Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Exp Cell Res ; 378(2): 124-130, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30857973

RESUMO

Desmocollin 3 (DSC3) is a transmembrane adhesion protein of desmosomes and involved in carcinogenesis in various cancer types. Downregulation of DSC3 has been reported in colorectal cancer (CRC). However, the function of DSC3 in CRC has not yet been elucidated. In this study, we performed cell-based functional analysis after DSC3 overexpression by stable transfection and knockdown by siRNA in CRC cells. It turned out that overexpression of DSC3 reduced cell proliferation, colony forming ability, induced G0/G1 cell cycle arrest and promoted apoptosis. Further pathway analysis showed that overexpression of DSC3 significantly inhibited the activity of AKT pathway and increased the expression of E-cadherin as well as p53 and p21. In contrast, siRNA-mediated knockdown of DSC3 increased cell proliferation and colony formation, activated the AKT pathway and decreased the expression of E-cadherin as well as p53 and p21. Additionally, in primary CRC patient samples, the expression of DSC3 protein was significantly related to the expression of desmocollin 1 (DSC1) and desmocollin 2 (DSC2) as well as E-cadherin (p < 0.001 respectively). Taken together, our data reveal that DSC3 suppresses CRC cell growth through inhibition of AKT pathway and regulation of E-cadherin. DSC3 may serve as a novel therapeutic target for CRC.


Assuntos
Neoplasias Colorretais/etiologia , Desmocolinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Apoptose , Caderinas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Desmocolinas/genética , Progressão da Doença , Seguimentos , Genes Supressores de Tumor , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
2.
Front Genet ; 13: 994509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061207

RESUMO

Background: Hypotrichosis with Recurrent Skin Vesicles (HYPTSV) is an extremely rare condition, having autosomal recessive inheritance. Here in we report a 4-years- old Saudi boy who presented with a history of recurrent skin blisters that are localized to the extremities and hypotrichosis since birth. Methods: The present study describes a consanguineous Saudi family segregating HYPTSV in an autosomal recessive fashion. A single proband (II-1) exhibited features such as diffused non-scarring alopecia on the scalp, intraepidermal blister, post-inflammatory hyperpigmented macules, and follicular hyperkeratosis. DNA of the index was subjected to whole-genome sequencing (WGS). Furthermore, 3D protein modeling was performed for the mutated and normal protein. Results: WGS revealed a novel bi-allelic missense variant (c.154G>C; p. Val52Leu) in the DSC3 gene, which segregated perfectly using Sanger sequencing. In addition, 3D protein modeling revealed a substantial change in the mutated DSC3 protein as compared to the normal DSC3 protein. Conclusion: This is the 3rd novel variant reported in the DSC3 gene associated with the HYPTSV phenotype. This report further strengthens the evidence that bi-allelic variants in the DSC3 cause severe HYPTSV in humans.

3.
Int J Clin Exp Pathol ; 8(6): 6716-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26261554

RESUMO

Follicle-stimulating hormone (FSH) is associated with the pathogenesis of ovarian cancer. We sought to explore whether desmocollin 3 (Dsc3) mediates FSH-induced ovarian epithelial cancer cell proliferation and whether the EGFR/Akt signaling pathway may be involved in this process. Dsc3 positivity in ovarian tissue specimens from 72 patients was assessed by immunohistochemistry. The positive expression rates of Dsc3 were similar in ovarian cancer tissues (24/31:77.4%) and borderline ovarian tumor tissues (18/22:81.8%) (P>0.05), but were significantly higher in these cancerous tissues than in benign ovarian cyst tissues (3/19:15.8%) (P<0.05). Consistently, the expression of Dsc3 in four out of five ovarian cancer cells (HO8910, Skov3ip, Skov and Hey cells, but not ES-2 and in borderline ovarian MCV152 tumor cells was higher than in the immortalized ovarian epithelial cell line, Moody. FSH up-regulated the expression of Dsc3 and EGFR in a dose- and time-dependent manner. Furthermore, a converse relationship between the expression of Dsc3, EFGR and PI3K/Akt signaling was elucidated using RNA interference and PI3K/Akt inhibitor in the absence and presence of FSH. A role for these proteins in FSH-induced cell proliferation was verified, highlighting their interdependence in mediating ovarian cancer cell function. These results suggest that Dsc3 can mediate FSH-induced ovarian cancer cell proliferation by activating the EGFR/Akt signaling pathway.


Assuntos
Proliferação de Células/efeitos dos fármacos , Desmocolinas/metabolismo , Receptores ErbB/metabolismo , Hormônio Foliculoestimulante/farmacologia , Neoplasias Epiteliais e Glandulares/enzimologia , Neoplasias Ovarianas/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Desmocolinas/genética , Relação Dose-Resposta a Droga , Ativação Enzimática , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , Fatores de Tempo , Transfecção , Regulação para Cima
4.
J Cancer ; 5(6): 457-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847386

RESUMO

BACKGROUND: Desmocollin3 (DSC3) is a member of the cadherin superfamily of calcium-dependent cell adhesion molecules and plays an important role in tumor invasion and metastasis. In this study, we investigated the epigenetic mechanism that regulates DSC3 expression in esophageal adenocarcinomas (EACs). METHODS: Expression of DSC3 was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The promoter DNA methylation level of DSC3 was examined using quantitative bisulfite pyrosequencing. RESULTS: The qRT-PCR analysis demonstrated significant down-regulation of the DSC3 mRNA levels in human EAC cell lines and tissue samples (P<.001). In addition, the EAC cell lines and tumor samples have aberrant promoter hypermethylation as compared to normal esophageal samples (P<.001). DSC3 promoter hypermethylation (>10% methylation level) was detected in 97.5% (39/40) of EAC samples whereas none of the normal tissue samples showed hypermethylation (P<.0001). There was a significant inverse correlation between promoter DNA methylation levels and mRNA expression folds for DSC3 (coefficient r=-0.685, P<.0001). Treatment of FLO-1 and SKGT4 EAC cells with 5-Aza-deoxytidine led to a significant reduction in the promoter DNA methylation levels with restoration of the DSC3 expression, suggesting that promoter DNA methylation is a key epigenetic mechanism regulating DSC3 expression. High DSC3 promoter DNA methylation levels were significantly correlated with advanced tumor stage (P<.001) and lymph node metastasis (P<.001). CONCLUSION: Taken together, our results demonstrate that epigenetic silencing of DSC3 is a frequent finding in EAC that is possibly associated with advanced stages.

5.
Cell Cycle ; 13(24): 3857-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25558829

RESUMO

Barrett's esophagus (BE) is defined as an incomplete intestinal metaplasia characterized generally by the presence of columnar and goblet cells in the formerly stratified squamous epithelium of the esophagus. BE is known as a precursor for esophageal adenocarcinoma. Currently, the cell of origin for human BE has yet to be clearly identified. Therefore, we investigated the role of Notch signaling in the initiation of BE metaplasia. Affymetrix gene expression microarray revealed that BE samples express decreased levels of Notch receptors (NOTCH2 and NOTCH3) and one of the the ligands (JAG1). Furthermore, BE tissue microarray showed decreased expression of NOTCH1 and its downstream target HES1. Therefore, Notch signaling was inhibited in human esophageal epithelial cells by expression of dominant-negative-Mastermind-like (dnMAML), in concert with MYC and CDX1 overexpression. Cell transdifferentiation was then assessed by 3D organotypic culture and evaluation of BE-lineage specific gene expression. Notch inhibition promoted transdifferentiation of esophageal epithelial cells toward columnar-like cells as demonstrated by increased expression of columnar keratins (K8, K18, K19, K20) and glandular mucins (MUC2, MUC3B, MUC5B, MUC17) and decreased expression of squamous keratins (K5, K13, K14). In 3D culture, elongated cells were observed in the basal layer of the epithelium with Notch inhibition. Furthermore, we observed increased expression of KLF4, a potential driver of the changes observed by Notch inhibition. Interestingly, knockdown of KLF4 reversed the effects of Notch inhibition on BE-like metaplasia. Overall, Notch signaling inhibition promotes transdifferentiation of esophageal cells toward BE-like metaplasia in part via upregulation of KLF4. These results support a novel mechanism through which esophageal epithelial transdifferentiation promotes the evolution of BE.


Assuntos
Esôfago/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores Notch/metabolismo , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Transdiferenciação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Esôfago/citologia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Queratinas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Metaplasia , Mucinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Receptores Notch/antagonistas & inibidores , Proteínas Serrate-Jagged , Transdução de Sinais , Análise Serial de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA