Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genet Med ; 25(9): 100893, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179472

RESUMO

PURPOSE: Developmentally regulated Guanosine-5'-triphosphate-binding protein 1 (DRG1) is a highly conserved member of a class of GTPases implicated in translation. Although the expression of mammalian DRG1 is elevated in the central nervous system during development, and its function has been implicated in fundamental cellular processes, no pathogenic germline variants have yet been identified. Here, we characterize the clinical and biochemical consequences of DRG1 variants. METHODS: We collate clinical information of 4 individuals with germline DRG1 variants and use in silico, in vitro, and cell-based studies to study the pathogenicity of these alleles. RESULTS: We identified private germline DRG1 variants, including 3 stop-gained p.Gly54∗, p.Arg140∗, p.Lys263∗, and a p.Asn248Phe missense variant. These alleles are recessively inherited in 4 affected individuals from 3 distinct families and cause a neurodevelopmental disorder with global developmental delay, primary microcephaly, short stature, and craniofacial anomalies. We show that these loss-of-function variants (1) severely disrupt DRG1 messenger RNA/protein stability in patient-derived fibroblasts, (2) impair its GTPase activity, and (3) compromise its binding to partner protein ZC3H15. Consistent with the importance of DRG1 in humans, targeted inactivation of mouse Drg1 resulted in preweaning lethality. CONCLUSION: Our work defines a new Mendelian disorder of DRG1 deficiency. This study highlights DRG1's importance for normal mammalian development and underscores the significance of translation factor GTPases in human physiology and homeostasis.


Assuntos
Proteínas de Ligação ao GTP , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Proteínas de Transporte , GTP Fosfo-Hidrolases/genética , Mamíferos/metabolismo , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro
2.
Mar Drugs ; 21(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827160

RESUMO

The determination of the protein's intracellular localization is essential for understanding its biological function. Protein localization studies are mainly performed on primary and secondary vertebrate cell lines for which most protocols have been optimized. In spite of experimental difficulties, studies on invertebrate cells, including basal Metazoa, have greatly advanced. In recent years, the interest in studying human diseases from an evolutionary perspective has significantly increased. Sponges, placed at the base of the animal tree, are simple animals without true tissues and organs but with a complex genome containing many genes whose human homologs have been implicated in human diseases, including cancer. Therefore, sponges are an innovative model for elucidating the fundamental role of the proteins involved in cancer. In this study, we overexpressed human cancer-related proteins and their sponge homologs in human cancer cells, human fibroblasts, and sponge cells. We demonstrated that human and sponge MYC proteins localize in the nucleus, the RRAS2 in the plasma membrane, the membranes of the endolysosomal vesicles, and the DRG1 in the cell's cytosol. Despite the very low transfection efficiency of sponge cells, we observed an identical localization of human proteins and their sponge homologs, indicating their similar cellular functions.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Neoplasias , Poríferos , Animais , Humanos , Genoma , Evolução Biológica , Linhagem Celular , Transfecção , Proteínas de Membrana
3.
Dig Dis Sci ; 66(12): 4237-4250, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33471252

RESUMO

BACKGROUND: An immature intestine is a high-risk factor for necrotizing enterocolitis (NEC), which is a serious intestinal disease in newborns. The regulation of developmentally regulated GTP-binding protein 1 (DRG1) during organ development suggests a potential role of DRG1 in the maturation process of the intestine. AIM: To illustrate the function of DRG1 during the pathogenesis of NEC. METHODS: DRG1 expression in the intestine was measured using immunohistochemistry and q-PCR. Immunoprecipitation coupled with mass spectrometry was used to identify the interacting proteins of DRG1. The biological functions of the potential interactors were annotated with the Database for Annotation, Visualization and Integrated Discovery. Caco2 and FHs74Int cells with stable DRG1 silencing or overexpression were used to investigate the influence of DRG1 on cell junctions and intestinal barrier permeability and to elucidate the downstream mechanism. RESULTS: DRG1 was constitutively expressed during the intestinal maturation process but significantly decreased in the ileum in the context of NEC. Protein interaction analysis revealed that DRG1 was closely correlated with cell junctions. DRG1 deficiency destabilized the E-cadherin and occludin proteins near the cell membrane and increased the permeability of the epithelial cell monolayer, while DRG1 overexpression prevented lipopolysaccharide-induced disruption of E-cadherin and occludin expression and cell monolayer integrity. Further investigation suggested that DRG1 maintained cell junctions, especially adherens junctions, by regulating RAC1 activity, and RAC1 inhibition with NSC23766 attenuated intestinal injury and led to improved barrier integrity in experimental NEC. CONCLUSIONS: Our findings illustrate the mechanism underlying the effect of DRG1 deficiency on epithelial cell permeability regulation and provide evidence supporting the application of RAC1 inhibitors for protection against NEC.


Assuntos
Enterocolite Necrosante/enzimologia , Células Epiteliais/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Junções Intercelulares/enzimologia , Mucosa Intestinal/enzimologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Aminoquinolinas/farmacologia , Animais , Antígenos CD/metabolismo , Células CACO-2 , Caderinas/metabolismo , Impedância Elétrica , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/genética , Enterocolite Necrosante/patologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/genética , Junções Intercelulares/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos , Ocludina/metabolismo , Permeabilidade , Pirimidinas/farmacologia , Proteínas rac1 de Ligação ao GTP/análise
4.
Clin Genet ; 94(6): 495-501, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30125339

RESUMO

Recently, with the advancement in next generation sequencing (NGS) along with the improvement of bioinformatics tools, whole exome sequencing (WES) has become the most efficient diagnostic test for patients with intellectual disability (ID). This study aims to estimate the yield of a reanalysis of ID negative exome cases after data reannotation. Total of 50 data files of exome sequencing, representing 50 samples were collected. The inclusion criteria include ID phenotype, and previous analysis indicated a negative result (no abnormality detected). These files were pre-processed and reannotated using ANNOVAR tool. Prioritized variants in the 50 cases studied were classified into three groups, (1) disease-causative variants (2) possible disease-causing variants and (3) variants in novel genes. Reanalysis resulted in the identification of pathogenic/likely pathogenic variants in six cases (12%). Thirteen cases (26%) were classified as having possible disease-causing variants. Candidate genes requiring future functional studies were detected in seven cases (14%). Improvement in bioinformatics tools, update in the genetic databases and literature, and patients' clinical phenotype update were the main reasons for identification of these variants in this study.


Assuntos
Sequenciamento do Exoma , Exoma , Estudo de Associação Genômica Ampla , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Alelos , Substituição de Aminoácidos , Criança , Pré-Escolar , Consanguinidade , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Lactente , Masculino , Mutação , Linhagem , Fenótipo
5.
Protein Sci ; 33(10): e5162, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276004

RESUMO

Jumonji-C (JmjC) domain-containing protein 7 (JMJD7) is a human Fe(II) and 2-oxoglutarate dependent oxygenase that catalyzes stereospecific C3-hydroxylation of lysyl-residues in developmentally regulated GTP binding proteins 1 and 2 (DRG1/2). We report studies exploring a diverse set of lysine derivatives incorporated into the DRG1 peptides as potential human JMJD7 substrates and inhibitors. The results indicate that human JMJD7 has a relatively narrow substrate scope beyond lysine compared to some other JmjC hydroxylases and lysine-modifying enzymes. The geometrically constrained (E)-dehydrolysine is an efficient alternative to lysine for JMJD7-catalyzed C3-hydroxylation. γ-Thialysine and γ-azalysine undergo C3-hydroxylation, followed by degradation to formylglycine. JMJD7 also catalyzes the S-oxidation of DRG1-derived peptides possessing methionine and homomethionine residues in place of lysine. Inhibition assays show that DRG1 variants possessing cysteine/selenocysteine instead of the lysine residue efficiently inhibit JMJD7 via cross-linking. The overall results inform on the substrate selectivity and inhibition of human JMJD7, which will help enable the rational design of selective small-molecule and peptidomimetic inhibitors of JMJD7.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Especificidade por Substrato , Lisina/química , Lisina/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hidroxilação
6.
Biomolecules ; 9(11)2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703473

RESUMO

AAA-ATPases are molecular engines evolutionarily optimized for the remodeling of proteins and macromolecular assemblies. Three AAA-ATPases are currently known to be involved in the remodeling of the eukaryotic ribosome, a megadalton range ribonucleoprotein complex responsible for the translation of mRNAs into proteins. The correct assembly of the ribosome is performed by a plethora of additional and transiently acting pre-ribosome maturation factors that act in a timely and spatially orchestrated manner. Minimal disorder of the assembly cascade prohibits the formation of functional ribosomes and results in defects in proliferation and growth. Rix7, Rea1, and Drg1, which are well conserved across eukaryotes, are involved in different maturation steps of pre-60S ribosomal particles. These AAA-ATPases provide energy for the efficient removal of specific assembly factors from pre-60S particles after they have fulfilled their function in the maturation cascade. Recent structural and functional insights have provided the first glimpse into the molecular mechanism of target recognition and remodeling by Rix7, Rea1, and Drg1. Here we summarize current knowledge on the AAA-ATPases involved in eukaryotic ribosome biogenesis. We highlight the latest insights into their mechanism of mechano-chemical complex remodeling driven by advanced cryo-EM structures and the use of highly specific AAA inhibitors.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Adenosina Trifosfatases/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Adenosina Trifosfatases/biossíntese , Metabolismo Energético/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
FEBS J ; 280(15): 3647-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23711155

RESUMO

Human Drg1, a guanine nucleotide binding protein conserved in archaea and eukaryotes, is regulated by Lerepo4. Together they form a complex which interacts with translating ribosomes. Here we have purified and characterized the GTPase activity of Drg1 and three variants, a shortened mutant depleted of the TGS domain, a phosphomimicking mutant and a construct with the two combined mutations. Our data reveal that potassium strongly stimulates the GTPase activity, without changing the monomeric status of Drg1 and that this activity is notably reduced in the mutants. The nature of Lerepo4 association has also been investigated. Dissecting the role of the different domains revealed that Dfrp domain is the sole responsible for the Drg1 increase in thermal stability and the four fold stimulation over its catalytic activity. Lerepo4 action leaves Drg1 affinity for nucleotides unaffected, feasibly favoring a switch I reorientation, mainly via the TGS domain. Drg1 displayed a high temperature optimum of activity at 42°C, suggesting the ability of being active under possible heat stress conditions.


Assuntos
Proteínas de Transporte/química , Proteínas de Ligação ao GTP/química , Potássio/química , Estabilidade Enzimática , Guanosina Difosfato/química , Guanosina Trifosfato/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA