Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Mol Life Sci ; 81(1): 70, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294527

RESUMO

Cross-talk between Mirk/Dyrk1B kinase and Sonic hedgehog (Shh)/Gli pathway affects physiology and pathology. Here, we reveal a novel role for Dyrk1B in regulating ventral progenitor and neuron subtypes in the embryonic chick spinal cord (SC) via the Shh pathway. Using in ovo gain-and-loss-of-function approaches at E2, we report that Dyrk1B affects the proliferation and differentiation of neuronal progenitors at E4 and impacts on apoptosis specifically in the motor neuron (MN) domain. Especially, Dyrk1B overexpression decreases the numbers of ventral progenitors, MNs, and V2a interneurons, while the pharmacological inhibition of endogenous Dyrk1B kinase activity by AZ191 administration increases the numbers of ventral progenitors and MNs. Mechanistically, Dyrk1B overexpression suppresses Shh, Gli2 and Gli3 mRNA levels, while conversely, Shh, Gli2 and Gli3 transcription is increased in the presence of Dyrk1B inhibitor AZ191 or Smoothened agonist SAG. Most importantly, in phenotype rescue experiments, SAG restores the Dyrk1B-mediated dysregulation of ventral progenitors. Further at E6, Dyrk1B affects selectively the medial lateral motor neuron column (LMCm), consistent with the expression of Shh in this region. Collectively, these observations reveal a novel regulatory function of Dyrk1B kinase in suppressing the Shh/Gli pathway and thus affecting ventral subtypes in the developing spinal cord. These data render Dyrk1B a possible therapeutic target for motor neuron diseases.


Assuntos
Apoptose , Proteínas Hedgehog , Animais , Proteínas Hedgehog/genética , Galinhas , Interneurônios , Neurônios Motores
2.
Biochem Biophys Res Commun ; 688: 149220, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37952278

RESUMO

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is one of the drug target kinases involved in neurological disorders. DYRK1A phosphorylates substrate proteins related to disease progression in an intermolecular manner. Meanwhile, DYRK1A intramolecularly phosphorylates its own residues on key segments during folding process, which is required for its activation and stabilization. To reproduce the autophosphorylation in vitro, DYRK1A was expressed in Escherichia coli-based cell-free protein synthesis system. Although this system was useful for investigating autophosphorylation of serine residue at position 97 (Ser97) in DYRK1A, only a small fraction of the synthesized protein was successfully autophosphorylated. In this study, we found that the addition of DnaK, a bacterial HSP70 chaperone, to cell-free expression of DYRK1A promoted its Ser97 autophosphorylation. Structure prediction with AlphaFold2 indicates that Ser97 forms a hydrogen bond within an α-helix structure, indicating a possibility that DnaK unfolds the α-helix and maintains the structure around Ser97 in a conformation susceptible to phosphorylation. In addition, DnaK promoted phosphorylation of DYRK1B and HIPK2, but not DYRK2 and DYRK4, suggesting a sequence selectivity in the action of DnaK. This study provides a facile method for promoting autophosphorylation of DYRK family kinases in cell-free protein expression.


Assuntos
Escherichia coli , Processamento de Proteína Pós-Traducional , Fosforilação , Escherichia coli/genética , Biossíntese de Proteínas
3.
Proc Natl Acad Sci U S A ; 117(29): 17019-17030, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611815

RESUMO

DNA double-strand breaks (DSBs) trigger transient pausing of nearby transcription, an emerging ATM-dependent response that suppresses chromosomal instability. We screened a chemical library designed to target the human kinome for new activities that mediate gene silencing on DSB-flanking chromatin, and have uncovered the DYRK1B kinase as an early respondent to DNA damage. We showed that DYRK1B is swiftly and transiently recruited to laser-microirradiated sites, and that genetic inactivation of DYRK1B or its kinase activity attenuated DSB-induced gene silencing and led to compromised DNA repair. Notably, global transcription shutdown alleviated DNA repair defects associated with DYRK1B loss, suggesting that DYRK1B is strictly required for DSB repair on active chromatin. We also found that DYRK1B mediates transcription silencing in part via phosphorylating and enforcing DSB accumulation of the histone methyltransferase EHMT2. Together, our findings unveil the DYRK1B signaling network as a key branch of mammalian DNA damage response circuitries, and establish the DYRK1B-EHMT2 axis as an effector that coordinates DSB repair on transcribed chromatin.


Assuntos
Cromatina , Reparo do DNA/genética , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transcrição Gênica/genética , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Inativação Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
4.
J Cell Mol Med ; 25(22): 10650-10662, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34708541

RESUMO

The dual-specificity tyrosine-regulated kinases DYRK1A and DYRK1B play a key role in controlling the quiescence-proliferation switch in cancer cells. Serum reduction of U87MG 2D cultures or multi-cellular tumour spheroids induced a quiescent like state characterized by increased DYRK1B and p27, and decreased pRb and cyclin D1. VER-239353 is a potent, selective inhibitor of the DYRK1A and DYRK1B kinases identified through fragment and structure-guided drug discovery. Inhibition of DYRK1A/B by VER-239353 in quiescent U87MG cells increased pRb, DYRK1B and cyclin D1 but also increased the cell cycle inhibitors p21 and p27. This resulted in exit from G0 but subsequent arrest in G1. DYRK1A/B inhibition reduced the proliferation of U87MG cells in 2D and 3D culture with greater effects observed under reduced serum conditions. Paradoxically, the induced re-expression of cell cycle proteins by DYRK1A/B inhibition further inhibited cell proliferation. Cell growth arrest induced in quiescent cells by DYRK1A/B inhibition was reversible through the addition of growth-promoting factors. DYRK inhibition-induced DNA damage and synergized with a CHK1 inhibitor in the U87MG spheroids. In vivo, DYRK1A/B inhibition-induced tumour stasis in a U87MG tumour xenograft model. These results suggest that further evaluation of VER-239353 as a treatment for glioblastoma is therefore warranted.


Assuntos
Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Glioblastoma/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/etiologia , Glioblastoma/patologia , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Quinases Dyrk
5.
Bioorg Med Chem Lett ; 47: 128226, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182093

RESUMO

As DYRK1A and 1B inhibitors, 1H-pyrazolo[3,4-b]pyridine derivatives were synthesized. Mostly, 3-aryl-5-arylamino compounds (6) and 3,5-diaryl compounds (8 and 9) were prepared and especially, 3,5-diaryl compound 8 and 9 showed excellent DYRK1B inhibitory enzymatic activities with IC50 Values of 3-287 nM. Among them, 3-(4-hydroxyphenyl), 5-(3,4-dihydroxyphenyl)-1H-pyrazolo[3,4-b]pyridine (8h) exhibited the highest inhibitory enzymatic activity (IC50 = 3 nM) and cell proliferation inhibitory activity (IC50 = 1.6 µM) towards HCT116 colon cancer cells. Also compound 8h has excellent inhibitory activities in patient-derived colon cancer organoids model as well as in 3D spheroid assay model of SW480 and SW620. The docking study supported that we confirmed that compound 8h binds to DYRK1B through various hydrogen bonding interactions and hydrophobic interactions.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Piridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Quinases Dyrk
6.
Mol Biol Rep ; 48(7): 5497-5502, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34291393

RESUMO

BACKGROUND: A cluster of many risk factors for type 2 diabetes and cardiovascular disease is used to describe the metabolic syndrome (MetS). Moreover, genetic differences associated with metabolic syndrome play a key role in its prevalence and side effects. This study aims to investigate the expression of DYRK1B and its association with metabolic syndrome in a small cohort of Egyptian. MATERIALS AND METHODS: A total of 100 adult Egyptians (50 with MetS and 50 healthy control subjects) were included to this study. Clinical, biochemical and anthropometric analysis were assessed. Relative gene expressions of DYRK1B were compared between two groups of subjects using real time PCR. RESULTS: We observed marked overexpression in DYRK1B (p < 0.05) in MetS subjects when compared with the healthy control subjects. CONCLUSION: This is the first study to provide evidence that DYRK1B is highly expressed among the MetS subjects.


Assuntos
Expressão Gênica , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Biomarcadores , Pesos e Medidas Corporais , Estudos de Casos e Controles , Estudos de Coortes , Egito , Feminino , Humanos , Lipídeos/sangue , Masculino , Síndrome Metabólica/diagnóstico , Quinases Dyrk
7.
Cell Physiol Biochem ; 54(6): 1177-1198, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33216476

RESUMO

BACKGROUND/AIMS: Compelling evidence indicates that CK2α, which is one of the two catalytic isoforms of protein kinase CK2, is required for cell viability and plays an important role in cell proliferation and differentiation. While much is known on CK2 in the context of disease states, particularly cancer, its critical role in non-cancerous cell growth has not been extensively investigated. METHODS: In the present study, we have employed a cell line derived from rat heart with inducible down-regulation of CK2α and CK2α-knockout mouse tissue to identify CK2-mediated molecular mechanisms regulating cell growth. For this, we have performed Incucyte® live-cell analysis and applied flow cytometry, western blot, immunoprecipitation, immunohistochemistry, RT-qPCR and luciferase-based methods. RESULTS: Here, we show that lack of CK2α results in significantly delayed cell cycle progression through G1, inhibition of cyclin E-CDK2 complex, decreased phosphorylation of Rb protein at S795, and inactivation of E2F transcription factor. These events are accompanied by nuclear accumulation and up-regulation of the cyclin-dependent kinase inhibitor p27KIP1 in cells and CK2α-knockout mouse tissues. We found that increased levels of p27KIP1 are mainly attributable to post-translational modifications, namely phosphorylation at S10 and T197 amino acid residues catalyzed by Dyrk1B and AMPK, respectively, as silencing of FoxO3A transcription factor, which activates CDKN1B the gene coding for p27KIP1, does not result in markedly decreased expression levels of the corresponding protein. Interestingly, simultaneous silencing of CK2α and p27KIP1 significantly impairs cell cycle progression without increasing cell death. CONCLUSION: Taken together, our study sheds light on the molecular mechanisms controlling cell cycle progression through G1 phase when myoblasts proliferation potential is impaired by CK2α depletion. Our results suggest that elevated levels of p27KIP1, which follows CK2α depletion, contribute to delay the G1-to-S phase transition. Effects seen when p27KIP1 is down-regulated are independent of CK2α and reflect the protective role exerted by p27KIP1 under unfavorable cell growth conditions.


Assuntos
Caseína Quinase II/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Mioblastos/metabolismo , Regulação para Cima , Animais , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27/genética , Fase G1 , Ratos , Fase S
8.
Cell Mol Life Sci ; 76(1): 193-207, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30317528

RESUMO

The posttranslational modification (PTM) of tubulin subunits is important for the physiological functions of the microtubule (MT) cytoskeleton. Although major advances have been made in the identification of enzymes carrying out MT-PTMs, little knowledge is available on how intercellular signaling molecules and their associated pathways regulate MT-PTM-dependent processes inside signal-receiving cells. Here we show that Hedgehog (Hh) signaling, a paradigmatic intercellular signaling system, affects the MT acetylation state in mammalian cells. Mechanistically, Hh pathway activity increases the levels of the MT-associated DYRK1B kinase, resulting in the inhibition of GSK3ß through phosphorylation of Serine 9 and the subsequent suppression of HDAC6 enzyme activity. Since HDAC6 represents a major tubulin deacetylase, its inhibition increases the levels of acetylated MTs. Through the activation of DYRK1B, Hh signaling facilitates MT-dependent processes such as intracellular mitochondrial transport, mesenchymal cell polarization or directed cell migration. Taken together, we provide evidence that intercellular communication through Hh signals can regulate the MT cytoskeleton and contribute to MT-dependent processes by affecting the level of tubulin acetylation.


Assuntos
Proteínas Hedgehog/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Acetilação , Animais , Movimento Celular , Polaridade Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Tubulina (Proteína)/metabolismo , Quinases Dyrk
9.
J Cell Physiol ; 233(5): 4166-4182, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29030970

RESUMO

GAS1 is a pleiotropic protein that has been investigated because of its ability to induce cell proliferation, cell arrest, and apoptosis, depending on the cellular or the physiological context in which it is expressed. At this point, we have information about the molecular mechanisms by which GAS1 induces proliferation and apoptosis; but very few studies have been focused on elucidating the mechanisms by which GAS1 induces cell arrest. With the aim of expanding our knowledge on this subject, we first focused our research on finding proteins that were preferentially expressed in cells arrested by serum deprivation. By using a proteomics approach and mass spectrometry analysis, we identified 17 proteins in the 2-DE protein profile of serum deprived NIH3T3 cells. Among them, Annexin A1 (Anxa1), Annexin A2 (Anxa2), dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B), and Eukaryotic translation initiation factor 3, F (eIf3f) were upregulated at transcriptional the level in proliferative NIH3T3 cells. Moreover, we demonstrated that Anxa1, Anxa2, and Dyrk1b are upregulated at both the transcriptional and translational levels by the overexpression of GAS1. Thus, our results suggest that the upregulation of Anxa1, Anxa2, and Dyrk1b could be related to the ability of GAS1 to induce cell arrest and maintain cell viability. Finally, we provided further evidence showing that GAS1 through Dyrk 1B leads not only to the arrest of NIH3T3 cells but also maintains cell viability.


Assuntos
Anexina A1/genética , Anexina A2/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Fator de Iniciação 3 em Eucariotos/genética , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Células NIH 3T3 , Ativação Transcricional , Quinases Dyrk
10.
Cell Mol Life Sci ; 73(4): 883-900, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26346493

RESUMO

The dual-specificity tyrosine-phosphorylation-regulated kinase, DYRK1B, is expressed de novo during myogenesis, amplified or mutated in certain cancers and mutated in familial cases of metabolic syndrome. DYRK1B is activated by cis auto-phosphorylation on tyrosine-273 (Y273) within the activation loop during translation but few other DYRK1B phosphorylation sites have been characterised to date. Here, we demonstrate that DYRK1B also undergoes trans-autophosphorylation on serine-421 (S421) in vitro and in cells and that this site contributes to DYRK1B kinase activity. Whilst a DYRK1B(S421A) mutant was completely defective for p-S421 in cells, DYRK1B inhibitors caused only a partial loss of p-S421 suggesting the existence of an additional kinase that could also phosphorylate DYRK1B S421. Indeed, a catalytically inactive DYRK1B(D239A) mutant exhibited very low levels of p-S421 in cells but this was increased by KRAS(G12V). In addition, selective activation of the RAF-MEK1/2-ERK1/2 signalling pathway rapidly increased p-S421 in cells whereas activation of the stress kinases JNK or p38 could not. S421 resides within a Ser-Pro phosphoacceptor motif that is typical for ERK1/2 and recombinant ERK2 phosphorylated DYRK1B at S421 in vitro. Our results show that DYRK1B is a novel ERK2 substrate, uncovering new links between two kinases involved in cell fate decisions. Finally, we show that DYRK1B mutants that have recently been described in cancer and metabolic syndrome exhibit normal or reduced intrinsic kinase activity.


Assuntos
Síndrome Metabólica/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Células HEK293 , Humanos , Síndrome Metabólica/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neoplasias/metabolismo , Fosforilação , Mutação Puntual , Quinases Dyrk
11.
Tumour Biol ; 37(1): 685-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26242260

RESUMO

Ovarian cancer is the most deadly gynecological cancer. The first line in treatment is platinum-based drugs. However, most patients suffer from tumor recurrence, characterized by resistance to cisplatin. A plausible approach to address the tumor resistance is to co-administer the chemotherapeutic agents along with natural products to offer a synergistic effect and optimize the dosage regimen. Cucurbitacin B is a natural product and displays antitumor activity against a wide array of cancer cell lines. The aim of this work is to determine the antitumor activity against ovarian cancer cell line (A2780) and possible sensitization activity on cisplatin-resistant cell line (A2780CP) in 2D and 3D culture model. 3D spheroids were generated from A2780CP cell line. A2780, A2780CP, and the spheroids were treated with cucurbitacin B, cisplatin alone, or pretreated with cucurbitacin B followed by cisplatin. The viability, cell cycle, and apoptosis were analyzed. Level of ROS and total glutathione was measured. In this study, cucurbitacin B showed cytotoxicity against the ovarian cancer cell lines, and pretreatment of A2780CP cells leads to a significant increase in the cytotoxicity of cisplatin. The mechanism behind the sensitization effect was dependent in part on the depletion of the total glutathione, an increase in ROS through a decrease in the level of dual-specificity tyrosine-regulated kinase (Dyrk1B), decrease in pERK1/2 and pSTAT3 level. The viability of spheroids treated with a combination of cisplatin and cucurbitacin B were significantly decreased. The resulting data shows that cucurbitacin B is a promising chemosensitizer for the cisplatin-resistant ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos , Concentração Inibidora 50 , Transdução de Sinais/efeitos dos fármacos
12.
J Hepatol ; 60(1): 30-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23978712

RESUMO

BACKGROUND & AIMS: HCV relies on host lipid metabolism to complete its life cycle and HCV core is crucial to this interaction. Liver secreted ANGPTL-3 is an LXR- and HNF-1α-regulated protein, which plays a key role in lipid metabolism by increasing plasma lipids via inhibition of lipase enzymes. Here we aimed to investigate the modulation of ANGPTL-3 by HCV core and identify the molecular mechanisms involved. METHODS: qRT-PCR and ELISA were used to assess ANGPTL-3 mRNA and protein levels in HCV patients, the JFH-1 infectious system and liver cell lines. Transfections, chromatin immunoprecipitation and immunofluorescence delineated parts of the molecular mechanisms implicated in the core-mediated regulation of ANGPTL-3 gene expression. RESULTS: ANGPTL-3 gene expression was decreased in HCV-infected patients and the JFH-1 infectious system. mRNA and promoter activity levels were down-regulated by core. The response was lost when an HNF-1α element in ANGPTL-3 promoter was mutated, while loss of HNF-1α DNA binding to this site was recorded in the presence of HCV core. HNF-1α mRNA and protein levels were not altered by core. However, trafficking between nucleus and cytoplasm was observed and then blocked by an inhibitor of the HNF-1α-specific kinase Mirk/Dyrk1B. Transactivation of LXR/RXR signalling could not restore core-mediated down-regulation of ANGPTL-3 promoter activity. CONCLUSIONS: ANGPTL-3 is negatively regulated by HCV in vivo and in vitro. HCV core represses ANGPTL-3 expression through loss of HNF-1α binding activity and blockage of LXR/RXR transactivation. The putative ensuing increase in serum lipid clearance and uptake by the liver may sustain HCV virus replication and persistence.


Assuntos
Angiopoietinas/genética , Hepacivirus/patogenicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Adulto , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , DNA/metabolismo , Regulação para Baixo , Feminino , Humanos , Receptores X do Fígado , Masculino , Pessoa de Meia-Idade , Receptores Nucleares Órfãos/fisiologia , Regiões Promotoras Genéticas , Receptores X de Retinoides/fisiologia
13.
Radiother Oncol ; 190: 110039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040123

RESUMO

BACKGROUND: Cancer cell survival under stress conditions is a prerequisite for the development of treatment resistance. The survival kinase DYRK1B is a key regulator of stress survival pathways and might thereby also contribute to radiation resistance. Here we investigate the strategy of targeting DYRK1B in combination with ionizing radiation (IR) to enhance tumor cell killing under stress conditions. METHODS: DYRK1B expression, ROS formation and DNA damage were investigated under serum-starvation (0.1% FBS), hypoxia (0.2%, 1% O2) and IR. The combined treatment modality of IR and DYRK1B inhibition was investigated in 2D and in spheroids derived from the colorectal cancer cell line SW620, and in primary patient-derived colorectal carcinoma (CRC) organoids. RESULTS: Expression of DYRK1B was upregulated under starvation and hypoxia, but not in response to IR. The small molecule DYRK1B inhibitor AZ191 and shRNA-mediated DYRK1B knockdown significantly reduced proliferative activity and clonogenicity of SW620 tumor cells alone and in combination with IR under serum-starved conditions, which correlated with increased ROS levels and DNA damage. Furthermore, AZ191 successfully targeted the hypoxic core of tumor spheroids while IR preferentially targeted normoxic cells in the rim of the spheroids. A combined treatment effect was also observed in CRC-organoids but not in healthy tissue-derived organoids. CONCLUSION: Combined treatment with the DYRK1B inhibitor AZ191 and IR resulted in (supra-) additive tumor cell killing in colorectal tumor cell systems and in primary CRC organoids. Mechanistic investigations support the rational to target the stress-enhanced survival kinase DYRK1B in combination with irradiation to overcome hypoxia- and starvation-induced treatment resistances.


Assuntos
Neoplasias , Proteínas Tirosina Quinases , Humanos , Linhagem Celular Tumoral , Quinases Dyrk , Hipóxia , Proteínas Tirosina Quinases/genética , Espécies Reativas de Oxigênio
14.
JCEM Case Rep ; 2(8): luae120, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108603

RESUMO

Age is no longer the most important differentiating feature between type 1 and type 2 diabetes, as obesity and metabolic syndrome are on the rise in the pediatric population. Here we present a case of a 30-year-old male individual initially diagnosed with uncontrolled type 1 diabetes mellitus (T1DM) since the age of 15, and treatment with high insulin doses has been unsuccessful. He was later identified as having abdominal obesity-metabolic syndrome 3 (AOMS3) based on strong family history and the presence of insulin resistance features. AOMS3 is characterized by early-onset coronary artery disease, central obesity, hypertension, and diabetes. Early detection of this condition is crucial to implement timely interventions and preventing the onset of complications.

15.
Pharmaceutics ; 16(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675189

RESUMO

During the last years, there has been an increased effort in the discovery of selective and potent kinase inhibitors for targeted cancer therapy. Kinase inhibitors exhibit less toxicity compared to conventional chemotherapy, and several have entered the market. Mirk/Dyrk1B kinase is a promising pharmacological target in cancer since it is overexpressed in many tumors, and its overexpression is correlated with patients' poor prognosis. Mirk/Dyrk1B acts as a negative cell cycle regulator, maintaining the survival of quiescent cancer cells and conferring their resistance to chemotherapies. Many studies have demonstrated the valuable therapeutic effect of Mirk/Dyrk1B inhibitors in cancer cell lines, mouse xenografts, and patient-derived 3D-organoids, providing a perspective for entering clinical trials. Since the majority of Mirk/Dyrk1B inhibitors target the highly conserved ATP-binding site, they exhibit off-target effects with other kinases, especially with the highly similar Dyrk1A. In this review, apart from summarizing the data establishing Dyrk1B as a therapeutic target in cancer, we highlight the most potent Mirk/Dyrk1B inhibitors recently reported. We also discuss the limitations and perspectives for the structure-based design of Mirk/Dyrk1B potent and highly selective inhibitors based on the accumulated structural data of Dyrk1A and the recent crystal structure of Dyrk1B with AZ191 inhibitor.

16.
Bioorg Med Chem Lett ; 23(24): 6610-5, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24239188

RESUMO

DYRK1B is a kinase over-expressed in certain cancer cells (including colon, ovarian, pancreatic, etc.). Recent publications have demonstrated inhibition of DYRK1B could be an attractive target for cancer therapy. From a data-mining effort, the team has discovered analogues of pyrido[2,3-d]pyrimidines as potent enantio-selective inhibitors of DYRK1B. Cells treated with a tool compound from this series showed the same cellular effects as down regulation of DYRK1B with siRNA. Such effects are consistent with the proposed mechanism of action. Progress of the SAR study is presented.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Meia-Vida , Humanos , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Quinases Dyrk
17.
Mech Ageing Dev ; 213: 111836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37301518

RESUMO

Aging is the major risk factor for chronic disease development. Cellular senescence is a key mechanism that triggers or contributes to age-related phenotypes and pathologies. The endothelium, a single layer of cells lining the inner surface of a blood vessel, is a critical interface between blood and all tissues. Many studies report a link between endothelial cell senescence, inflammation, and diabetic vascular diseases. Here we identify, using combined advanced AI and machine learning, the Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1B (DYRK1B) protein as a possible senolytic target for senescent endothelial cells. We demonstrate that upon induction of senescence in vitro DYRK1B expression is increased in endothelial cells and localized at adherens junctions where it impairs their proper organization and functions. DYRK1B knock-down or inhibition restores endothelial barrier properties and collective behavior. DYRK1B is therefore a possible target to counteract diabetes-associated vascular diseases linked to endothelial cell senescence.


Assuntos
Senoterapia , Doenças Vasculares , Humanos , Células Endoteliais/metabolismo , Fosforilação , Doenças Vasculares/metabolismo
18.
Cell Signal ; 90: 110186, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34752933

RESUMO

Rare gain of function mutations in the gene encoding Dyrk1b, a key regulator of skeletal muscle differentiation, have been associated with sarcopenic obesity (SO) and metabolic syndrome (MetS) in humans. So far, the global gene networks regulated by Dyrk1b during myofiber differentiation have remained elusive. Here, we have performed untargeted proteomics to determine Dyrk1b-dependent gene-network in differentiated C2C12 myofibers. This analysis led to identification of translational inhibitor, 4e-bp1 as a post-transcriptional target of Dyrk1b in C2C12 cells. Accordingly, CRISPR/Cas9 mediated knockout of Dyrk1b in zebrafish identified 4e-bp1 as a downstream target of Dyrk1b in-vivo. The Dyrk1b knockout zebrafish embryos exhibited markedly reduced myosin heavy chain 1 expression in poorly developed myotomes and were embryonic lethal. Using knockdown and overexpression approaches in C2C12 cells, we found that 4e-bp1 enhances autophagy and mediates the effects of Dyrk1b on skeletal muscle differentiation. Dyrk1bR102C, the human sarcopenic obesity-associated mutation impaired muscle differentiation via excessive activation of 4e-bp1/autophagy axis in C2C12 cells. Strikingly, the defective muscle differentiation in Dyrk1bR102C cells was rescued by reduction of autophagic flux. The identification of Dyrk1b-4e-bp1-autophagy axis provides significant insight into pathways that are relevant to human skeletal muscle development and disorders.


Assuntos
Autofagia , Fosfoproteínas , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Peixe-Zebra , Animais , Autofagia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra , Quinases Dyrk
19.
Anticancer Res ; 42(1): 589-598, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34969768

RESUMO

BACKGROUND/AIM: We previously identified KS40008 (4-(3-(4-hydroxyphenyl)-1H-pyrazolo[3,4-b]pyridin-5-yl)benzene-1,2-diol), a novel inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase family (DYRK) 1A/B, which exhibited high enzymatic activity and cell proliferation-inhibitory effects in colorectal cancer (CRC) cell lines. In the present study, we aimed to elucidate the antitumor mechanisms of KS40008. MATERIALS AND METHODS: To assess the cytotoxicity of KS40008, we utilized a human cell line and organoid model and performed a CCK-8 assay and real-time cell analysis. Mitochondrial function was determined through mitochondrial staining, mito-stress test, and glycolysis test. In addition, we investigated the mechanisms of cancer cell death induced by KS40008 through immunoblotting, real-time quantitative polymerase chain reaction, reactive oxygen species staining, and immunofluorescence staining. RESULTS: KS40008 exhibited significant cytotoxicity in CRC and non-CRC cell lines, and organoid models compared to 5-fluorouracil, a conventional chemotherapeutic drug. Moreover, KS40008-induced inhibition of DYRK1A/B led to mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagic cancer cell death. CONCLUSION: KS40008 exerts antitumor activity through the inhibition of DYRK1A/B. Here, we demonstrated a mechanism by which KS40008 affects endoplasmic reticulum stress-mediated autophagy through the induction of mitochondrial stress, leading to cytotoxicity in CRC.


Assuntos
Morte Celular Autofágica/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Fluoruracila/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Dyrk
20.
Metab Syndr Relat Disord ; 20(10): 576-583, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36318489

RESUMO

Background: Metabolic syndrome (MetS) is a group of signs and symptoms that are associated with a higher risk of type 2 diabetes mellitus and cardiovascular diseases. The major risk factor for developing MetS is abdominal obesity, which is caused by an increase in adipocyte size or quantity. Increased adipocyte quantity is a result of differentiation of stem cells into adipose tissue. Numerous studies have investigated the expression of key transcription factors, including PPARG and CEBPB during adipocyte differentiation in murine cells such as 3T3-L1 cell lines. To better understand the expression changes during the process of fat accumulation in adipose-derived stem cells (ASCs), we compared the expression of DYRK1B, PPARG, and ẟB in ASCs between the patient (harboring DYRK1B R102C) and control (healthy individuals) groups. Methods: Gene expression was evaluated on the eighth day before induction and days 1, 5, and 15 postinduction. The pluripotent capacity of ASCs and the potential for differentiation into adipocytes were confirmed by flow cytometry analysis of surface markers (CD34, CD44, CD105, and CD90), and Oil Red O staining, respectively. The Expression of DYRK1B, PPARG, and CEBPB were assessed by real-time-polymerase chain reaction in patients and normal individuals. The effects of AZ191, a potent small molecule inhibitor on DYRK1B and CEBPB expression in patients' samples were studied. Result: The expression of DYRK1B kinase and transcription factors (CEBPB and PPARG) are higher in ASCs harboring DYRK1B R102C compared with noncarriers on days 5 and 15 during adipocyte differentiation. These proteins may be helpful to elucidate the mechanisms underlying obesity and obesity-related disorders like MetS. Furthermore, the new compound AZ191 exhibited inhibitory activity toward DYRK1B and CEBPB. We suggest that AZ191 may be helpful in defining the potential roles of DYRK1B and CEBPB in adipogenesis.


Assuntos
Adipogenia , Diabetes Mellitus Tipo 2 , Animais , Humanos , Camundongos , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , PPAR gama/farmacologia , Células-Tronco/metabolismo , Fatores de Transcrição , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA