Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Curr Issues Mol Biol ; 46(7): 7686-7701, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39057096

RESUMO

The importance of decellularized extracellular matrix (dECM) as a natural biomaterial in tissue engineering and regenerative medicine is rapidly growing. The core objective of the decellularization process is to eliminate cellular components while maximizing the preservation of the ECM's primary structure and components. Establishing a rapid, effective, and minimally destructive decellularization technique is essential for obtaining high-quality dECM to construct regenerative organs. This study focused on human umbilical cord tissue, designing different reagent combinations for decellularization protocols while maintaining a consistent processing time. The impact of these protocols on the decellularization efficiency of human umbilical cord tissue was evaluated. The results suggested that the composite decellularization strategy utilizing trypsin/EDTA + Triton X-100 + sodium deoxycholate was the optimal approach in this study for preparing decellularized human umbilical cord dECM. After 5 h of decellularization treatment, most cellular components were eliminated, confirmed through dsDNA quantitative detection, hematoxylin and eosin (HE) staining, and DAPI staining. Meanwhile, Masson staining, periodic acid-silver methenamine (PASM) staining, periodic acid-Schiff (PAS) staining, and immunofluorescent tissue section staining results revealed that the decellularized scaffold retained extracellular matrix components, including collagen and glycosaminoglycans (GAGs). Compared to native umbilical cord tissue, electron microscopy results demonstrated that the microstructure of the extracellular matrix was well preserved after decellularization. Furthermore, Fourier-transform infrared spectroscopy (FTIR) findings indicated that the decellularization process successfully retained the main functional group structures of extracellular matrix (ECM) components. The quantitative analysis of collagen, elastin, and GAG content validated the advantages of this decellularization process in preserving and purifying ECM components. Additionally, it was confirmed that this decellularized matrix exhibited no cytotoxicity in vitro. This study achieved short-term decellularization preparation for umbilical cord tissue through a combined decellularization strategy.

2.
Biochem Biophys Res Commun ; 736: 150511, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39128269

RESUMO

Mesenchymal stromal/stem cells (MSCs) and their secretome are known to exert beneficial effects in many pathological states. However, MSCs therapeutic properties can be reduced due to unsuitable in vitro maintenance conditions. Standard culture protocols neglect the fact that MSCs exist in vivo in the closest connection with the extracellular matrix (ECM), the complex protein network providing an instructive microenvironment. We found recently that conditioned medium from human endometrial MSCs cultured on cell-derived decellularized extracellular matrix (CM-dECM) is dramatically enriched in a number of paracrine factors such as GM-CSF, FGF-2, HGF, MMP-1, MCP-1, IL-6, IL-8, CXCL-1, -2, -5, -6 (Ushakov et al., 2024). Given that several upregulated molecules belong to myokines that are known to participate in skeletal muscle regeneration, we hypothesized that CM-dECM may promote restoration of damaged muscle tissue. Here, we found that CM-dECM injections into barium chloride-injured murine m. tibialis anterior caused myofiber hypertrophy and promoted angiogenesis. Besides, CM-dECM significantly contributed to progression of murine C2C12 myoblasts cell cycle suggesting that muscle repair in vivo may be connected with stimulation of resident myoblasts proliferation. In this study, a role for secretome of endometrial MSCs cultured on dECM in injured murine skeletal muscle regeneration was outlined first. Our findings demonstrate that culture on dECM may be considered as a novel preconditioning approach enhancing MSCs therapeutic potential.

3.
Small ; 20(23): e2308815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161254

RESUMO

Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.


Assuntos
Encéfalo , Diferenciação Celular , Matriz Extracelular , Laminina , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/química , Encéfalo/metabolismo , Animais , Neurônios/metabolismo , Doenças Neuroinflamatórias/metabolismo , Suínos , Astrócitos/metabolismo , Microglia/metabolismo , Inflamação/patologia
4.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736214

RESUMO

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Assuntos
Tecido Adiposo , Diferenciação Celular , Fibrina , Insulina , Células-Tronco , Humanos , Diferenciação Celular/efeitos dos fármacos , Fibrina/química , Fibrina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Insulina/metabolismo , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/metabolismo , Matriz Extracelular Descelularizada/farmacologia , Âmnio/citologia , Âmnio/metabolismo , Âmnio/química
5.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397096

RESUMO

The mesenchymal stromal/stem cells (MSCs) are known to secrete pleiotropic paracrine factors, contributing to tissue regeneration. This unique ability makes MSCs promising therapeutic tools for many diseases, including even those that were previously untreatable. Thus, the development of preconditioning approaches aimed at enhancing the paracrine function of MSCs attracts great interest. In the present work, we studied how the extracellular matrix, the essential part of the native tissue microenvironment, affects the secretory capacity of MSCs of various origins. The MSC-derived decellularized extracellular matrix (dECM), used as the cell culture substrate, triggered strong upregulation of FGF-2, MMP-1, HGF, GRO-α, GRO-ß, CXCL-5, CXCL-6, IL-6, IL-8, G-CSF and MCP-1. Functional in vitro tests revealed that conditioned media derived from MSCs cultured on dECM significantly improved 3T3 fibroblast and HaCaT keratinocyte scratch wound healing, stimulated THP-1 monocyte migration and promoted capillary-like HUVEC-based tube formation compared to conditioned media from MSCs grown on plastic. In addition, we found that FAK inhibition promoted dECM-induced upregulation of paracrine factors, suggesting that this kinase participates in the MSCs' paracrine response to dECM. Together, these findings demonstrate that dECM provides cues that considerably enhance the secretory function of MSCs. Thus, dECM usage as a cell culture substrate alone or in combination with a FAK inhibitor may be viewed as a novel MSC preconditioning technique.


Assuntos
Matriz Extracelular , Células-Tronco Mesenquimais , Humanos , Diferenciação Celular , Meios de Cultivo Condicionados/farmacologia , Técnicas de Cultura de Células , Fatores Imunológicos
6.
Cells Tissues Organs ; 212(1): 32-44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34933302

RESUMO

During fetal development, cardiomyocytes switch from glycolysis to oxidative metabolism to sustain the energy requirements of functional cells. State-of-the-art cardiac differentiation protocols yield phenotypically immature cardiomyocytes, and common methods to improve metabolic maturation require multistep protocols to induce maturation only after cardiac specification is completed. Here, we describe a maturation method using ventricle-derived decellularized extracellular matrix (dECM) that promoted early-stage metabolic maturation of cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs). Chemically and architecturally preserved particles (45-500 µm) of pig ventricular dECM were added to hiPSCs at the start of differentiation. At the end of our maturation protocol (day 15 of cardiac differentiation), we observed an intimate interaction between cardiomyocytes and dECM particles without impairment of cardiac differentiation efficiency (approx. 70% of cTNT+). Compared with control cells (those cultured without pig dECM), 15-day-old dECM-treated cardiomyocytes demonstrated increased expression of markers related to cardiac metabolic maturation, MAPK1, FOXO1, and FOXO3, and a switch from ITGA6 (the immature integrin isoform) to ITGA3 and ITGA7 (those present in adult cardiomyocytes). Electrical parameters and responsiveness to dobutamine also improved in pig ventricular dECM-treated cells. Extending the culture time to 30 days, we observed a switch from glucose to fatty acid metabolism, indicated by decreased glucose uptake and increased fatty acid consumption in cells cultured with dECM. Together, these data suggest that dECM contains endogenous cues that enable metabolic maturation of hiPSC-CMs at early stages of cardiac differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Adulto , Humanos , Animais , Suínos , Matriz Extracelular Descelularizada , Pós/metabolismo , Diferenciação Celular , Ácidos Graxos/metabolismo , Matriz Extracelular/metabolismo
7.
Artif Organs ; 47(5): 840-853, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36721957

RESUMO

BACKGROUND: Effective culture systems for attachment, migration, proliferation, and differentiation of spermatogonial stem cells (SSCs) can be a promising therapeutic modality for preserving male fertility. Decellularized extracellular matrix (ECM) from native testis tissue creates a local microenvironment for testicular cell culture. Furthermore, platelet-rich plasma (PRP) contains various growth factors for the proliferation and differentiation of SSCs. METHODS: In this study, human testicular cells were isolated and cultured for 4 weeks, and SSCs were characterized using immunocytochemistry (ICC) and flow cytometry. Human testicular tissue was decellularized (0.3% SDS, 1% Triton), and the efficiency of the decellularization process was confirmed by histological staining and DNA content analysis. SSCs were cultured on the human decellularized testicular matrix (DTM) for 4 weeks. The viability and the expression of differentiation genes were evaluated by MTT and real-time polymerase chain reaction (PCR), respectively. RESULTS: Histological evaluation and DNA content analysis showed that the components of ECM were preserved during decellularization. Our results showed that after 4 weeks of culture, the expression levels of BAX, BCL-2, PLZF, and SCP3 were unchanged, while the expression of PRM2 significantly increased in the cells cultured on DTM supplemented with PRP (ECM-PRP). In addition, the expression of GFRA1 was significantly decreased in the ECM group compared to the control and PRP groups. Furthermore, the MTT test indicated that viability was significantly enhanced in cells plated on DTM supplemented with PRP. CONCLUSION: Our study demonstrated that DTM supplemented with PRP can provide an effective culture system for the differentiation and viability of SSCs.


Assuntos
Plasma Rico em Plaquetas , Testículo , Humanos , Masculino , Diferenciação Celular , Células-Tronco , DNA
8.
Oral Dis ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498913

RESUMO

OBJECTIVE: To investigate the effects of key pathogenic genes involved in the development of jaw ameloblastoma (AB) and its associated extracellular matrix (ECM) on osteogenic differentiation in order to provide a theoretical foundation for future research into bone aggressiveness of AB. METHODS: The essential genes were identified by five AB patients for whole-exome sequencing and the microarray datasets GES38494 and GES132472. Moreover, the expression of key genes and their encoded proteins in AB tissues was explored. In addition, AB-derived the decellularized ECM (ABdECM) tissues were generated by the decellularization technique. Furthermore, the osteogenic development of periodontal ligament stem cells (PDLSCs) was mimicked by simulating the effects of the AB tumor microenvironment (TME). RESULTS: The AB essential genes including COL1A2, COL4A2, FBN1, and HPSE were discovered. Among them, the expression of HPSE was down-regulated, while that of COL1A2, COL4A2, and FBN1 was noticeably upregulated in AB compared with normal gingival tissues of the jaws. In vitro osteogenic differentiation of PDLSCs was suppressed by the ABdECM. CONCLUSIONS: Abnormal ECM proteins encoded by COL4A2, COL1A2, FBN1, and HPSE genes can cause disturbance in the ECM environment of AB and promote bone resorption.

9.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139310

RESUMO

The present challenge in dental pulp tissue engineering scaffold materials lies in the development of tissue-specific scaffolds that are conducive to an optimal regenerative microenvironment and capable of accommodating intricate root canal systems. This study utilized porcine dental pulp to derive the decellularized extracellular matrix (dECM) via appropriate decellularization protocols. The resultant dECM was dissolved in an acid pepsin solution to form dECM hydrogels. The analysis encompassed evaluating the microstructure and rheological properties of dECM hydrogels and evaluated their biological properties, including in vitro cell viability, proliferation, migration, tube formation, odontogenic, and neurogenic differentiation. Gelatin methacrylate (GelMA) hydrogel served as the control. Subsequently, hydrogels were injected into treated dentin matrix tubes and transplanted subcutaneously into nude mice to regenerate dental pulp tissue in vivo. The results showed that dECM hydrogels exhibited exceptional injectability and responsiveness to physiological temperature. It supported the survival, odontogenic, and neurogenic differentiation of dental pulp stem cells in a 3D culture setting. Moreover, it exhibited a superior ability to promote cell migration and angiogenesis compared to GelMA hydrogel in vitro. Additionally, the dECM hydrogel demonstrated the capability to regenerate pulp-like tissue with abundant blood vessels and a fully formed odontoblast-like cell layer in vivo. These findings highlight the potential of porcine dental pulp dECM hydrogel as a specialized scaffold material for dental pulp regeneration.


Assuntos
Matriz Extracelular Descelularizada , Hidrogéis , Camundongos , Animais , Suínos , Hidrogéis/farmacologia , Hidrogéis/química , Polpa Dentária , Camundongos Nus , Regeneração , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Matriz Extracelular
10.
Bull Exp Biol Med ; 175(4): 592-599, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37768453

RESUMO

The efficiency of bone tissue regeneration by decellularized tooth matrix, demineralized tooth matrix, and commercial xenograft Bio-Oss Spongiosa was compared on the model of a critical-size circular defect in the alveolar bone of the upper jaw of adult Wistar rats. The defect healing dynamics was assessed using histological, histomorphometrical, and immunohistochemical methods on days 30 and 60. In contrast to demineralized matrix and commercial xenograft, decellularized matrix induces the formation of the new bone tissue by day 60. Decellularized matrix can be considered as a biomaterial for cell-free tissue engineering for alveolar bone restoration in dentistry and maxillofacial surgery.

11.
J Nanobiotechnology ; 20(1): 25, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991615

RESUMO

BACKGROUND: The regeneration and repair of articular cartilage remains a major challenge for clinicians and scientists due to the poor intrinsic healing of this tissue. Since cartilage injuries are often clinically irregular, tissue-engineered scaffolds that can be easily molded to fill cartilage defects of any shape that fit tightly into the host cartilage are needed. METHOD: In this study, bone marrow mesenchymal stem cell (BMSC) affinity peptide sequence PFSSTKT (PFS)-modified chondrocyte extracellular matrix (ECM) particles combined with GelMA hydrogel were constructed. RESULTS: In vitro experiments showed that the pore size and porosity of the solid-supported composite scaffolds were appropriate and that the scaffolds provided a three-dimensional microenvironment supporting cell adhesion, proliferation and chondrogenic differentiation. In vitro experiments also showed that GelMA/ECM-PFS could regulate the migration of rabbit BMSCs. Two weeks after implantation in vivo, the GelMA/ECM-PFS functional scaffold system promoted the recruitment of endogenous mesenchymal stem cells from the defect site. GelMA/ECM-PFS achieved successful hyaline cartilage repair in rabbits in vivo, while the control treatment mostly resulted in fibrous tissue repair. CONCLUSION: This combination of endogenous cell recruitment and chondrogenesis is an ideal strategy for repairing irregular cartilage defects.


Assuntos
Condrogênese/efeitos dos fármacos , Matriz Extracelular Descelularizada , Hidrogéis , Oligopeptídeos , Alicerces Teciduais/química , Animais , Cartilagem Articular/citologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Coelhos , Engenharia Tecidual/métodos
12.
J Nanobiotechnology ; 20(1): 420, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123708

RESUMO

Intervertebral disc degeneration (IDD) is the pathological reason of back pain and the therapeutic approaches are still unsatisfactory. Recently, mesenchymal stem cell-derived small extracellular vesicles (EVs) have emerged as the novel regenerative method for IDD. In this study, we intensively investigated the therapeutic mechanism of small EVs, and found that vasorin protein enriched in EVs promoted the proliferation and extracellular matrix anabolism of nucleus pulposus cells via the Notch1 signaling pathway. Then, we fabricated a thermoresponsive gel which composed of Pluronic F127 and decellularized extracellular matrix (FEC) for the delivery and sustained release of EVs. Besides, ex vivo and in vivo results showed that EVs embedded in FEC (EVs@FEC) ameliorate the disc degeneration efficiently and achieve better therapeutic effects than one-off EVs delivery. Collectively, these findings deepen the understanding of EVs mechanism in treating intervertebral disc degeneration, and also illustrate the promising capacity of sustained EVs release system for intervertebral disc regeneration.


Assuntos
Vesículas Extracelulares , Degeneração do Disco Intervertebral , Células-Tronco Mesenquimais , Preparações de Ação Retardada/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Células-Tronco Mesenquimais/metabolismo , Poloxâmero
13.
Artif Organs ; 46(4): 549-567, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34855994

RESUMO

BACKGROUND: Decellularized extracellular matrixs (dECMs) derived from organs and tissues have emerged as a promising tool, as they encompass the characteristics of an ideal tissue scaffold: complex composition, vascular networks and unique tissue-specific architecture. Consequently, their use has propagated throughout tissue engineering and regenerative medicine. dECM can be easily obtained from various tissues/organs by appropriate decellularization protocolsand is entitled to provide necessary cues to cells homing. METHODS: In this review, we describe the decellularization and sterilization methods that are commonly used in recent research, the effects of these methods upon biologic scaffold material are discussed. Also, we summarize the recent developments of recellularization and vascularization techniques in regeneration medicine. Additionally, dECM preservation methods is mentioned, which provides the basis for the establishment of organ bank. RESULTS: Biomedical applications and the status of current research developments relating to dECM biomaterials are outlined, including transplantation in vivo, disease models and drug screening, organoid, 3D bioprinting, tissue reconstruction and rehabilitation and cell transplantation and culture. Finally, critical challenges and future developing technologies are discussed. CONCLUSIONS: With the development of tissue engineering and regenerative medicine, dECM will have broader applications in the field of biomedicine in the near future.


Assuntos
Bioimpressão , Engenharia Tecidual , Matriz Extracelular , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais
14.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361719

RESUMO

In the last few years, attempts to improve the regeneration of damaged tendons have been rising due to the growing demand. However, current treatments to restore the original performance of the tissue focus on the usage of grafts; although, actual grafts are deficient because they often cannot provide enough support for tissue regeneration, leading to additional complications. The beneficial effect of combining 3D bioprinting and dECM as a novel bioink biomaterial has recently been described. Tendon dECMs have been obtained by using either chemical, biological, or/and physical treatments. Although decellularization protocols are not yet standardized, recently, different protocols have been published. New therapeutic approaches embrace the use of dECM in bioinks for 3D bioprinting, as it has shown promising results in mimicking the composition and the structure of the tissue. However, major obstacles include the poor structural integrity and slow gelation properties of dECM bioinks. Moreover, printing parameters such as speed and temperature have to be optimized for each dECM bioink. Here, we show that dECM bioink for 3D bioprinting provides a promising approach for tendon regeneration for future clinical applications.


Assuntos
Bioimpressão , Bioimpressão/métodos , Matriz Extracelular Descelularizada , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Matriz Extracelular/química , Impressão Tridimensional , Tendões
15.
Molecules ; 27(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684380

RESUMO

Three-dimensional (3D) bioprinting is one of the most promising additive manufacturing technologies for fabricating various biomimetic architectures of tissues and organs. In this context, the bioink, a critical element for biofabrication, is a mixture of biomaterials and living cells used in 3D printing to create cell-laden structures. Recently, decellularized extracellular matrix (dECM)-based bioinks derived from natural tissues have garnered enormous attention from researchers due to their unique and complex biochemical properties. This review initially presents the details of the natural ECM and its role in cell growth and metabolism. Further, we briefly emphasize the commonly used decellularization treatment procedures and subsequent evaluations for the quality control of the dECM. In addition, we summarize some of the common bioink preparation strategies, the 3D bioprinting approaches, and the applicability of 3D-printed dECM bioinks to tissue engineering. Finally, we present some of the challenges in this field and the prospects for future development.


Assuntos
Bioimpressão , Bioimpressão/métodos , Matriz Extracelular Descelularizada , Matriz Extracelular/metabolismo , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
16.
FASEB J ; 34(1): 1652-1664, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914670

RESUMO

Conditions such as asthma and inflammatory bowel disease are characterized by aberrant smooth muscle contraction. It has proven difficult to develop human cell-based models that mimic acute muscle contraction in 2D in vitro cultures due to the nonphysiological chemical and mechanical properties of lab plastics that do not allow for muscle cell contraction. To enhance the relevance of in vitro models for human disease, we describe how functional 3D smooth muscle tissue that exhibits physiological and pharmacologically relevant acute contraction and relaxation responses can be reproducibly fabricated using a unique microfluidic 3D bioprinting technology. Primary human airway and intestinal smooth muscle cells were printed into rings of muscle tissue at high density and viability. Printed tissues contracted to physiological concentrations of histamine (0.01-100 µM) and relaxed to salbutamol, a pharmacological compound used to relieve asthmatic exacerbations. The addition of TGFß to airway muscle rings induced an increase in unstimulated muscle shortening and a decreased response to salbutamol, a phenomenon which also occurs in chronic lung diseases. Results indicate that the 3D bioprinted smooth muscle is a physiologically relevant in vitro model that can be utilized to study disease pathways and the effects of novel therapeutics on acute contraction and chronic tissue stenosis.


Assuntos
Bioimpressão/métodos , Microfluídica/métodos , Músculo Liso/citologia , Miócitos de Músculo Liso/citologia , Sistema Respiratório/citologia , Albuterol/farmacologia , Asma/tratamento farmacológico , Asma/patologia , Células Cultivadas , Humanos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Impressão Tridimensional , Sistema Respiratório/efeitos dos fármacos , Engenharia Tecidual/métodos
17.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360604

RESUMO

The musculoskeletal system is a vital body system that protects internal organs, supports locomotion, and maintains homeostatic function. Unfortunately, musculoskeletal disorders are the leading cause of disability worldwide. Although implant surgeries using autografts, allografts, and xenografts have been conducted, several adverse effects, including donor site morbidity and immunoreaction, exist. To overcome these limitations, various biomedical engineering approaches have been proposed based on an understanding of the complexity of human musculoskeletal tissue. In this review, the leading edge of musculoskeletal tissue engineering using 3D bioprinting technology and musculoskeletal tissue-derived decellularized extracellular matrix bioink is described. In particular, studies on in vivo regeneration and in vitro modeling of musculoskeletal tissue have been focused on. Lastly, the current breakthroughs, limitations, and future perspectives are described.


Assuntos
Matriz Extracelular/química , Desenvolvimento Musculoesquelético , Doenças Musculoesqueléticas/terapia , Impressão Tridimensional/instrumentação , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bioimpressão/métodos , Humanos
18.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681849

RESUMO

We generated and characterized a transgenic mouse line with the tendon-specific expression of a double fluorescent reporter system, which will fulfill an unmet need for animal models to support real-time monitoring cell behaviors during tendon development, growth, and repair in vitro and in vivo. The mScarlet red fluorescent protein is driven by the Scleraxis (Scx) promoter to report the cell lineage alteration. The blue fluorescent protein reporter is expressed under the control of the 3.6kb Collagen Type I Alpha 1 Chain (Col1a1) proximal promoter. In this promoter, the existence of two promoter regions named tendon-specific cis-acting elements (TSE1, TSE2) ensure the specific expression of blue fluorescent protein (BFP) in tendon tissue. Collagen I is a crucial marker for tendon regeneration that is a major component of healthy tendons. Thus, the alteration of function during tendon repair can be estimated by BFP expression. After mechanical stimulation, the expression of mScarlet and BFP increased in adipose-derived mesenchymal stem cells (ADMSCs) from our transgenic mouse line, and there was a rising trend on tendon key markers. These results suggest that our tendon-specific double reporter system is a novel model used to study cell re-differentiation and extracellular matrix alteration in vitro and in vivo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cadeia alfa 1 do Colágeno Tipo I/genética , Camundongos Transgênicos , Regiões Promotoras Genéticas , Tendões/metabolismo , Animais , Rastreamento de Células , Células-Tronco Mesenquimais , Camundongos , Tendões/crescimento & desenvolvimento , Tendões/fisiologia
19.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830444

RESUMO

A dome-shaped elastic poly(l-lactide-co-caprolactone) (PLCL) scaffold with a channel and pore structure was fabricated by a combinative method of 3D printing technology and the gel pressing method (13 mm in diameter and 6.5 mm in thickness) for patient-specific regeneration. The PLCL scaffold was combined with adipose decellularized extracellular matrix (adECM) and heart decellularized extracellular matrix (hdECM) hydrogels and human adipose-derived stem cells (hADSCs) to promote adipogenesis and angiogenesis. These scaffolds had mechanical properties similar to those of native adipose tissue for improved tissue regeneration. The results of the in vitro real-time PCR showed that the dECM hydrogel mixture induces adipogenesis. In addition, the in vivo study at 12 weeks demonstrated that the tissue-engineered PLCL scaffolds containing the hydrogel mixture (hdECM/adECM (80:20)) and hADSCs promoted angiogenesis and adipose tissue formation, and suppressed apoptosis. Therefore, we expect that our constructs will be clinically applicable as material for the regeneration of patient-specific large-sized adipose tissue.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo/crescimento & desenvolvimento , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/genética , Tecido Adiposo/transplante , Animais , Apoptose/efeitos dos fármacos , Matriz Extracelular Descelularizada/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Neovascularização Fisiológica/genética , Poliésteres/farmacologia , Impressão Tridimensional , Regeneração/efeitos dos fármacos
20.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948251

RESUMO

An approach called cell-free therapy has rapidly developed in regenerative medicine over the past decade. Understanding the molecular mechanisms and signaling pathways involved in the internal potential of tissue repair inspires the development of new strategies aimed at controlling and enhancing these processes during regeneration. The use of stem cell mobilization, or homing for regeneration based on endogenous healing mechanisms, prompted a new concept in regenerative medicine: endogenous regenerative medicine. The application of cell-free therapeutic agents leading to the recruitment/homing of endogenous stem cells has advantages in overcoming the limitations and risks associated with cell therapy. In this review, we discuss the potential of cell-free products such as the decellularized extracellular matrix, growth factors, extracellular vesicles and miRNAs in endogenous bone and dental regeneration.


Assuntos
Regeneração Tecidual Guiada/tendências , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Animais , Regeneração Óssea/fisiologia , Osso e Ossos/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Matriz Extracelular Descelularizada/farmacologia , Vesículas Extracelulares/fisiologia , Regeneração Tecidual Guiada/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , MicroRNAs/uso terapêutico , Células-Tronco , Engenharia Tecidual , Dente/fisiologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA