA/genética , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Camundongos , Camundongos Knockout , Mutação
13.
Proc Natl Acad Sci U S A ; 115(40): E9333-E9342, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30217891

RESUMO

Viable gamete formation requires segregation of homologous chromosomes connected, in most species, by cross-overs. DNA double-strand break (DSB) formation and the resulting cross-overs are regulated at multiple levels to prevent overabundance along chromosomes. Meiotic cells coordinate these events between distant sites, but the physical basis of long-distance chromosomal communication has been unknown. We show that DSB hotspots up to ∼200 kb (∼35 cM) apart form clusters via hotspot-binding proteins Rec25 and Rec27 in fission yeast. Clustering coincides with hotspot competition and interference over similar distances. Without Tel1 (an ATM tumor-suppressor homolog), DSB and crossover interference become negative, reflecting coordinated action along a chromosome. These results indicate that DSB hotspots within a limited chromosomal region and bound by their protein determinants form a clustered structure that, via Tel1, allows only one DSB per region. Such a "roulette" process within clusters explains the observed pattern of crossover interference in fission yeast. Key structural and regulatory components of clusters are phylogenetically conserved, suggesting conservation of this vital regulation. Based on these observations, we propose a model and discuss variations in which clustering and competition between DSB sites leads to DSB interference and in turn produces crossover interference.


Assuntos
Cromossomos Fúngicos/metabolismo , Quebras de DNA de Cadeia Dupla , Meiose , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cromossomos Fúngicos/genética , Proteínas Nucleares/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
14.
Proc Natl Acad Sci U S A ; 115(8): 1919-1924, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432181

RESUMO

We recently discovered 27 recurrent DNA double-strand break (DSB) clusters (RDCs) in mouse neural stem/progenitor cells (NSPCs). Most RDCs occurred across long, late-replicating RDC genes and were found only after mild inhibition of DNA replication. RDC genes share intriguing characteristics, including encoding surface proteins that organize brain architecture and neuronal junctions, and are genetically implicated in neuropsychiatric disorders and/or cancers. RDC identification relies on high-throughput genome-wide translocation sequencing (HTGTS), which maps recurrent DSBs based on their translocation to "bait" DSBs in specific chromosomal locations. Cellular heterogeneity in 3D genome organization allowed unequivocal identification of RDCs on 14 different chromosomes using HTGTS baits on three mouse chromosomes. Additional candidate RDCs were also implicated, however, suggesting that some RDCs were missed. To more completely identify RDCs, we exploited our finding that joining of two DSBs occurs more frequently if they lie on the same cis chromosome. Thus, we used CRISPR/Cas9 to introduce specific DSBs into each mouse chromosome in NSPCs that were used as bait for HTGTS libraries. This analysis confirmed all 27 previously identified RDCs and identified many new ones. NSPC RDCs fall into three groups based on length, organization, transcription level, and replication timing of genes within them. While mostly less robust, the largest group of newly defined RDCs share many intriguing characteristics with the original 27. Our findings also revealed RDCs in NSPCs in the absence of induced replication stress, and support the idea that the latter treatment augments an already active endogenous process.


Assuntos
Quebras de DNA de Cadeia Dupla , Animais , Encéfalo , Reparo do DNA , Deleção de Genes , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Células-Tronco Neurais/metabolismo , Interferência de RNA , Translocação Genética
15.
Bioessays ; 40(10): e1800045, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30091472

RESUMO

Transcription is a fundamental cellular process and the first step in gene regulation. Although RNA polymerase (RNAP) is highly processive, in growing cells the progression of transcription can be hindered by obstacles on the DNA template, such as damaged DNA. The authors recent findings highlight a trade-off between transcription fidelity and DNA break repair. While a lot of work has focused on the interaction between transcription and nucleotide excision repair, less is known about how transcription influences the repair of DNA breaks. The authors suggest that when the cell experiences stress from DNA breaks, the control of RNAP processivity affects the balance between preserving transcription integrity and DNA repair. Here, how the conflict between transcription and DNA double-strand break (DSB) repair threatens the integrity of both RNA and DNA are discussed. In reviewing this field, the authors speculate on cellular paradigms where this equilibrium is well sustained, and instances where the maintenance of transcription fidelity is favored over genome stability.


Assuntos
Reparo do DNA/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Quebras de DNA de Cadeia Dupla , Dano ao DNA , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant J ; 93(2): 227-234, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155472

RESUMO

The mitochondria and plastids of eukaryotic cells evolved from endosymbiotic prokaryotes. DNA from the endosymbionts has bombarded nuclei since the ancestral prokaryotes were engulfed by a precursor of the nucleated eukaryotic host. An experimental confirmation regarding the molecular mechanisms responsible for organelle DNA incorporation into nuclei has not been performed until the present analysis. Here we introduced double-stranded DNA breaks into the nuclear genome of tobacco through inducible expression of I-SceI, and showed experimentally that tobacco chloroplast DNAs insert into nuclear genomes through double-stranded DNA break repair. Microhomology-mediated linking of disparate segments of chloroplast DNA occurs frequently during healing of induced nuclear double-stranded breaks (DSB) but the resulting nuclear integrants are often immediately unstable. Non-Mendelian inheritance of a selectable marker (neo), used to identify plastid DNA transfer, was observed in the progeny of about 50% of lines emerging from the screen. The instability of these de novo nuclear insertions of plastid DNA (nupts) was shown to be associated with deletion not only of the nupt itself but also of flanking nuclear DNA within one generation of transfer. This deletion of pre-existing nuclear DNA suggests that the genetic impact of organellar DNA transfer to the nucleus is potentially far greater than previously thought.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Genoma de Planta/genética , Nicotiana/genética , Núcleo Celular/genética , DNA de Cloroplastos/genética , Plastídeos/genética , Simbiose
17.
Cancer Sci ; 110(2): 686-696, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30561156

RESUMO

It has been reported that DNA double-strand breaks (DSB) can be induced by cytoplasm irradiation, and that both reactive free radicals and mitochondria are involved in DSB formation. However, the cellular antioxidative responses that are stimulated and the biological consequences of cytoplasmic irradiation remain unknown. Using the Single Particle Irradiation system to Cell (SPICE) proton microbeam facility at the National Institute of Radiological Sciences ([NIRS] Japan), the response of nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidative signaling to cytoplasmic irradiation was studied in normal human lung fibroblast WI-38 cells. Cytoplasmic irradiation stimulated the localization of NRF2 to the nucleus and the expression of its target protein, heme oxygenase 1. Activation of NRF2 by tert-butylhydroquinone mitigated the levels of DSB induced by cytoplasmic irradiation. Mitochondrial fragmentation was also promoted by cytoplasmic irradiation, and treatment with mitochondrial division inhibitor 1 (Mdivi-1) suppressed cytoplasmic irradiation-induced NRF2 activation and aggravated DSB formation. Furthermore, p53 contributed to the induction of mitochondrial fragmentation and activation of NRF2, although the expression of p53 was significantly downregulated by cytoplasmic irradiation. Finally, mitochondrial superoxide (MitoSOX) production was enhanced under cytoplasmic irradiation, and use of the MitoSOX scavenger mitoTEMPOL indicated that MitoSOX caused alterations in p53 expression, mitochondrial dynamics, and NRF2 activation. Overall, NRF2 antioxidative response is suggested to play a key role against genomic DNA damage under cytoplasmic irradiation. Additionally, the upstream regulators of NRF2 provide new clues on cytoplasmic irradiation-induced biological processes and prevention of radiation risks.


Assuntos
Antioxidantes/metabolismo , Citoplasma/metabolismo , Citoplasma/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Heme Oxigenase-1/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
18.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816946

RESUMO

Homologous recombination (HR) is a complex biological process and is central to meiosis and for repair of DNA double-strand breaks. Although the HR process has been the subject of intensive study for more than three decades, the complex protein-protein and protein-DNA interactions during HR present a significant challenge for determining the molecular mechanism(s) of the process. This knowledge gap is largely because of the dynamic interactions between HR proteins and DNA which is difficult to capture by routine biochemical or structural biology methods. In recent years, single-molecule fluorescence microscopy has been a popular method in the field of HR to visualize these complex and dynamic interactions at high spatiotemporal resolution, revealing mechanistic insights of the process. In this review, we describe recent efforts that employ single-molecule fluorescence microscopy to investigate protein-protein and protein-DNA interactions operating on three key DNA-substrates: single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and four-way DNA called Holliday junction (HJ). We also outline the technological advances and several key insights revealed by these studies in terms of protein assembly on these DNA substrates and highlight the foreseeable promise of single-molecule fluorescence microscopy in advancing our understanding of homologous recombination.


Assuntos
Recombinação Homóloga/genética , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , DNA/genética , DNA Cruciforme/metabolismo , Humanos , Ligação Proteica
19.
J Biol Chem ; 291(47): 24377-24389, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27703001

RESUMO

The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs and Artemis for trimming the DNA ends; DNA polymerase µ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (paralog of XRCC4 and XLF). In vivo studies have demonstrated the degrees of importance of these NHEJ proteins in the mechanism of repair of dsDNA breaks, but interpretations can be confounded by other cellular processes. In vitro studies with NHEJ proteins have been performed to evaluate the nucleolytic resection, polymerization, and ligation steps, but a complete system has been elusive. Here we have developed a NHEJ reconstitution system that includes the nuclease, polymerase, and ligase components to evaluate relative NHEJ efficiency and analyze ligated junctional sequences for various types of DNA ends, including blunt, 5' overhangs, and 3' overhangs. We find that different dsDNA end structures have differential dependence on these enzymatic components. The dependence of some end joining on only Ku and XRCC4·DNA ligase IV allows us to formulate a physical model that incorporates nuclease and polymerase components as needed.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/química , Enzimas Reparadoras do DNA/química , Proteínas de Ligação a DNA/química , Autoantígeno Ku/química , Animais , Linhagem Celular , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Spodoptera
20.
Proc Natl Acad Sci U S A ; 111(48): E5133-42, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25411316

RESUMO

Recombinational DNA repair by the RecF pathway of Escherichia coli requires the coordinated activities of RecA, RecFOR, RecQ, RecJ, and single-strand DNA binding (SSB) proteins. These proteins facilitate formation of homologously paired joint molecules between linear double-stranded (dsDNA) and supercoiled DNA. Repair starts with resection of the broken dsDNA by RecQ, a 3'→5' helicase, RecJ, a 5'→3' exonuclease, and SSB protein. The ends of a dsDNA break can be blunt-ended, or they may possess either 5'- or 3'-single-stranded DNA (ssDNA) overhangs of undefined length. Here we show that RecJ nuclease alone can initiate nucleolytic resection of DNA with 5'-ssDNA overhangs, and that RecQ helicase can initiate resection of DNA with blunt-ends or 3'-ssDNA overhangs by DNA unwinding. We establish that in addition to its well-known ssDNA exonuclease activity, RecJ can display dsDNA exonuclease activity, degrading 100-200 nucleotides of the strand terminating with a 5'-ssDNA overhang. The dsDNA product, with a 3'-ssDNA overhang, is an optimal substrate for RecQ, which unwinds this intermediate to reveal the complementary DNA strand with a 5'-end that is degraded iteratively by RecJ. On the other hand, RecJ cannot resect duplex DNA that is either blunt-ended or terminated with 3'-ssDNA; however, such DNA is unwound by RecQ to create ssDNA for RecJ exonuclease. RecJ requires interaction with SSB for exonucleolytic degradation of ssDNA but not dsDNA. Thus, complementary action by RecJ and RecQ permits initiation of recombinational repair from all dsDNA ends: 5'-overhangs, blunt, or 3'-overhangs. Such helicase-nuclease coordination is a common mechanism underlying resection in all organisms.


Assuntos
Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , RecQ Helicases/genética , Quebras de DNA de Cadeia Dupla , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Exodesoxirribonucleases/genética , Modelos Genéticos , Mutação , Plasmídeos/genética , Plasmídeos/metabolismo , RecQ Helicases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA