Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Exp Cell Res ; 415(1): 113109, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318048

RESUMO

Tissue engineering technology will be the main approach to tissue regeneration in the future and are promising for the treatment of large-area burns and refractory wounds. Dedifferentiated fat cells (DFAT) derived from mature adipocytes (MAs) as a seed cell have great potential in cell therapy and tissue engineering for the treatment of a variety of clinical diseases because of their wider availability, stronger proliferation ability, multidirectional redifferentiation potential, higher cell purity, lower heterogeneity, and greater biosafety profile. However, the triggering mechanism for MAs reprogramming in vitro is unclear. In this study, MAs were successfully induced to dedifferentiate into DFAT in a short time in vitro using an "improved ceiling culture method". Flow cytometry, adipogenic, and osteogenic differentiation experiments verified that DFAT cells present the biological characteristics of stem cells. In addition, changing the stiffness of the extracellular matrix can inhibit the dedifferentiation of MAs to DFAT, and increase the expression of Yes-associated protein/transcriptional co-activator with the PDZ-binding motif (YAP/TAZ), nuclear translocation, and the expression of reprogramming transcription factors. In conclusion, extracellular matrix stiffness can induce MAs to dedifferentiate into DFAT in vitro, and can directly transmit mechanical force signals to the nucleus via YAP/TAZ binding to trigger the expression of stem cell-related reprogramming factors.


Assuntos
Desdiferenciação Celular , Osteogênese , Adipócitos/metabolismo , Adipogenia , Diferenciação Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Clin Periodontol ; 49(12): 1289-1303, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35851962

RESUMO

AIM: To compare the efficacy of adipocyte-derived dedifferentiated fat (DFAT) cell and adipose-derived stromal cell (ADSC) sheets for regenerative treatment of intra-bony periodontal defects. MATERIALS AND METHODS: DFAT cells were obtained using the ceiling culture method and were compared with ADSCs using Cell Counting Kit-8, colony formation assay, surface antigen identification, and multilineage differentiation assays. DFAT and ADSC sheets were prepared in a cell sheet culture medium. The biological characteristics of DFAT cell and ADSC sheets were compared using haematoxylin and eosin staining, quantitative reverse transcription polymerase chain reaction, and immunofluorescence staining. Micro-computed tomography and histological staining were used to compare the effects of the two cell sheets on the repair of periodontal intra-bony defects in rats. RESULTS: DFAT cells and ADSCs demonstrated mesenchymal stem cell characteristics. Both cell types were CD29-, CD90-, and CD146-positive and CD31-, CD34-, and CD45-negative. DFAT cells and ADSCs exhibited similar osteogenic and adipogenic differentiation capabilities and colony formation ability. DFAT cells displayed stronger proliferation capabilities compared with ADSCs. Compared with the ADSC sheets, DFAT cell sheets exhibited a higher expression of periodontal-related genes and proteins and greater ability to regenerate periodontal tissue. CONCLUSIONS: Our findings suggest that DFAT cell sheets are an ideal seed cell source and form of cell delivery for periodontal intra-bony defects.


Assuntos
Adipócitos , Tecido Adiposo , Ratos , Animais , Microtomografia por Raio-X , Adipogenia/genética , Células Estromais , Diferenciação Celular , Células Cultivadas
3.
Cytotherapy ; 23(7): 608-616, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33863640

RESUMO

BACKGROUND AIMS: Mesenchymal stem/stromal cells (MSCs) are multipotent and self-renewing cells that are extensively used in tissue engineering. Adipose tissues are known to be the source of two types of MSCs; namely, adipose tissue-derived MSCs (ASCs) and dedifferentiated fat (DFAT) cells. Although ASCs are sometimes transplanted for clinical cytotherapy, the effects of DFAT cell transplantation on mandibular bone healing remain unclear. METHODS: The authors assessed whether DFAT cells have osteogenerative potential compared with ASCs in rats in vitro. In addition, to elucidate the ability of DFAT cells to regenerate the jaw bone, the authors examined the effects of DFAT cells on new bone formation in a mandibular defect model in (i) 30-week-old rats and (ii) ovariectomy-induced osteoporotic rats in vivo. RESULTS: Osteoblast differentiation with bone morphogenetic protein 2 (BMP-2) or osteogenesis-induced medium upregulated the osteogenesis-related molecules in DFAT cells compared with those in ASCs. BMP-2 activated the phosphorylation signaling pathways of ERK1/2 and Smad2 in DFAT cells, but minor Smad1/5/9 activation was noted in ASCs. The transplantation of DFAT cells into normal or ovariectomy-induced osteoporotic rats with mandibular defects promoted new bone formation compared with that seen with ASCs. CONCLUSIONS: DFAT cells promoted osteoblast differentiation and new bone formation through ERK1/2 and Smad2 signaling pathways in vitro. The transplantation of DFAT cells promoted new mandibular bone formation in vivo compared with that seen with ASCs. These results suggest that transplantation of ERK1/2-activated DFAT cells shorten the mandibular bone healing process in cytotherapy.


Assuntos
Adipócitos , Sistema de Sinalização das MAP Quinases , Tecido Adiposo , Animais , Regeneração Óssea , Diferenciação Celular , Feminino , Osteogênese , Ratos
4.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830277

RESUMO

BACKGROUND: We investigated and compared the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells (DFAT cells) and adipose-derived stem cells (ASCs). METHOD: We isolated DFAT cells and ASCs from GFP mice. DFAT cells were established by a new culture method using a mesh culture instead of a ceiling culture. The isolated DFAT cells and ASCs were incubated in osteogenic medium, then alizarin red staining, alkaline phosphatase (ALP) assays, and RT-PCR (for RUNX2, osteopontin, DLX5, osterix, and osteocalcin) were performed to evaluate the osteoblastic differentiation ability of both cell types in vitro. In vivo, the DFAT cells and ASCs were incubated in osteogenic medium for four weeks and seeded on collagen composite scaffolds, then implanted subcutaneously into the backs of mice. We then performed hematoxylin and eosin staining and immunostaining for GFP and osteocalcin. RESULTS: The alizarin red-stained areas in DFAT cells showed weak calcification ability at two weeks, but high calcification ability at three weeks, similar to ASCs. The ALP levels of ASCs increased earlier than in DFAT cells and showed a significant difference (p < 0.05) at 6 and 9 days. The ALP levels of DFATs were higher than those of ASCs after 12 days. The expression levels of osteoblast marker genes (osterix and osteocalcin) of DFAT cells and ASCs were higher after osteogenic differentiation culture. CONCLUSION: DFAT cells are easily isolated from a small amount of adipose tissue and are readily expanded with high purity; thus, DFAT cells are applicable to many tissue-engineering strategies and cell-based therapies.


Assuntos
Adipócitos/citologia , Adipócitos/transplante , Tecido Adiposo/citologia , Regeneração Óssea/genética , Técnicas de Cultura de Células/métodos , Desdiferenciação Celular/genética , Osteogênese/genética , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Adipócitos/metabolismo , Animais , Calcificação Fisiológica/genética , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Engenharia Tecidual/métodos , Transplante Autólogo/métodos
5.
Oral Dis ; 24(7): 1161-1167, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29356251

RESUMO

Tissue engineering is a promising method for the regeneration of oral and maxillofacial tissues. Proper selection of a cell source is important for the desired application. This review describes the discovery and usefulness of dedifferentiated fat (DFAT) cells as a cell source for tissue engineering. Dedifferentiated Fat cells are a highly homogeneous cell population (high purity), highly proliferative, and possess a multilineage potential for differentiation into various cell types under proper in vitro inducing conditions and in vivo. Moreover, DFAT cells have a higher differentiation capability of becoming osteoblasts, chondrocytes, and adipocytes than do bone marrow-derived mesenchymal stem cells and/or adipose tissue-derived stem cells. The usefulness of DFAT cells in vivo for periodontal tissue, bone, peripheral nerve, muscle, cartilage, and fat tissue regeneration was reported. Dedifferentiated Fat cells obtained from the human buccal fat pad (BFP) are a minimally invasive procedure with limited esthetic complications for patients. The BFP is a convenient and accessible anatomical site to harvest DFAT cells for dentists and oral surgeons, and thus is a promising cell source for oral and maxillofacial tissue engineering.


Assuntos
Adipócitos/citologia , Desdiferenciação Celular , Regeneração , Células-Tronco/citologia , Engenharia Tecidual , Proliferação de Células , Nervo Facial/fisiologia , Humanos , Periodonto/fisiologia , Coleta de Tecidos e Órgãos
6.
Dev Neurosci ; 39(1-4): 273-286, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273662

RESUMO

Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) remains a major cause of mortality and persistent neurological disabilities in affected individuals. At present, hypothermia is considered to be the only applicable treatment option, although growing evidence suggests that cell-based therapy might achieve better outcomes. Dedifferentiated fat (DFAT) cells are derived from mature adipocytes via a dedifferentiation strategy called ceiling culture. Their abundance and ready availability might make them an ideal therapeutic tool for the treatment of HIE. In the present study, we aimed to determine whether the outcome of HIE can be improved by DFAT cell treatment. HI injury was achieved by ligating the left common carotid artery in 7-day-old rat pups, followed by 1-h exposure to 8% O2. Subsequently, the severity of damage was assessed by diffusion-weighted magnetic resonance imaging to assign animals to equivalent groups. 24 h after hypoxia, DFAT cells were injected at 105 cells/pup into the right external jugular vein. To evaluate brain damage in the acute phase, a group of animals was sacrificed 48 h after the insult, and paraffin sections of the brain were stained to assess several acute injury markers. In the chronic phase, the behavioral outcome was measured by performing a series of behavioral tests. From the 24th day of age, the sensorimotor function was examined by evaluating the initial forepaw placement on a cylinder wall and the latency to falling from a rotarod treadmill. The cognitive function was tested with the novel object recognition (NOR) test. In vitro conditioned medium (CM) prepared from cultured DFAT cells was added at various concentrations to neuronal cell cultures, which were then exposed to oxygen-glucose deprivation (OGD). The number of cells that stained positive for the apoptosis marker active caspase-3 decreased by 73 and 52% in the hippocampus and temporal cortex areas of the brain, respectively, in the DFAT-treated pups. Similarly, the numbers of ED-1-positive cells (activated microglia) decreased by 66 and 44%, respectively, in the same areas in the DFAT-treated group. The number of cells positive for the oxidative stress marker 4-hydroxyl-2-nonenal decreased by 68 and 50% in the hippocampus and the parietal cortex areas, respectively, in the DFAT-treated group. The HI insult led to a motor deficit according to the rotarod treadmill and cylinder test, where it significantly affected the vehicle group, whereas no difference was confirmed between the DFAT and sham groups. However, the NOR test indicated no significant differences between any of the groups. DFAT treatment did not reduce the infarct volume, which was confirmed immunohistochemically. According to in vitro experiments, the cell death rates in the DFAT-CM-treated cells were significantly lower than those in the controls when DFAT-CM was added 48 h prior to OGD. The treatment effect of adding DFAT-CM 24 h prior to OGD was also significant. Our results indicate that intravenous injection with DFAT cells is effective for ameliorating HI brain injury, possibly via paracrine effects.


Assuntos
Adipócitos/transplante , Hipóxia-Isquemia Encefálica/patologia , Transplante de Células-Tronco/métodos , Animais , Animais Recém-Nascidos , Desdiferenciação Celular , Ratos , Ratos Sprague-Dawley
7.
Gen Comp Endocrinol ; 214: 77-86, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25626122

RESUMO

Adipocytes are the main constituent of adipose tissue and are considered to be a corner stone in the homeostatic control of whole body metabolism. Recent reports evidenced that retinoblastoma 1 (Rb1) gene plays an important role in fat development and adipogenesis in mice. Here, we cloned the partial cDNA sequences of the porcine Rb1 gene which contains the complete coding sequences (CDS) of 2820bp encoding a protein of 939 amino acids. Bioinformatic analysis revealed that the CDS of porcine Rb1 was highly identical with those of cattle, human and mice. The porcine Rb1 has three typical conserved structural domains, including Rb-A pocket domain, CYCLIN domain and C-terminus domain, and the phylogenetic tree indicates a closer genetic relationship with cattle and human. Tissue distribution analysis showed that Rb1 expression appeared to be ubiquitously in various tissues, being higher in heart, liver, muscle, and stomach. Furthermore, significant downregulation of Rb1 was found at the initial stage of dedifferentiated fat (DFAT) cells adipogenic differentiation. With the knockdown of the Rb1 expression by siRNA, the number of DFAT cells recruited to white rather than brown adipogenesis was promoted, and mRNA levels of adipogenic markers, such as PPARγ, aP2, LPL and adiponectin and protein expression of PPARγ and adiponectin were increased after hormone stimulation. The underlying mechanisms may be that knockdown of Rb1 promotes the mitotic clonal expansion and PPARγ expression by derepressing the transcriptional activity of E2F so as to facilitate the first steps of adipogenesis. In summary, we cloned and characterized an important negative regulator in adipogenic commitment of porcine DFAT cells.


Assuntos
Adipócitos/citologia , Adipogenia/fisiologia , Tecido Adiposo/citologia , Diferenciação Celular , Proteína do Retinoblastoma/metabolismo , Adipócitos/metabolismo , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Western Blotting , Bovinos , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , Regulação para Baixo , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Dados de Sequência Molecular , PPAR gama/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína do Retinoblastoma/antagonistas & inibidores , Proteína do Retinoblastoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Suínos
8.
Biochem Biophys Res Commun ; 444(4): 543-8, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24486314

RESUMO

Dedifferentiated fat (DFAT) cells derived from mature adipocytes have been considered to be a homogeneous group of multipotent cells, which present to be an alternative source of adult stem cells for regenerative medicine. However, many aspects of the cellular nature about DFAT cells remained unclarified. This study aimed to elucidate the basic characteristics of DFAT cells underlying their functions and differentiation potentials. By modified ceiling culture technique, DFAT cells were converted from human mature adipocytes from the human buccal fat pads. Flow cytometry analysis revealed that those derived cells were a homogeneous population of CD13(+) CD29(+) CD105(+) CD44(+) CD31(-) CD34(-) CD309(-) α-SMA(-) cells. DFAT cells in this study demonstrated tissue-specific differentiation properties with strong adipogenic but much weaker osteogenic capacity. Neither did they express endothelial markers under angiogenic induction.


Assuntos
Adipócitos/citologia , Células-Tronco Multipotentes/citologia , Adulto , Antígenos CD/análise , Diferenciação Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Fenótipo
9.
Biomolecules ; 14(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38927109

RESUMO

The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a principal regulator of calcium homeostasis through activation of the vitamin D receptor (VDR). Previous studies have shown that 2α-(3-hydroxypropyl)-1,25D3 (O1C3) and 2α-(3-hydroxypropoxy)-1,25D3 (O2C3), vitamin D derivatives resistant to inactivation enzymes, can activate VDR, induce leukemic cell differentiation, and increase blood calcium levels in rats more effectively than 1,25(OH)2D3. In this study, to further investigate the usefulness of 2α-substituted vitamin D derivatives, we examined the effects of O2C3, O1C3, and their derivatives on VDR activity in cells and mouse tissues and on osteoblast differentiation of dedifferentiated fat (DFAT) cells, a cell type with potential therapeutic application in regenerative medicine. In cell culture experiments using kidney-derived HEK293 cells, intestinal mucosa-derived CaCO2 cells, and osteoblast-derived MG63 cells, and in mouse experiments, O2C2, O2C3, O1C3, and O1C4 had a weaker effect than or equivalent effect to 1,25(OH)2D3 in VDR transactivation and induction of the VDR target gene CYP24A1, but they enhanced osteoblast differentiation in DFAT cells equally to or more effectively than 1,25(OH)2D3. In long-term treatment with the compound without the medium change (7 days), the derivatives enhanced osteoblast differentiation more effectively than 1,25(OH)2D3. O2C3 and O1C3 were more stable than 1,25(OH)2D3 in DFAT cell culture. These results indicate that 2α-substituted vitamin D derivatives, such as inactivation-resistant O2C3 and O1C3, are more effective than 1,25(OH)2D3 in osteoblast differentiation of DFAT cells, suggesting potential roles in regenerative medicine with DFAT cells and other multipotent cells.


Assuntos
Diferenciação Celular , Osteoblastos , Receptores de Calcitriol , Vitamina D , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Animais , Receptores de Calcitriol/metabolismo , Diferenciação Celular/efeitos dos fármacos , Camundongos , Células HEK293 , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Células CACO-2 , Adipócitos/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Masculino , Vitamina D3 24-Hidroxilase/metabolismo , Vitamina D3 24-Hidroxilase/genética , Calcitriol/farmacologia , Calcitriol/análogos & derivados
10.
Regen Ther ; 26: 50-59, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38859891

RESUMO

Introduction: Mature adipocyte-derived dedifferentiated fat cells (DFATs) represent a subtype of multipotent cells that exhibit comparable phenotypic and functional characteristics to adipose-derived stem cells (ASCs). In this study, we assessed the chondroprotective properties of intra-articularly administrated DFATs in a rat model of osteoarthritis (OA). We also investigated in vitro the expression of anti-inflammatory and chondroprotective genes in DFATs prepared from the infrapatellar fat pad (IFP) and subcutaneous adipose-tissue (SC) of human origin. Methods: In the cell transplantation experiment, rats were assigned to the DFAT and Control group (n = 10 in each group) and underwent anterior cruciate ligament transection (ACLT) accompanied by medial meniscus resection (MMx) to induce OA. One week later, they received intra-articular injections of 1 × 106 DFATs (DFAT group) or PBS (control group) four times, with a weekly administration frequency. Macroscopic and microscopic evaluations were conducted five weeks post-surgery. In the in vitro experiments. DFATs derived from the IFP (IFP-DFATs) and SC (SC-DFATs) were prepared from donor-matched tissue samples (n = 3). The gene expression of PTGS2, TNFAIP6, PRG4, BMP2, and BMP6 under TNF-α or IFN-γ stimulation in these cells was evaluated using RT-PCR. Furthermore, the effect of co-culturing synovial fibroblasts with DFATs on the gene expression of ADAMTS4 and IL-6 were evaluated. Results: Intra-articular injections of DFATs significantly inhibited cartilage degeneration in the rat OA model induced by ACLT and MMx. RT-PCR analysis revealed that both IFP-DFATs and SC-DFATs upregulated the expression of genes involved in immune regulation, anti-inflammation, and cartilage protection such as PTGS2, TNFAIP6, and BMP2, under stimulation by inflammatory cytokines. Co-culture with DFATs suppressed the expression of ADAMTS4 and IL6 in synovial fibroblasts. Conclusions: The intra-articular injection of DFATs resulted in chondroprotective effects in the rat OA model. Both SC-DFATs and IFP-DFATs induced the expression of anti-inflammatory and chondroprotective genes in vitro. These results indicate that DFATs appear to possess therapeutic potential in inhibiting cartilage degradation and could serve as a promising cellular resource for OA treatment.

11.
Biochem Biophys Res Commun ; 440(2): 289-94, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24064349

RESUMO

Dedifferentiated fat (DFAT) cells, which are isolated from mature adipocytes using the ceiling culture method, exhibit similar characteristics to mesenchymal stem cells, and possess adipogenic, osteogenic, chondrogenic, and myogenic potentials. Bone morphogenetic protein (BMP)-2 and -9, members of the transforming growth factor-ß superfamily, exhibit the most potent osteogenic activity of this growth factor family. However, the effects of BMP-2 and BMP-9 on the osteogenic differentiation of DFAT remain unknown. Here, we examined the effects of BMP-2 and BMP-9 on osteoblastic differentiation of rat DFAT (rDFAT) cells in the presence or absence of FK506, an immunosuppressive agent. Co-stimulation with BMP-9 and FK506 induced gene expression of runx2, osterix, and bone sialoprotein, and ALP activity compared with BMP-9 alone, BMP-2 alone and BMP-2+FK506 in rDFAT cells. Furthermore, it caused mineralization of cultures and phosphorylation of smad1/5/8, compared with BMP-9 alone. The ALP activity induced by BMP-9+FK506 was not influenced by addition of noggin, a BMP antagonist. Our data suggest that the combination of BMP-9 and FK506 potently induces osteoblastic differentiation of rDFAT cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/farmacologia , Osteogênese/efeitos dos fármacos , Tacrolimo/farmacologia , Adipócitos/fisiologia , Fosfatase Alcalina , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteínas de Transporte/farmacologia , Desdiferenciação Celular , Diferenciação Celular/fisiologia , Humanos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
12.
Int J Stem Cells ; 16(4): 406-414, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37385636

RESUMO

Dedifferentiated fat cells (DFATs) isolated from mature adipocytes have a multilineage differentiation capacity similar to mesenchymal stem cells and are considered as promising source of cells for tissue engineering. Bone morphogenetic protein 9 (BMP9) and low-intensity pulsed ultrasound (LIPUS) have been reported to stimulate bone formation both in vitro and in vivo. However, the combined effect of BMP9 and LIPUS on osteoblastic differentiation of DFATs has not been studied. After preparing DFATs from mature adipose tissue from rats, DFATs were treated with different doses of BMP9 and/or LIPUS. The effects on osteoblastic differentiation were assessed by changes in alkaline phosphatase (ALP) activity, mineralization/calcium deposition, and expression of bone related genes; Runx2, osterix, osteopontin. No significant differences for ALP activity, mineralization deposition, as well as expression for bone related genes were observed by LIPUS treatment alone while treatment with BMP9 induced osteoblastic differentiation of DFATs in a dose dependent manner. Further, co-treatment with BMP9 and LIPUS significantly increased osteoblastic differentiation of DFATs compared to those treated with BMP9 alone. In addition, upregulation for BMP9-receptor genes was observed by LIPUS treatment. Indomethacin, an inhibitor of prostaglandin synthesis, significantly inhibited the synergistic effect of BMP9 and LIPUS co-stimulation on osteoblastic differentiation of DFATs. LIPUS promotes BMP9 induced osteoblastic differentiation of DFATs in vitro and prostaglandins may be involved in this mechanism.

13.
J Orthop Surg Res ; 18(1): 191, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906634

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are known to have different differentiation potential depending on the tissue of origin. Dedifferentiated fat cells (DFATs) are MSC-like multipotent cells that can be prepared from mature adipocytes by ceiling culture method. It is still unknown whether DFATs derived from adipocytes in different tissue showed different phenotype and functional properties. In the present study, we prepared bone marrow (BM)-derived DFATs (BM-DFATs), BM-MSCs, subcutaneous (SC) adipose tissue-derived DFATs (SC-DFATs), and adipose tissue-derived stem cells (ASCs) from donor-matched tissue samples. Then, we compared their phenotypes and multilineage differentiation potential in vitro. We also evaluated in vivo bone regeneration ability of these cells using a mouse femoral fracture model. METHODS: BM-DFATs, SC-DFATs, BM-MSCs, and ASCs were prepared from tissue samples of knee osteoarthritis patients who received total knee arthroplasty. Cell surface antigens, gene expression profile, and in vitro differentiation capacity of these cells were determined. In vivo bone regenerative ability of these cells was evaluated by micro-computed tomography imaging at 28 days after local injection of the cells with peptide hydrogel (PHG) in the femoral fracture model in severe combined immunodeficiency mice. RESULTS: BM-DFATs were successfully generated at similar efficiency as SC-DFATs. Cell surface antigen and gene expression profiles of BM-DFATs were similar to those of BM-MSCs, whereas these profiles of SC-DFATs were similar to those of ASCs. In vitro differentiation analysis revealed that BM-DFATs and BM-MSCs had higher differentiation tendency toward osteoblasts and lower differentiation tendency toward adipocytes compared to SC-DFATs and ASCs. Transplantation of BM-DFATs and BM-MSCs with PHG enhanced bone mineral density at the injection sites compared to PHG alone in the mouse femoral fracture model. CONCLUSIONS: We showed that phenotypic characteristics of BM-DFATs were similar to those of BM-MSCs. BM-DFATs exhibited higher osteogenic differentiation potential and bone regenerative ability compared to SC-DFATs and ASCs. These results suggest that BM-DFATs may be suitable sources of cell-based therapies for patients with nonunion bone fracture.


Assuntos
Fraturas do Fêmur , Células-Tronco Mesenquimais , Humanos , Osteogênese , Medula Óssea , Microtomografia por Raio-X , Tecido Adiposo , Adipócitos , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Regeneração Óssea , Células Cultivadas , Fenótipo , Células da Medula Óssea/metabolismo , Fraturas do Fêmur/metabolismo
14.
Stem Cell Res Ther ; 14(1): 207, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605289

RESUMO

Stem cell therapy is the most promising treatment option for regenerative medicine. Therapeutic effect of different stem cells has been verified in various disease model. Dedifferentiated fat (DFAT) cells, derived from mature adipocytes, are induced pluripotent stem cells. Compared with ASCs and other stem cells, the DFAT cells have unique advantageous characteristics in their abundant sources, high homogeneity, easily harvest and low immunogenicity. The DFAT cells have shown great potential in tissue engineering and regenerative medicine for the treatment of clinical problems such as cardiac and kidney diseases, autoimmune disease, soft and hard tissue defect. In this review, we summarize the current understanding of DFAT cell properties and focus on the relevant practical applications of DFAT cells in cell therapy in recent years.


Assuntos
Células-Tronco Pluripotentes Induzidas , Medicina Regenerativa , Engenharia Tecidual , Terapia Baseada em Transplante de Células e Tecidos , Adipócitos
15.
J Orthop Translat ; 42: 113-126, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37680904

RESUMO

Background: Dedifferentiated fat cells (DFATs) are highly homogeneous and multipotent compared with adipose-derived stromal cells (SCs). Infrapatellar fat pad (IFP)-SCs have advanced chondrogenic potency; however, whether IFP-DFATs could serve as better cell material remains unclear. Here, we aimed to examine the influence of age and body mass index (BMI) on the features of IFPs and IFP-derived cells (IFP-SCs and IFP-DFATs) with exploration of the clinical utilization of IFP-DFATs. Methods: We collected IFPs with isolation of paired IFP-SCs and IFP-DFATs from individuals aged 65 years and older with distinct body weights who underwent total knee replacement for osteoarthritis (OA). Flow cytometry was used to characterize the cellular immunophenotypes. Adipogenesis and chondrogenesis were performed in vitro. Real-time qPCR, western blotting, and Oil Red O or Alcian blue staining were performed to evaluate inflammation, adipogenesis, and chondrogenesis. RNA sequencing and Seahorse analyses were conducted to explore the underlying mechanisms. Results: We found that IFPs from old or normal-weight individuals with knee OA were pro-inflammatory, and that interleukin-6 (IL-6) signaling was associated with multiple immune-related molecules, whereas IFP-derived cells could escape the inflammatory properties. Aging plays an important role in diminishing the chondrogenic and adipogenic abilities of IFP-SCs; however, this effect was avoided in IFP-DFATs. Generally, IFP-DFATs presented a steady state of chondrogenesis (less influenced by age) and consistently enhanced adipogenesis compared to paired IFP-SCs in different age or BMI groups. RNA sequencing and Seahorse analysis suggested that the downregulation of eukaryotic initiation factor 2 (EIF2) signaling and enhanced mitochondrial function may contribute to the improved cellular biology of IFP-DFATs. Conclusions: Our data indicate that IFP-DFATs are superior cell material compared to IFP-SCs for cartilage differentiation and adipogenesis, particularly in advanced aging patients with knee OA. The translational potential of this article: These results provide a novel concept and supportive evidence for the use of IFP-DFATs for cell therapy or tissue engineering in patients with knee OA. Using Ingenuity Pathway Analysis (IPA) of RNA-seq data and Seahorse analysis of mitochondrial metabolic parameters, we highlighted that some molecules, signaling pathways, and mitochondrial functions are likely to be jointly coordinated to determine the enhanced biological function in IFP-DFATs.

16.
Cytotechnology ; 75(3): 231-242, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37187946

RESUMO

Dedifferentiated fat cells (DFATs), which are originated by the dedifferentiation of adipocytes, display surface markers of mesenchymal stem cells and are able to differentiate into different cell types, thus, yielding a huge therapeutic potential in repairing damaged tissues and organs. The use of allogeneic stem cells from healthy donors constitutes the basis of a new strategy for cell therapy in the field of transplantation and the first requirement for allografts is determining their immunological properties. In this study, human DFATs and ADSCs were passaged as in vitro models to investigate their immunomodulatory effects. Phenotypic analysis of cell surface markers and three-line differentiation protocols were used to identify stem cells. The immunogenic phenotypes of DFATs and ADSCs were analyzed by flow cytometry and a mixed lymphocyte reaction was used to assess their immune function. The characteristics of stem cells were confirmed by phenotypic identification of cell surface markers and three-line differentiation. Flow cytometry analysis showed that P3 generation DFATs and ADSCs contained human leukocyte antigen (HLA) class I molecules, but did not express HLA class II molecules and costimulatory molecules CD40, CD80 and CD86. Moreover, allogeneic DFATs and ADSCs could not induce the proliferation of peripheral blood mononuclear cells (PBMCs). In addition, both populations were shown to inhibit the Concanavalin A-stimulated proliferation of PBMCs and act as third-party cells responsible for inhibiting the mixed lymphocyte response. DFATs have immunosuppressive properties similar to ADSCs. Based on this, allogeneic DFATs have potential applications in tissue repair or cell therapy.

17.
Materials (Basel) ; 15(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35207844

RESUMO

Adipose tissue is composed mostly of adipocytes that are in contact with capillaries. By using a ceiling culture method based on buoyancy, lipid-free fibroblast-like cells, also known as dedifferentiated fat (DFAT) cells, can be separated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and transdifferentiate into various cell types under appropriate culture conditions. Herein, we sought to compare the regenerative potential of collagen matrix alone (control) with autologous DFAT cell-loaded collagen matrix transplantation in adult miniature pigs (microminipigs; MMPs). We established and transplanted DFAT cells into inflammation-inducing periodontal class II furcation defects. At 12 weeks after cell transplantation, a marked attachment gain was observed based on the clinical parameters of probing depth (PD) and clinical attachment level (CAL). Additionally, micro computed tomography (CT) revealed hard tissue formation in furcation defects of the second premolar. The cemento-enamel junction and alveolar bone crest distance was significantly shorter following transplantation. Moreover, newly formed cellular cementum, well-oriented periodontal ligament-like fibers, and alveolar bone formation were observed via histological analysis. No teratomas were found in the internal organs of recipient MMPs. Taken together, these findings suggest that DFAT cells can safely enhance periodontal tissue regeneration.

18.
World J Stem Cells ; 14(6): 372-392, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35949397

RESUMO

Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.

19.
Regen Ther ; 21: 611-619, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475026

RESUMO

Introduction: Infrapatellar fat pad (IFP)-derived mesenchymal stem cells (MSCs) have high chondrogenic potential and are attractive cell sources for cartilage regeneration. During ceiling culture to acquire the characteristics of MSCs, mature adipocytes from fat tissue are known to undergo dedifferentiation, generating dedifferentiated fat (DFAT) cells. The purpose of the present study was to compare the yields and biological properties of IFP-derived MSCs and IFP-derived DFAT cells. Methods: IFPs were harvested from the knees of 8 osteoarthritis (OA) patients. DFAT cells were obtained using a ceiling culture of adipocytes isolated from the floating top layer of IFP digestion. MSCs were obtained by culturing precipitated stromal vascular fraction cells. We compared the P0 cell yields, surface antigen profile, colony formation ability, and multipotency of DFAT cells and MSCs. Results: The P0 cell yields per flask and the estimated total cell yields from 1 g of IFP were much greater for MSCs than for DFAT cells. Both MSCs and DFAT cells were positive for MSC markers. No obvious difference was observed in colony formation ability. In differentiation assays, DFAT cells produced greater amounts of lipid droplets, calcified tissue, and glycosaminoglycan than MSCs did. Adipogenic and chondrogenic gene expressions were upregulated in DFAT cells. Conclusions: IFP-derived DFAT cells showed higher adipogenic and chondrogenic potentials than IFP-derived MSCs, but they had a poor cell yield.

20.
Regen Ther ; 19: 35-46, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35059478

RESUMO

INTRODUCTION: Mature adipocyte-derived dedifferentiated fat cells (DFATs) are mesenchymal stem cell (MSC)-like cells with high proliferative ability and multilineage differentiation potential. In this study, we first examined whether DFATs can be prepared from infrapatellar fat pad (IFP) and then compared phenotypic and functional properties of IFP-derived DFATs (IFP-DFATs) with those of subcutaneous adipose tissue (SC)-derived DFATs (SC-DFATs). METHODS: Mature adipocytes isolated from IFP and SC in osteoarthritis patients (n = 7) were cultured by ceiling culture method to generate DFATs. Obtained IFP-DFATs and SC-DFATs were subjected to flow cytometric and microarray analysis to compare their immunophenotypes and gene expression profiles. Cell proliferation assay and adipogenic, osteogenic, and chondrogenic differentiation assays were performed to evaluate their functional properties. RESULTS: DFATs could be prepared from IFP and SC with similar efficiency. IFP-DFATs and SC-DFATs exhibited similar immunophenotypes (CD73+, CD90+, CD105+, CD31-, CD45-, HLA-DR-) and tri-lineage (adipogenic, osteogenic, and chondrogenic) differentiation potential, consistent with the minimal criteria for defining MSCs. Microarray analysis revealed that the gene expression profiles in IFP-DFATs were very similar to those in SC-DFATs, although there were certain number of genes that showed different levels of expression. The proliferative activity in IFP-DFATs was significantly (p < 0.05) higher than that in the SC-DFATs. IFP-DFATs showed higher chondrogenic differentiation potential than SC-DFATs in regard to production of soluble galactosaminogalactan and gene expression of type II collagen. CONCLUSIONS: IFP-DFATs showed higher cellular proliferative potential and higher chondrogenic differentiation capacity than SC-DFATs. IFP-DFAT cells may be an attractive cell source for chondrogenic regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA