Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 980, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174958

RESUMO

PURPOSE: The major struggle in peri-implantitis therapy is the availability of successful decontamination of the infected implant surface. The main hypothesis of this study was the Er,Cr: YSGG laser decontamination efficacy investigation on the infected implant surfaces with various peri-implantitis defects. The primary objective of this study was to decide the efficacy of Er,Cr:YSGG laser as a decontamination tool at various peri-implantitis simulating defects. The secondary objective was to compare the efficacy of the Er,Cr: YSGG laser on oral biofilm removal between two protocols the first protocol (4 cycles at 2.5 min) and the second protocol (5 cycles at 5 min) at various peri-implantitis simulating defects. MATERIALS AND METHODS: A total of 3 subjects whose plaque biofilms formed in-vivo on twenty-four tested implants were divided into four tested groups. Two native implants were tested as controls.The in vitro defect model was computer-aided designed and printed into a 3D-printed model with various anulations in peri-implant infrabony defects, which were 15,30,60,and 90 degrees. RESULTS: Both Er, Cr: YSGG decontamination protocols at 50 mJ (1.5 W/30 Hz), 50% air, and 40% water were effective at reducing the total implant surface area/ biofilm ratio (%), but the second protocol had a markedly greater reduction in the duration of application (5 cycles at 5 min) than did the first protocol (4 cycles at 2.5 min). CONCLUSION: The Er, Cr: YSGG laser is an effective decontamination device in various peri-implantitis defects. The second protocol(5 cycles at 5 min) with greater application time and circles is more effective than the first one. The defect angulation influence the decontamination capability in peri-implantitis therapy. CLINICAL RELEVANCE (SCIENTIFIC RATIONALE FOR STUDY): Clinicians anticipate that the exploration of suitable therapeutic modalities for peri-implantitis therapy is limited by the obvious heterogeneity of the available evidence in the literature and need for a pre-clinical theoretical basis setup. The major challenges associated with peri-implantitis therapy include the successful decontamination of the infected implant surface, the absence of any damage to the treated implant surface with adequate surface roughness, and the biocompatibility of the implant surface, which allows osteoblastic cells to grow on the treated surface and is the key for successful re-osseointegration. Therefore, these are the expected empirical triads that need to be respected for successful peri-implantitis therapy. Failure of one of the triads represents a peri-implantitis therapeutic failure. The Er, Cr: YSGG laser is regarded as one of the expected devices for achieving the required triad. TRIAL REGISTRATION: "Efficacy of Er,Cr YSGG Laser in Treatment of Peri-implantitis". CLINICALTRIALS: gov ID NCT05137821. First Posted date: 30 -11-2021.


Assuntos
Biofilmes , Implantes Dentários , Lasers de Estado Sólido , Peri-Implantite , Humanos , Descontaminação/métodos , Implantes Dentários/microbiologia , Placa Dentária/microbiologia , Placa Dentária/terapia , Lasers de Estado Sólido/uso terapêutico , Peri-Implantite/microbiologia , Peri-Implantite/terapia , Propriedades de Superfície
2.
Food Microbiol ; 42: 109-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24929725

RESUMO

Atmospheric cold plasma (ACP) represents a potential alternative to traditional methods for non-thermal decontamination of foods. In this study, the antimicrobial efficacy of a novel dielectric barrier discharge ACP device against Escherichia coli, Salmonella enterica Typhimurium and Listeria monocytogenes inoculated on cherry tomatoes and strawberries, was examined. Bacteria were spot inoculated on the produce surface, air dried and sealed inside a rigid polypropylene container. Samples were indirectly exposed (i.e. placed outside plasma discharge) to a high voltage (70 kVRMS) air ACP and subsequently stored at room temperature for 24 h. ACP treatment for 10, 60 and 120 s resulted in reduction of Salmonella, E. coli and L. monocytogenes populations on tomato to undetectable levels from initial populations of 3.1, 6.3, and 6.7 log10 CFU/sample, respectively. However, an extended ACP treatment time was necessary to reduce bacterial populations attached on the more complex surface of strawberries. Treatment time for 300 s resulted in reduction of E. coli, Salmonella and L. monocytogenes populations by 3.5, 3.8 and 4.2 log10 CFU/sample, respectively, and also effectively reduced the background microflora of tomatoes.


Assuntos
Técnicas Eletroquímicas/métodos , Escherichia coli/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Fragaria/microbiologia , Frutas/microbiologia , Listeria monocytogenes/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Técnicas Eletroquímicas/instrumentação , Escherichia coli/química , Conservação de Alimentos/instrumentação , Listeria monocytogenes/química , Salmonella typhimurium/química
3.
Heliyon ; 10(5): e26348, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439842

RESUMO

In this study, we constructed an UV-C illumination chamber using commercially available germicidal lamps and other locally available low-cost components for general-purpose biological decontamination purposes. The illumination chamber provides uniform illumination of around 1 J/cm2 in under 5 min across the chamber. The control mechanism was developed to automate the on/off process and make it more secure minimizing health and other electrical safety. To validate the decontamination efficacy of the UV-C Illumination Chamber we performed the Geobacillus spore strip culture assay. Additionally, we performed the viral load measurement by identifying the COVID-19-specific N-gene and ORF1 gene on surgical masks. The gold standard RT-qPCR measurement was performed to detect and quantify the COVID-19-specific gene on the mask sample. The biochemical assay was conducted on the control and test group to identify the presence of different types of bacteria, and fungi before and after exposure under the illumination chamber. The findings of our study revealed satisfactory decontamination efficacy test results. Therefore, it could be an excellent device in healthcare settings as a disinfection tool for biological decontamination such as SAR-CoV-2 virus, personal protection equipment (PPE), (including n95, k95 respirators, and surgical masks), and other common pathogens.

4.
J Hosp Infect ; 132: 116-124, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36209927

RESUMO

BACKGROUND: Pathogenic prions (PrPSc) are amyloid-rich hydrophobic proteins which bind avidly to surgical surfaces and represent some of the most difficult targets during the reprocessing of reusable surgical instruments. In-vitro methods to amplify and detect the presence of otherwise undetectable prion contamination are available, but they do not measure associated infectivity. Most of these methods rely on the use of proteinase K, however this can lead to the loss of a substantial portion of PrPSc, potentially producing false negatives. AIM: To develop a sensitive in-situ method without proteinase treatment for the dynamic quantification of amyloid accumulation in N2a #58 cells following 22L-prion infection from infected tissues and spiked stainless-steel surfaces. METHODS: We spiked cultures of N2a #58 cells with the 22L prion strain in solution or dried on stainless-steel wires and directly measured the accumulation of prion amyloid aggregates over several passages using highly sensitive fluorescence microscopy. FINDINGS: We demonstrated a 10-log dynamic range using our method to test residual prion infectivity, that was validated to show variable decontamination efficacy against prions from commercially available cleaning chemistries. CONCLUSIONS: The new cell-based infectivity method presented here avoids partial or possibly total proteinase K digestion of PrPSc in samples for greater sensitivity, in addition to low cost, no ethical concerns, and adaptability to detect different prion strains. This method can be used to test cleaning chemistries' efficacy with greater sensitivity than measuring total residual proteins, which may not correlate with residual prion infectivity.


Assuntos
Descontaminação , Príons , Instrumentos Cirúrgicos , Humanos , Descontaminação/métodos , Endopeptidase K , Príons/química , Aço Inoxidável/química
5.
Food Res Int ; 64: 234-240, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30011645

RESUMO

The decontamination efficacy of neutral electrolyzed water (NEW) was evaluated using shredded cabbages and carrots in both a scalable laboratory system (experiment I) and an actual processing line in a plant (experiment II). In experiment I, the antimicrobial effect of highly concentrated NEW (up to the maximum regulated level: 200ppm) was tested to determine the appropriate conditions for use in an actual plant test: (1) hypochlorous acid (HClO) concentration (100, 150, and 200ppm), (2) ratio of sample weight to NEW volume (1:5, 1:10, and 1:20), and (3) treatment time (5, 10, 20, and 30min), using 2kg of shredded cabbages and carrots. In experiment II, the feasibility of the NEW treatment was validated on an actual processing line (treatment unit: 20kg), including cutting, three washing steps (two air bubble washes for 5min each and 150ppm NEW for 5min at ratio of 1:10), rinsing (5min), and dehydration (5min). Overall, the microbial reductions tended to increase as the HClO concentration, ratio of sample to NEW, and treatment time increased. The results obtained from experiment I indicated that the maximum conditions (NEW 200ppm, 1:20, 30min) achieved 3.3-3.5 log CFU/g reductions in the coliform counts. After treatment with 200ppm NEW for >10min, however, there were noticeable color changes (color differences, DE>5.0) in both the shredded cabbages and carrots. In the experiment II, the microbial populations were not affected by cutting and two air bubble treatments, whereas washing with NEW greatly reduced both the aerobic plate counts (1.93-2.17 log CFU/g) and coliform counts (0.97-1.51 log CFU/g). More than 2 log CFU/g of indigenous flora were reduced from raw materials to final products with both shredded cabbages (2.05-2.48 log CFU/g) and carrots (2.34-2.76 log CFU/g). These results may provide useful recommendations for the practical application of highly concentrated NEW in the fresh-cut produce industry to improve the microbiological safety without quality deterioration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA