Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.869
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38920341

RESUMO

Drug-target interactions (DTIs) are a key part of drug development process and their accurate and efficient prediction can significantly boost development efficiency and reduce development time. Recent years have witnessed the rapid advancement of deep learning, resulting in an abundance of deep learning-based models for DTI prediction. However, most of these models used a single representation of drugs and proteins, making it difficult to comprehensively represent their characteristics. Multimodal data fusion can effectively compensate for the limitations of single-modal data. However, existing multimodal models for DTI prediction do not take into account both intra- and inter-modal interactions simultaneously, resulting in limited presentation capabilities of fused features and a reduction in DTI prediction accuracy. A hierarchical multimodal self-attention-based graph neural network for DTI prediction, called HMSA-DTI, is proposed to address multimodal feature fusion. Our proposed HMSA-DTI takes drug SMILES, drug molecular graphs, protein sequences and protein 2-mer sequences as inputs, and utilizes a hierarchical multimodal self-attention mechanism to achieve deep fusion of multimodal features of drugs and proteins, enabling the capture of intra- and inter-modal interactions between drugs and proteins. It is demonstrated that our proposed HMSA-DTI has significant advantages over other baseline methods on multiple evaluation metrics across five benchmark datasets.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Proteínas/química , Proteínas/metabolismo , Humanos , Algoritmos , Biologia Computacional/métodos
2.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38565290

RESUMO

Left-sided spatial neglect is a very common and challenging issue after right-hemispheric stroke, which strongly and negatively affects daily living behavior and recovery of stroke survivors. The mechanisms underlying recovery of spatial neglect remain controversial, particularly regarding the involvement of the intact, contralesional hemisphere, with potential contributions ranging from maladaptive to compensatory. In the present prospective, observational study, we assessed neglect severity in 54 right-hemispheric stroke patients (32 male; 22 female) at admission to and discharge from inpatient neurorehabilitation. We demonstrate that the interaction of initial neglect severity and spared white matter (dis)connectivity resulting from individual lesions (as assessed by diffusion tensor imaging, DTI) explains a significant portion of the variability of poststroke neglect recovery. In mildly impaired patients, spared structural connectivity within the lesioned hemisphere is sufficient to attain good recovery. Conversely, in patients with severe impairment, successful recovery critically depends on structural connectivity within the intact hemisphere and between hemispheres. These distinct patterns, mediated by their respective white matter connections, may help to reconcile the dichotomous perspectives regarding the role of the contralesional hemisphere as exclusively compensatory or not. Instead, they suggest a unified viewpoint wherein the contralesional hemisphere can - but must not necessarily - assume a compensatory role. This would depend on initial impairment severity and on the available, spared structural connectivity. In the future, our findings could serve as a prognostic biomarker for neglect recovery and guide patient-tailored therapeutic approaches.


Assuntos
Imagem de Tensor de Difusão , Transtornos da Percepção , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Substância Branca , Humanos , Masculino , Feminino , Transtornos da Percepção/etiologia , Transtornos da Percepção/fisiopatologia , Transtornos da Percepção/reabilitação , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Pessoa de Meia-Idade , Recuperação de Função Fisiológica/fisiologia , Lateralidade Funcional/fisiologia , Estudos Prospectivos , Índice de Gravidade de Doença , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Idoso de 80 Anos ou mais
3.
Brain ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39241118

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons in the brain and spinal cord. Accumulation of misfolded proteins is central in the pathogenesis of ALS and the glymphatic system is emerging as a potential therapeutic target to reduce proteinopathy. Using diffusion tensor imaging analysis along the perivascular spaces (DTI-ALPS) to assess glymphatic function, we perform a longitudinal analysis of glymphatic function in ALS and compare it to a disorder in the motor neuron disease spectrum, primary lateral sclerosis (PLS). From a cohort of 45 participants from the Calgary site in the CALSNIC study (Canadian ALS Neuroimaging Consortium), including 18 ALS, 5 PLS and 22 control participants, DTI-ALPS was analyzed and correlated to clinical features (age, sex, disease presentation, disease severity and progression rate), and white matter hyperintensity (WMH) burden. This included longitudinal measurements at three time points, 4 months apart. The DTI-ALPS index was reduced in ALS participants compared to PLS and control participants across all three time points. There was no association with clinical factors, however the index tended to decline with advancing age. Our study suggests heterogeneity in glymphatic dysfunction in motor neuron diseases that may be related to the underlying pathogenesis.

4.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39214853

RESUMO

Learning new motor skills relies on neural plasticity within motor and limbic systems. This study uniquely combined diffusion tensor imaging and multiparametric mapping MRI to detail these neuroplasticity processes. We recruited 18 healthy male participants who underwent 960 min of training on a computer-based motion game, while 14 were scanned without training. Diffusion tensor imaging, which quantifies tissue microstructure by measuring the capacity for, and directionality of, water diffusion, revealed mostly linear changes in white matter across the corticospinal-cerebellar-thalamo-hippocampal circuit. These changes related to performance and reflected different responses to upper- and lower-limb training in brain areas with known somatotopic representations. Conversely, quantitative MRI metrics, sensitive to myelination and iron content, demonstrated mostly quadratic changes in gray matter related to performance and reflecting somatotopic representations within the same brain areas. Furthermore, while myelin and iron-sensitive multiparametric mapping MRI was able to describe time lags between different cortical brain systems, diffusion tensor imaging detected time lags within the white matter of the motor systems. These findings suggest that motor skill learning involves distinct phases of white and gray matter plasticity across the sensorimotor network, with the unique combination of diffusion tensor imaging and multiparametric mapping MRI providing complementary insights into the underlying neuroplastic responses.


Assuntos
Imagem de Tensor de Difusão , Substância Cinzenta , Destreza Motora , Plasticidade Neuronal , Substância Branca , Humanos , Masculino , Imagem de Tensor de Difusão/métodos , Plasticidade Neuronal/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Destreza Motora/fisiologia , Adulto , Adulto Jovem , Aprendizagem/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética Multiparamétrica/métodos
5.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38300178

RESUMO

Obesity has been linked to abnormal frontal function, including the white matter fibers of anterior portion of the corpus callosum, which is crucial for information exchange within frontal cortex. However, alterations in white matter anatomical connectivity between corpus callosum and cortical regions in patients with obesity have not yet been investigated. Thus, we enrolled 72 obese and 60 age-/gender-matched normal weight participants who underwent clinical measurements and diffusion tensor imaging. Probabilistic tractography with connectivity-based classification was performed to segment the corpus callosum and quantify white matter anatomical connectivity between subregions of corpus callosum and cortical regions, and associations between corpus callosum-cortex white matter anatomical connectivity and clinical behaviors were also assessed. Relative to normal weight individuals, individuals with obesity exhibited significantly greater white matter anatomical connectivity of corpus callosum-orbitofrontal cortex, which was positively correlated with body mass index and self-reported disinhibition of eating behavior, and lower white matter anatomical connectivity of corpus callosum-prefrontal cortex, which was significantly negatively correlated with craving for high-calorie food cues. The findings show that alterations in white matter anatomical connectivity between corpus callosum and frontal regions involved in reward and executive control are associated with abnormal eating behaviors.


Assuntos
Corpo Caloso , Substância Branca , Humanos , Corpo Caloso/diagnóstico por imagem , Encéfalo , Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Obesidade/diagnóstico por imagem
6.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38037470

RESUMO

Even though deficits in social cognition constitute a core characteristic of autism spectrum disorders, a large heterogeneity exists regarding individual social performances and its neural basis remains poorly investigated. Here, we used eye-tracking to objectively measure interindividual variability in social perception and its correlation with white matter microstructure, measured with diffusion tensor imaging MRI, in 25 children with autism spectrum disorder (8.5 ± 3.8 years). Beyond confirming deficits in social perception in participants with autism spectrum disorder compared 24 typically developing controls (10.5 ± 2.9 years), results revealed a large interindividual variability of such behavior among individuals with autism spectrum disorder. Whole-brain analysis showed in both autism spectrum disorder and typically developing groups a positive correlation between number of fixations to the eyes and fractional anisotropy values mainly in right and left superior longitudinal tracts. In children with autism spectrum disorder a correlation was also observed in right and left inferior longitudinal tracts. Importantly, a significant interaction between group and number of fixations to the eyes was observed within the anterior portion of the right inferior longitudinal fasciculus, mainly in the right anterior temporal region. This additional correlation in a supplementary region suggests the existence of a compensatory brain mechanism, which may support enhanced performance in social perception among children with autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Substância Branca , Criança , Humanos , Imagem de Tensor de Difusão/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Tecnologia de Rastreamento Ocular , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Percepção Social , Anisotropia
7.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38112569

RESUMO

Mounting evidence suggests considerable diversity in brain aging trajectories, primarily arising from the complex interplay between age, genetic, and environmental risk factors, leading to distinct patterns of micro- and macro-cerebral aging. The underlying mechanisms of such effects still remain unclear. We conducted a comprehensive association analysis between cerebral structural measures and prevalent risk factors, using data from 36,969 UK Biobank subjects aged 44-81. Participants were assessed for brain volume, white matter diffusivity, Apolipoprotein E (APOE) genotypes, polygenic risk scores, lifestyles, and socioeconomic status. We examined genetic and environmental effects and their interactions with age and sex, and identified 726 signals, with education, alcohol, and smoking affecting most brain regions. Our analysis revealed negative age-APOE-ε4 and positive age-APOE-ε2 interaction effects, respectively, especially in females on the volume of amygdala, positive age-sex-APOE-ε4 interaction on the cerebellar volume, positive age-excessive-alcohol interaction effect on the mean diffusivity of the splenium of the corpus callosum, positive age-healthy-diet interaction effect on the paracentral volume, and negative APOE-ε4-moderate-alcohol interaction effects on the axial diffusivity of the superior fronto-occipital fasciculus. These findings highlight the need of considering age, sex, genetic, and environmental joint effects in elucidating normal or abnormal brain aging.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Feminino , Humanos , Envelhecimento/genética , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagem , Genótipo , Fatores de Risco
8.
Mol Plant Microbe Interact ; 37(2): 73-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416059

RESUMO

Embedded in the plasma membrane of plant cells, receptor kinases (RKs) and receptor proteins (RPs) act as key sentinels, responsible for detecting potential pathogenic invaders. These proteins were originally characterized more than three decades ago as disease resistance (R) proteins, a concept that was formulated based on Harold Flor's gene-for-gene theory. This theory implies genetic interaction between specific plant R proteins and corresponding pathogenic effectors, eliciting effector-triggered immunity (ETI). Over the years, extensive research has unraveled their intricate roles in pathogen sensing and immune response modulation. RKs and RPs recognize molecular patterns from microbes as well as dangers from plant cells in initiating pattern-triggered immunity (PTI) and danger-triggered immunity (DTI), which have intricate connections with ETI. Moreover, these proteins are involved in maintaining immune homeostasis and preventing autoimmunity. This review showcases seminal studies in discovering RKs and RPs as R proteins and discusses the recent advances in understanding their functions in sensing pathogen signals and the plant cell integrity and in preventing autoimmunity, ultimately contributing to a robust and balanced plant defense response. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Assuntos
Plantas , Receptores de Reconhecimento de Padrão , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença , Proteínas de Transporte , Imunidade Vegetal/genética , Doenças das Plantas
9.
Neuroimage ; 299: 120810, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39181193

RESUMO

OBJECTIVE: We aim to investigate the interplay between mentalization, brain microstructure, and psychological resilience as potential protective factors against mental illness. METHOD: Four hundred and twenty-six participants (mean age 40.12±16.95; 202 males, 224 females), without psychiatric or neurological history, completed assessments: Dissociative Process Scale (DPS), Peace of Mind (PoM), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Resilience Scale for Adults (RSA), and Magnetic Resonance Imaging (MRI) structures with selected regions of interest, and Diffusion Tensor Imaging (DTI) maps from various tracts in the right hemisphere and connection to the frontal areas, including anterior thalamic radiation (ATR), Cingulum (hippocampus) (CH), Corticospinal tract (CST), Superior longitudinal fasciculus (SLF), Inferior fronto-occipital fasciculus (IFOF), and Uncinate fasciculus (UF) were analyzed. RESULTS: Two clusters, representing hypomentalization (HypoM) and hypermentalization (HyperM), were identified based on DPS, CPSS, and RFQ responses. One-way ANOVA showed no significant age or gender differences between clusters. The HypoM group exhibited lower PoM scores, higher BDI and BAI scores, and lower RSA scores (ps< 0.05). Structural brain metric comparison showed significant differences in GMV in the right caudal middle frontal gyrus (rcMFG), right superior frontal gyrus (rsFG), and right frontal pole (rFP) between groups. In addition, the HyperM individuals with a higher risk of depression and a higher ratio of intrapersonal to interpersonal factors of resilience were found with reduced GMV on the rcMFG. Additionally, analyses of DTI metrics revealed significant differences between two groups in rATR and rSLF in terms of fractional anisotropy (FA) values; rATR, rCST, rUF, rSLF, rCH and rIFOF in terms of mean diffusivity (MD) values, and radial diffusivity (RD) (corrected p = 0.05). Moreover, the positive correlation between different domains of resilience and white matter (WM) integrity implied further enhancement of intrapersonal or interpersonal resilience factors that are different for people with different mentalization. CONCLUSIONS: The findings underscore the importance of considering both intrapersonal and interpersonal factors in understanding the interactions between psychological resilience and mental health conditions relevant to brain mechanisms.


Assuntos
Imagem de Tensor de Difusão , Resiliência Psicológica , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/psicologia
10.
Neuroimage ; 297: 120734, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032791

RESUMO

Brain development is a highly complex process regulated by numerous genes at the molecular and cellular levels. Brain tissue exhibits serial microstructural changes during the development process. High-resolution diffusion magnetic resonance imaging (dMRI) affords a unique opportunity to probe these changes in the developing brain non-destructively. In this study, we acquired multi-shell dMRI datasets at 32 µm isotropic resolution to investigate the tissue microstructure alterations, which we believe to be the highest spatial resolution dMRI datasets obtained for postnatal mouse brains. We adapted the Allen Developing Mouse Brain Atlas (ADMBA) to integrate quantitative MRI metrics and spatial transcriptomics. Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI) metrics were used to quantify brain development at different postnatal days. We demonstrated that the differential evolutions of fiber orientation distributions contribute to the distinct development patterns in white matter (WM) and gray matter (GM). Furthermore, the genes enriched in the nervous system that regulate brain structure and function were expressed in spatial correlation with age-matched dMRI. This study is the first one providing high-resolution dMRI, including DTI, DKI, and NODDI models, to trace mouse brain microstructural changes in WM and GM during postnatal development. This study also highlighted the genotype-phenotype correlation of spatial transcriptomics and dMRI, which may improve our understanding of brain microstructure changes at the molecular level.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Transcriptoma , Animais , Camundongos , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Substância Branca/crescimento & desenvolvimento , Substância Branca/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Camundongos Endogâmicos C57BL , Masculino , Feminino
11.
Neuroimage ; 300: 120854, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278381

RESUMO

The common marmoset is an essential model for understanding social cognition and neurodegenerative diseases. This study explored the structural and functional brain connectivity in a marmoset under isoflurane anesthesia, aiming to statistically overcome the effects of high inter-individual variability and noise-related confounds such as physiological noise, ensuring robust and reliable data. Similarities and differences in individual subject data, including assessments of functional and structural brain connectivities derived from resting-state functional MRI and diffusion tensor imaging were meticulously captured. The findings highlighted the high consistency of structural neural connections within the species, indicating a stable neural architecture, while functional connectivity under anesthesia displayed considerable variability. Through independent component and dual regression analyses, several distinct brain connectivities were identified, elucidating their characteristics under anesthesia. Insights into the structural and functional features of the marmoset brain from this study affirm its value as a neuroscience research model, promising advancements in the field through fundamental and translational studies.


Assuntos
Anestésicos Inalatórios , Encéfalo , Callithrix , Imagem de Tensor de Difusão , Isoflurano , Imageamento por Ressonância Magnética , Animais , Isoflurano/farmacologia , Anestésicos Inalatórios/farmacologia , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Masculino , Conectoma/métodos , Feminino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
12.
Neuroimage ; 297: 120684, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880310

RESUMO

Understanding the complex mechanisms of the brain can be unraveled by extracting the Dynamic Effective Connectome (DEC). Recently, score-based Directed Acyclic Graph (DAG) discovery methods have shown significant improvements in extracting the causal structure and inferring effective connectivity. However, learning DEC through these methods still faces two main challenges: one with the fundamental impotence of high-dimensional dynamic DAG discovery methods and the other with the low quality of fMRI data. In this paper, we introduce Bayesian Dynamic DAG learning with M-matrices Acyclicity characterization (BDyMA) method to address the challenges in discovering DEC. The presented dynamic DAG enables us to discover direct feedback loop edges as well. Leveraging an unconstrained framework in the BDyMA method leads to more accurate results in detecting high-dimensional networks, achieving sparser outcomes, making it particularly suitable for extracting DEC. Additionally, the score function of the BDyMA method allows the incorporation of prior knowledge into the process of dynamic causal discovery which further enhances the accuracy of results. Comprehensive simulations on synthetic data and experiments on Human Connectome Project (HCP) data demonstrate that our method can handle both of the two main challenges, yielding more accurate and reliable DEC compared to state-of-the-art and traditional methods. Additionally, we investigate the trustworthiness of DTI data as prior knowledge for DEC discovery and show the improvements in DEC discovery when the DTI data is incorporated into the process.


Assuntos
Teorema de Bayes , Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Conectoma/métodos , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Aprendizado de Máquina
13.
Neuroimage ; 290: 120554, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431180

RESUMO

Following sensory deprivation, areas and networks in the brain may adapt and reorganize to compensate for the loss of input. These adaptations are manifestations of compensatory crossmodal plasticity, which has been documented in both human and animal models of deafness-including the domestic cat. Although there are abundant examples of structural plasticity in deaf felines from retrograde tracer-based studies, there is a lack of diffusion-based knowledge involving this model compared to the current breadth of human research. The purpose of this study was to explore white matter structural adaptations in the perinatally-deafened cat via tractography, increasing the methodological overlap between species. Plasticity was examined by identifying unique group connections and assessing altered connectional strength throughout the entirety of the brain. Results revealed a largely preserved connectome containing a limited number of group-specific or altered connections focused within and between sensory networks, which is generally corroborated by deaf feline anatomical tracer literature. Furthermore, five hubs of cortical plasticity and altered communication following perinatal deafness were observed. The limited differences found in the present study suggest that deafness-induced crossmodal plasticity is largely built upon intrinsic structural connections, with limited remodeling of underlying white matter.


Assuntos
Conectoma , Surdez , Humanos , Animais , Gatos , Encéfalo
14.
Neurobiol Dis ; 193: 106455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408685

RESUMO

White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively. DTI is particularly valuable in unpinning structural tract connectivity defects of neural networks in NDDs. In this study, we used 3D DTI to unveil brain-specific tract defects in two mouse models lacking the Nr2f1 gene, which mutations in patients have been proven to cause an emerging NDD, called Bosch-Boonstra-Schaaf Optic Atrophy (BBSOAS). We aimed to investigate the impact of the lack of cortical Nr2f1 function on WM morphometry and tract microstructure quantifications. We found in both mutant mice partial loss of fibers and severe misrouting of the two major cortical commissural tracts, the corpus callosum, and the anterior commissure, as well as the two major hippocampal efferent tracts, the post-commissural fornix, and the ventral hippocampal commissure. DTI tract malformations were supported by 2D histology, 3D fluorescent imaging, and behavioral analyses. We propose that these interhemispheric connectivity impairments are consistent in explaining some cognitive defects described in BBSOAS patients, particularly altered information processing between the two brain hemispheres. Finally, our results highlight 3DDTI as a relevant neuroimaging modality that can provide appropriate morphometric biomarkers for further diagnosis of BBSOAS patients.


Assuntos
Atrofia Óptica , Substância Branca , Humanos , Camundongos , Animais , Imagem de Tensor de Difusão , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Encéfalo , Imageamento por Ressonância Magnética , Atrofia Óptica/patologia
15.
Neurobiol Dis ; 192: 106439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365046

RESUMO

Except for aging, carrying the APOE ε4 allele (APOE4) is the most important risk factor for sporadic Alzheimer's disease. APOE4 carriers may have reduced capacity to recycle lipids, resulting in white matter microstructural abnormalities. In this study, we evaluated whether white matter impairment measured by diffusion tensor imaging (DTI) differs between healthy individuals with a different number of APOE4 alleles, and whether white matter impairment associates with brain beta-amyloid (Aß) load and serum levels of neurofilament light chain (NfL). We studied 96 participants (APOE3/3, N = 37; APOE3/4, N = 39; APOE4/4, N = 20; mean age 70.7 (SD 5.22) years, 63% females) with a brain MRI including a DTI sequence (N = 96), Aß-PET (N = 89) and a venous blood sample for the serum NfL concentration measurement (N = 88). Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) in six a priori-selected white matter regions-of-interest (ROIs) were compared between the groups using ANCOVA, with sex and age as covariates. A voxel-weighted average of FA, MD, RD and AxD was calculated for each subject, and correlations with Aß-PET and NfL levels were evaluated. APOE4/4 carriers exhibited a higher MD and a higher RD in the body of corpus callosum than APOE3/4 (p = 0.0053 and p = 0.0049, respectively) and APOE3/3 (p = 0.026 and p = 0.042). APOE4/4 carriers had a higher AxD than APOE3/4 (p = 0.012) and APOE3/3 (p = 0.040) in the right cingulum adjacent to cingulate cortex. In the total sample, composite MD, RD and AxD positively correlated with the cortical Aß load (r = 0.26 to 0.33, p < 0.013 for all) and with serum NfL concentrations (r = 0.31 to 0.36, p < 0.0028 for all). In conclusion, increased local diffusivity was detected in cognitively unimpaired APOE4/4 homozygotes compared to APOE3/4 and APOE3/3 carriers, and increased diffusivity correlated with biomarkers of Alzheimer's disease and neurodegeneration. White matter impairment seems to be an early phenomenon in the Alzheimer's disease pathologic process in APOE4/4 homozygotes.


Assuntos
Doença de Alzheimer , Substância Branca , Feminino , Humanos , Idoso , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Apolipoproteína E4/genética , Imagem de Tensor de Difusão , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E3 , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
16.
Hippocampus ; 34(7): 327-341, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38700259

RESUMO

Recent work has identified a critical role for the hippocampus in reward-sensitive behaviors, including motivated memory, reinforcement learning, and decision-making. Animal histology and human functional neuroimaging have shown that brain regions involved in reward processing and motivation are more interconnected with the ventral/anterior hippocampus. However, direct evidence examining gradients of structural connectivity between reward regions and the hippocampus in humans is lacking. The present study used diffusion MRI (dMRI) and probabilistic tractography to quantify the structural connectivity of the hippocampus with key reward processing regions in vivo. Using a large sample of subjects (N = 628) from the human connectome dMRI data release, we found that connectivity profiles with the hippocampus varied widely between different regions of the reward circuit. While the dopaminergic midbrain (ventral tegmental area) showed stronger connectivity with the anterior versus posterior hippocampus, the ventromedial prefrontal cortex showed stronger connectivity with the posterior hippocampus. The limbic (ventral) striatum demonstrated a more homogeneous connectivity profile along the hippocampal long axis. This is the first study to generate a probabilistic atlas of the hippocampal structural connectivity with reward-related networks, which is essential to investigating how these circuits contribute to normative adaptive behavior and maladaptive behaviors in psychiatric illness. These findings describe nuanced structural connectivity that sets the foundation to better understand how the hippocampus influences reward-guided behavior in humans.


Assuntos
Conectoma , Hipocampo , Vias Neurais , Recompensa , Humanos , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Masculino , Feminino , Adulto , Vias Neurais/fisiologia , Vias Neurais/diagnóstico por imagem , Adulto Jovem , Imagem de Difusão por Ressonância Magnética , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/fisiologia , Imagem de Tensor de Difusão , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/fisiologia
17.
Eur J Neurosci ; 60(7): 5718-5730, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39205547

RESUMO

Characterizing cortical plasticity becomes increasingly important for identifying compensatory mechanisms and structural reserve in the ageing population. While cortical thickness (CT) largely contributed to systems neuroscience, it incompletely informs about the underlying neuroplastic pathophysiology. In turn, microstructural characteristics may correspond to atrophy mechanisms in a more sensitive way. Fractional anisotropy, a diffusion tensor imaging (DTI) measure, is inversely related to cortical histologic complexity. Axial diffusivity and radial diffusivity are assumed to be linked to the density of structures oriented perpendicular and parallel to the cortical surface, respectively. We hypothesized (1) that cortical DTI will reveal microstructural correlates for hemispheric specialization, particularly in the language and motor systems, and (2) that lateralization of cortical DTI parameters will show an age effect, paralleling age-related changes in activation, especially in the prefrontal cortex. We analysed data from healthy younger and older adult participants (N = 91). DTI and CT data were extracted from regions of the Destrieux atlas. Diffusion measures showed lateralization in specialized motor, language, visual, auditory and inferior parietal cortices. Age-dependent increased lateralization for DTI measures was observed in the prefrontal, angular, superior temporal and lateral occipital cortex. CT did not show any age-dependent alterations in lateralization. Our observations argue that cortical DTI can capture microstructural properties associated with functional specialization, resembling findings from histology. Age effects on diffusion measures in the integrative prefrontal and parietal areas may shed novel light on the atrophy-related plasticity in healthy ageing.


Assuntos
Envelhecimento , Córtex Cerebral , Imagem de Tensor de Difusão , Humanos , Idoso , Masculino , Feminino , Adulto , Imagem de Tensor de Difusão/métodos , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Envelhecimento/fisiologia , Adulto Jovem , Idoso de 80 Anos ou mais , Lateralidade Funcional/fisiologia
18.
Eur J Neurosci ; 59(12): 3184-3202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638001

RESUMO

Recent research has indicated that the relationship between age-related cognitive decline and falling may be mediated by the individual's capacity to quickly cancel or inhibit a motor response. This longitudinal investigation demonstrates that higher white matter fibre density in the motor inhibition network paired with low physical activity was associated with falling in elderly participants. We measured the density of white matter fibre tracts connecting key nodes in the inhibitory control network in a large sample (n = 414) of older adults. We modelled their self-reported frequency of falling over a 4-year period with white matter fibre density in pathways corresponding to the direct and hyperdirect cortical-subcortical loops implicated in the inhibitory control network. Only connectivity between right inferior frontal gyrus and right subthalamic nucleus was associated with falling as measured cross-sectionally. The connectivity was not, however, predictive of future falling when measured 2 and 4 years later. Higher white matter fibre density was associated with falling, but only in combination with low levels of physical activity. No such relationship existed for selected control brain regions that are not implicated in the inhibitory control network. Albeit statistically robust, the direction of this effect was counterintuitive (more dense connectivity associated with falling) and warrants further longitudinal investigation into whether white matter fibre density changes over time in a manner correlated with falling, and mediated by physical activity.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Idoso , Masculino , Feminino , Acidentes por Quedas , Encéfalo , Idoso de 80 Anos ou mais , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Estudos Longitudinais , Inibição Psicológica
19.
Hum Brain Mapp ; 45(14): e70035, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39360580

RESUMO

The processing of auditory stimuli which are structured in time is thought to involve the arcuate fasciculus, the white matter tract which connects the temporal cortex and the inferior frontal gyrus. Research has indicated effects of both musical and language experience on the structural characteristics of the arcuate fasciculus. Here, we investigated in a sample of n = 84 young adults whether continuous conceptualizations of musical and multilingual experience related to structural characteristics of the arcuate fasciculus, measured using diffusion tensor imaging. Probabilistic tractography was used to identify the dorsal and ventral parts of the white matter tract. Linear regressions indicated that different aspects of musical sophistication related to the arcuate fasciculus' volume (emotional engagement with music), volumetric asymmetry (musical training and music perceptual abilities), and fractional anisotropy (music perceptual abilities). Our conceptualization of multilingual experience, accounting for participants' proficiency in reading, writing, understanding, and speaking different languages, was not related to the structural characteristics of the arcuate fasciculus. We discuss our results in the context of other research on hemispheric specializations and a dual-stream model of auditory processing.


Assuntos
Percepção Auditiva , Imagem de Tensor de Difusão , Multilinguismo , Música , Substância Branca , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Substância Branca/anatomia & histologia , Percepção Auditiva/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Lobo Temporal/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Vias Neurais/anatomia & histologia , Adolescente
20.
Hum Brain Mapp ; 45(7): e26695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727010

RESUMO

Human infancy is marked by fastest postnatal brain structural changes. It also coincides with the onset of many neurodevelopmental disorders. Atlas-based automated structure labeling has been widely used for analyzing various neuroimaging data. However, the relatively large and nonlinear neuroanatomical differences between infant and adult brains can lead to significant offsets of the labeled structures in infant brains when adult brain atlas is used. Age-specific 1- and 2-year-old brain atlases covering all major gray and white matter (GM and WM) structures with diffusion tensor imaging (DTI) and structural MRI are critical for precision medicine for infant population yet have not been established. In this study, high-quality DTI and structural MRI data were obtained from 50 healthy children to build up three-dimensional age-specific 1- and 2-year-old brain templates and atlases. Age-specific templates include a single-subject template as well as two population-averaged templates from linear and nonlinear transformation, respectively. Each age-specific atlas consists of 124 comprehensively labeled major GM and WM structures, including 52 cerebral cortical, 10 deep GM, 40 WM, and 22 brainstem and cerebellar structures. When combined with appropriate registration methods, the established atlases can be used for highly accurate automatic labeling of any given infant brain MRI. We demonstrated that one can automatically and effectively delineate deep WM microstructural development from 3 to 38 months by using these age-specific atlases. These established 1- and 2-year-old infant brain DTI atlases can advance our understanding of typical brain development and serve as clinical anatomical references for brain disorders during infancy.


Assuntos
Atlas como Assunto , Encéfalo , Imagem de Tensor de Difusão , Substância Cinzenta , Substância Branca , Humanos , Lactente , Pré-Escolar , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/crescimento & desenvolvimento , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA