Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Dis ; 146: 105135, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049316

RESUMO

Dystonia 16 (DYT16) is caused by mutations in PACT, the protein activator of interferon-induced double-stranded RNA-activated protein kinase (PKR). PKR regulates the integrated stress response (ISR) via phosphorylation of the translation initiation factor eIF2α. This post-translational modification attenuates general protein synthesis while concomitantly triggering enhanced translation of a few specific transcripts leading either to recovery and homeostasis or cellular apoptosis depending on the intensity and duration of stress signals. PKR plays a regulatory role in determining the cellular response to viral infections, oxidative stress, endoplasmic reticulum (ER) stress, and growth factor deprivation. In the absence of stress, both PACT and PKR are bound by their inhibitor transactivation RNA-binding protein (TRBP) thereby keeping PKR inactive. Under conditions of cellular stress these inhibitory interactions dissociate facilitating PACT-PACT interactions critical for PKR activation. While both PACT-TRBP and PKR-TRBP interactions are pro-survival, PACT-PACT and PACT-PKR interactions are pro-apoptotic. In this study we evaluate if five DYT16 substitution mutations alter PKR activation and ISR. Our results indicate that the mutant DYT16 proteins show stronger PACT-PACT interactions and enhanced PKR activation. In DYT16 patient derived lymphoblasts the enhanced PACT-PKR interactions and heightened PKR activation leads to a dysregulation of ISR and increased apoptosis. More importantly, this enhanced sensitivity to ER stress can be rescued by luteolin, which disrupts PACT-PKR interactions. Our results not only demonstrate the impact of DYT16 mutations on regulation of ISR and DYT16 etiology but indicate that therapeutic interventions could be possible after a further evaluation of such strategies.


Assuntos
Distúrbios Distônicos/genética , Fator de Iniciação 2 em Eucariotos/genética , Mutação de Sentido Incorreto/genética , Processamento de Proteína Pós-Traducional/fisiologia , Apoptose/genética , Apoptose/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Ligação Proteica , Processamento de Proteína Pós-Traducional/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , eIF-2 Quinase/metabolismo
2.
J Cell Biochem ; 120(11): 19004-19018, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246344

RESUMO

Protein Activator (PACT) activates the interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) in response to stress signals. Oxidative stress and endoplasmic reticulum (ER) stress causes PACT-mediated PKR activation, which leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. A dominantly inherited form of early-onset dystonia 16 (DYT16) has been identified to arise due to a frameshift (FS) mutation in PACT. To examine the effect of the resulting truncated mutant PACT protein on the PKR pathway, we examined the biochemical properties of the mutant protein and its effect on mammalian cells. Our results indicate that the FS mutant protein loses its ability to bind dsRNA as well as its ability to interact with PKR while surprisingly retaining the ability to interact with PACT and PKR-inhibitory protein TRBP. The truncated FS mutant protein, when expressed as a fusion protein with a N-terminal fluorescent mCherry tag aggregates in mammalian cells to induce apoptosis via activation of caspases both in a PKR- and PACT-dependent as well as independent manner. Our results indicate that interaction of FS mutant protein with PKR inhibitor TRBP can dissociate PACT from the TRBP-PACT complex resulting in PKR activation and consequent apoptosis. These findings are relevant to diseases resulting from protein aggregation especially since the PKR activation is a characteristic of several neurodegenerative conditions.


Assuntos
Apoptose , Caspases , Distúrbios Distônicos , Mutação da Fase de Leitura , Proteínas de Ligação a RNA , Animais , Caspases/genética , Caspases/metabolismo , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/patologia , Ativação Enzimática , Células HeLa , Humanos , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/genética
3.
Mov Disord ; 29(12): 1504-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25142429

RESUMO

Recessive DYT16 dystonia associated with mutations in PRKRA has until now been reported only in seven Brazilian patients. The aim of this study was to elucidate the genetic cause underlying disease in a Polish family with autosomal-recessive, early-onset generalized dystonia and slight parkinsonism, and to explore further the role of PRKRA in a dystonia series of European ancestry. We employed whole-exome sequencing in two affected siblings of the Polish family and filtered for rare homozygous and compound heterozygous variants shared by both exomes. Validation of the identified variants as well as homozygosity screening and copy number variation analysis was carried out in the two affected individuals and their healthy siblings. PRKRA was analyzed in 339 German patients with various forms of dystonia and 376 population-based controls by direct sequencing or high-resolution melting. The previously described homozygous p.Pro222Leu mutation in PRKRA was found to segregate with the disease in the studied family, contained in a 1.2 Mb homozygous region identical by state with all Brazilian patients in chromosome 2q31.2. The clinical presentation with young-onset, progressive generalized dystonia and mild parkinsonism resembled the phenotype of the original DYT16 cases. PRKRA mutational screening in additional dystonia samples revealed three novel heterozygous changes (p.Thr34Ser, p.Asn102Ser, c.-14A>G), each in a single subject with focal/segmental dystonia. Our study provides the first independent replication of the DYT16 locus at 2q31.2 and strongly confirms the causal contribution of the PRKRA gene to DYT16. Our data suggest worldwide involvement of PRKRA in dystonia.


Assuntos
Variações do Número de Cópias de DNA/genética , Distúrbios Distônicos/genética , Exoma/genética , Saúde da Família , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Criança , Cromossomos Humanos Par 2/genética , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Índice de Gravidade de Doença , Adulto Jovem
4.
Front Pharmacol ; 14: 1118725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874028

RESUMO

DYT-PRKRA is a movement disorder caused by mutations in the PRKRA gene, which encodes for PACT, the protein activator of interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR. PACT brings about PKR's catalytic activation by a direct binding in response to stress signals and activated PKR phosphorylates the translation initiation factor eIF2α. Phosphorylation of eIF2α is the central regulatory event that is part of the integrated stress response (ISR), an evolutionarily conserved intracellular signaling network essential for adapting to environmental stresses to maintain healthy cells. A dysregulation of either the level or the duration of eIF2α phosphorylation in response to stress signals causes the normally pro-survival ISR to become pro-apoptotic. Our research has established that the PRKRA mutations reported to cause DYT-PRKRA lead to enhanced PACT-PKR interactions causing a dysregulation of ISR and an increased sensitivity to apoptosis. We have previously identified luteolin, a plant flavonoid, as an inhibitor of the PACT-PKR interaction using high-throughput screening of chemical libraries. Our results presented in this study indicate that luteolin is markedly effective in disrupting the pathological PACT-PKR interactions to protect DYT-PRKRA cells against apoptosis, thus suggesting a therapeutic option for using luteolin to treat DYT-PRKRA and possibly other diseases resulting from enhanced PACT-PKR interactions.

5.
Biomolecules ; 12(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625640

RESUMO

DYT-PRKRA (dystonia 16 or DYT-PRKRA) is caused by mutations in the PRKRA gene that encodes PACT, the protein activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR). PACT participates in several cellular pathways, of which its role as a PKR activator protein during integrated stress response (ISR) is the best characterized. Previously, we have established that the DYT-PRKRA mutations cause enhanced activation of PKR during ISR to sensitize DYT-PRKRA cells to apoptosis. In this study, we evaluate if the most prevalent substitution mutation reported in DYT-PRKRA patients alters PACT's functional role in induction of type I IFNs via the retinoic acid-inducible gene I (RIG-I) signaling. Our results indicate that the P222L mutation augments PACT's ability to induce IFN ß in response to dsRNA and the basal expression of IFN ß and IFN-stimulated genes (ISGs) is higher in DYT-PRKRA patient cells compared to cells from the unaffected controls. Additionally, IFN ß and ISGs are also induced at higher levels in DYT-PRKRA cells in response to dsRNA. These results offer a new avenue for investigations directed towards understanding the underlying molecular pathomechanisms in DYT-PRKRA.


Assuntos
Distúrbios Distônicos , Interferon Tipo I , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Mutação , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
7.
Parkinsonism Relat Disord ; 48: 93-96, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29279192

RESUMO

INTRODUCTION: DYT-PRKRA (DYT16) is considered a rare cause of dystonia-parkinsonism. The significance of this gene as a cause of dystonia and its phenotypical characterization must be determined in larger cohorts. We aimed to investigate the role of PRKRA in patients with dystonia. METHODS: We sequenced PRKRA in 153 unrelated Brazilian patients with idiopathic dystonia. The frequency of novel missense variants was investigated in healthy Brazilian controls and in public databases. Homozygosity in the PRKRA region was assessed through polymorphic markers. RESULTS: PRKRA variants were identified in seven probands with isolated dystonia, including a novel c.C795A variant in compound heterozygosity with the previously described c.C665T variant. Heterozygosity in the gene region was observed in two probands who were homozygous for c.C665T, indicating that this mutation originated from independent events, suggesting a hotspot. CONCLUSION: PRKRA is not an unusual cause of idiopathic dystonia. In this cohort, it was responsible for 4.5% of the total of cases (4.9% of the isolated dystonia cases). The most common phenotype was early-onset isolated focal dystonia followed by generalization, parkinsonism was not observed. This is first report of PRKRA causing adulthood-onset dystonia. Screenings of large cohorts are recommended to investigate the role of this gene in isolated dystonia, as well as in dystonia-parkinsonism cases worldwide.


Assuntos
Distonia/epidemiologia , Distonia/genética , Mutação/genética , Proteínas de Ligação a RNA/genética , Adulto , Idade de Início , Brasil , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
8.
Front Biol (Beijing) ; 9(5): 382-388, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25554729

RESUMO

PACT (Protein kinase, interferon-inducible double stranded RNA dependent activator) and its murine ortholog RAX (PKR-associated protein X) were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase (PKR). Endogenous PACT/RAX activates PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. PACT/RAX heterodimerized with PKR and activated it with its third motif in the absence of dsRNA. The activation of PKR leads to enhanced eIF2α phosphorylation followed by apoptosis or inhibition of growth. Besides the role of activating PKR, PACT is associated with a ~500 kDa complex that contains Dicer, hAgo2, and TRBP (TAR RNA binding protein) and it associates with Dicer to facilitate the production of small interfering RNA. PACT/RAX plays an important role in diverse physiological and pathological processes. Pact-/- mice exhibit notable developmental abnormalities including microtia, with craniofacial ear, and hearing defects. Pact-/- mice had smaller body sizes and fertility defects, both of which were caused by defective pituitary functions. It was found that dRAX disrupted fly embryos homozygous, displayed highly abnormal commissural axon structure of the central nervous system, and 70% of the flies homozygous for the mutant allele died prior to adulthood. Using high density SNP genotyping arrays, it was found that a mutation in PRKRA (the PACT/RAX gene) is the causative genetic mutation in DYT16, a novel autosomal recessive dystonia-parkinsonism syndrome in Brazilian patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA