RESUMO
Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation.
Assuntos
Citoesqueleto de Actina/fisiologia , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Membrana Celular/química , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Células HeLa , Humanos , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Microscopia de Fluorescência , Modelos Moleculares , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Domínios de Homologia de srcRESUMO
Unlike human intestines, which are long, hollow tubes, the intestines of sharks and rays contain interior helical structures surrounding a cylindrical hole. One function of these structures may be to create asymmetric flow, favoring passage of fluid down the digestive tract, from anterior to posterior. Here, we design and 3D print biomimetic models of shark intestines, in both rigid and deformable materials. We use the rigid models to test which physical parameters of the interior helices (the pitch, the hole radius, the tilt angle, and the number of turns) yield the largest flow asymmetries. These asymmetries exceed those of traditional Tesla valves, structures specifically designed to create flow asymmetry without any moving parts. When we print the biomimetic models in elastomeric materials so that flow can couple to the structure's shape, flow asymmetry is significantly amplified; it is sevenfold larger in deformable structures than in rigid structures. Last, we 3D-print deformable versions of the intestine of a dogfish shark, based on a tomogram of a biological sample. This biomimic produces flow asymmetry comparable to traditional Tesla valves. The ability to influence the direction of a flow through a structure has applications in biological tissues and artificial devices across many scales, from large industrial pipelines to small microfluidic devices.
Assuntos
Intestinos , Tubarões , Animais , Tubarões/fisiologia , Intestinos/fisiologia , Hidrodinâmica , Biomimética/métodos , Modelos Biológicos , Impressão TridimensionalRESUMO
Living systems adopt a diversity of curved and highly dynamic shapes. These diverse morphologies appear on many length scales, from cells to tissues and organismal scales. The common driving force for these dynamic shape changes are contractile stresses generated by myosin motors in the cell cytoskeleton, that converts chemical energy into mechanical work. A good understanding of how contractile stresses in the cytoskeleton arise into different three-dimensional (3D) shapes and what are the shape selection rules that determine their final configurations is still lacking. To obtain insight into the relevant physical mechanisms, we recreate the actomyosin cytoskeleton in vitro, with precisely controlled composition and initial geometry. A set of actomyosin gel discs, intrinsically identical but of variable initial geometry, dynamically self-organize into a family of 3D shapes, such as domes and wrinkled shapes, without the need for specific preprogramming or additional regulation. Shape deformation is driven by the spontaneous emergence of stress gradients driven by myosin and is encoded in the initial disc radius to thickness aspect ratio, which may indicate shaping scalability. Our results suggest that while the dynamical pathways may depend on the detailed interactions between the different microscopic components within the gel, the final selected shapes obey the general theory of elastic deformations of thin sheets. Altogether, our results emphasize the importance for the emergence of active stress gradients for buckling-driven shape deformations and provide insights on the mechanically induced spontaneous shape transitions in contractile active matter, revealing potential shared mechanisms with living systems across scales.
Assuntos
Citoesqueleto de Actina , Actomiosina , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Microtúbulos/metabolismoRESUMO
Deformation of all materials necessitates the collective propagation of various microscopic defects. On Earth, fracturing gives way to crystal-plastic deformation with increasing depth resulting in a "brittle-to-ductile" transition (BDT) region that is key for estimating the integrated strength of tectonic plates, constraining the earthquake cycle, and utilizing deep geothermal resources. Here, we show that the crossing of a BDT in marble during deformation experiments in the laboratory is accompanied by systematic increase in the frequency of acoustic emissions suggesting a profound change in the mean size and propagation velocity of the active defects. We further identify dominant classes of emitted waveforms using unsupervised learning methods and show that their relative activity systematically changes as the rocks cross the brittle-ductile transition. As pressure increases, long-period signals are suppressed and short-period signals become dominant. At higher pressures, signals frequently come in avalanche-like patterns. We propose that these classes of waveforms correlate with individual dominant defect types. Complex mixed-mode events indicate that interactions between the defects are common over the whole pressure range, in agreement with postmortem microstructural observations. Our measurements provide unique, real-time data of microscale dynamics over a broad range of pressures (10 to 200 MPa) and can inform micromechanical models for semi-brittle deformation.
RESUMO
Implants are widely used in medical applications and yet macrophage-mediated foreign body reactions caused by implants severely impact their therapeutic effects. Although the extensive use of multiple surface modifications has been introduced to provide some mitigation of fibrosis, little is known about how macrophages recognize the stiffness of the implant and thus influence cell behaviors. Here, we demonstrated that macrophage stiffness sensing leads to differential inflammatory activation, resulting in different degrees of fibrosis. The potential mechanism for macrophage stiffness sensing in the early adhesion stages tends to involve cell membrane deformations on substrates with different stiffnesses. Combining theory and experiments, we show that macrophages exert traction stress on the substrate through adhesion and altered membrane curvature, leading to the uneven distribution of the curvature-sensing protein Baiap2, resulting in cytoskeleton remodeling and inflammation inhibition. This study introduces a physical model feedback mechanism for early cellular stiffness sensing based on cell membrane deformation, offering perspectives for future material design and targeted therapies.
Assuntos
Reação a Corpo Estranho , Macrófagos , Humanos , Macrófagos/metabolismo , Reação a Corpo Estranho/metabolismo , Reação a Corpo Estranho/patologia , Inflamação/metabolismo , Membrana Celular , FibroseRESUMO
Matrix stiffening and external mechanical stress have been linked to disease and cancer development in multiple tissues, including the liver, where cirrhosis (which increases stiffness markedly) is the major risk factor for hepatocellular carcinoma. Patients with nonalcoholic fatty liver disease and lipid droplet-filled hepatocytes, however, can develop cancer in noncirrhotic, relatively soft tissue. Here, by treating primary human hepatocytes with the monounsaturated fatty acid oleate, we show that lipid droplets are intracellular mechanical stressors with similar effects to tissue stiffening, including nuclear deformation, chromatin condensation, and impaired hepatocyte function. Mathematical modeling of lipid droplets as inclusions that have only mechanical interactions with other cellular components generated results consistent with our experiments. These data show that lipid droplets are intracellular sources of mechanical stress and suggest that nuclear membrane tension integrates cell responses to combined internal and external stresses.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Gotículas Lipídicas/metabolismo , Hepatócitos/patologia , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Neoplasias Hepáticas/patologia , Metabolismo dos Lipídeos/fisiologiaRESUMO
The field of one-dimensional semiconducting materials holds a wide variety of captivating applications, such as photovoltaic cells, electronic devices, catalysis cells, lasers, and more. The tunability of electrical, mechanical, or optical attributes of a semiconductor crystal relies on the ability to control and pattern the crystal's growth direction, orientation, and dimensions. In this study, we harvest the unique properties of crystallographic defects in Au substrates, specifically twin boundaries, to fabricate selective epitaxial growth of semiconducting nanocrystals. Different crystallographic defects were previously shown to enhance materials properties, such as, screw dislocations providing spiral crystal growth, dislocation outcrops, and vacancies increasing their catalytic activity, dislocation strengthening, and atomic doping changing the crystal's electrical properties. Here, we present a unique phenomenon of directed growth of semiconductor crystals of gold(I)-cyanide (AuCN) on the surface of thin Au layers, using traces of deformation twins on the surface. We show that emergence of deformation twins to the {111} Au surface leads to the formation of ledges, exposing new {001} and {111} facets on the surface. We propose that this phenomenon leads to epitaxial growth of AuCN on the freshly exposed {111} facets of the twin boundary trace ledges. Specific orientations of the twin boundaries with respect to the Au surface allow for patterned growth of AuCN in the <110> orientations. Nano-scale patterning of AuCN semiconductors may provide an avenue for property tuning, particularly the band gap acquired.
RESUMO
The deformation-coordination ability between ductile metal and brittle dispersive ceramic particles is poor, which means that an improvement in strength will inevitably sacrifice ductility in dispersion-strengthened metallic materials. Here, we present an inspired strategy for developing dual-structure-based titanium matrix composites (TMCs) that achieve 12.0% elongation comparable to the matrix Ti6Al4V alloys and enhanced strength compared to homostructure composites. The proposed dual-structure comprises a primary structure, namely, a TiB whisker-rich region engendered fine grain Ti6Al4V matrix with a three-dimensional micropellet architecture (3D-MPA), and an overall structure consisting of evenly distributed 3D-MPA "reinforcements" and a TiBw-lean titanium matrix. The dual structure presents a spatially heterogeneous grain distribution with 5.8 µm fine grains and 42.3 µm coarse grains, which exhibits excellent hetero-deformation-induced (HDI) hardening and achieves a 5.8% ductility. Interestingly, the 3D-MPA "reinforcements" show 11.1% isotropic deformability and 66% dislocation storage, which endows the TMCs with good strength and loss-free ductility. Our enlightening method uses an interdiffusion and self-organization strategy based on powder metallurgy to enable metal matrix composites with the heterostructure of the matrix and the configuration of reinforcement to address the strength-ductility trade-off dilemma.
RESUMO
Nucleic acid deformations play important roles in many biological processes. The physical understanding of nucleic acid deformation by environmental stimuli is limited due to the challenge in the precise measurement of RNA and DNA deformations and the complexity of interactions in RNA and DNA. Magnetic tweezers experiments provide an excellent opportunity to precisely measure DNA and RNA twist changes induced by environmental stimuli. In this work, we applied magnetic tweezers to measure double-stranded RNA twist changes induced by salt and temperature changes. We observed RNA unwinds when lowering salt concentration, or increasing temperature. Our molecular dynamics simulations revealed the mechanism: lowering salt concentration or increasing temperature enlarges RNA major groove width, which causes twist decrease through twist-groove coupling. Combining these results with previous results, we found some universality in RNA and DNA deformations induced by three different stimuli: salt change, temperature, and stretching force. For RNA, these stimuli first modify the major groove width, which is transduced into twist change through twist-groove coupling. For DNA, these stimuli first modify diameter, which is transduced into twist change through twist-diameter coupling. Twist-groove coupling and twist-diameter coupling appear to be utilized by protein binding to reduce DNA and RNA deformation energy cost upon protein binding.
Assuntos
DNA , RNA de Cadeia Dupla , Conformação de Ácido Nucleico , Ligação Proteica , Temperatura , DNA/química , Cloreto de Sódio , Cloreto de Sódio na DietaRESUMO
The circulation of tumor cells through the bloodstream is a significant step in tumor metastasis. To better understand the metastatic process, circulating tumor cell (CTC) survival in the circulation must be explored. While immune interactions with CTCs in recent decades have been examined, research has yet to sufficiently explain some CTC behaviors in blood flow. Studies related to CTC mechanical responses in the bloodstream have recently been conducted to further study conditions under which CTCs might die. While experimental methods can assess the mechanical properties and death of CTCs, increasingly sophisticated computational models are being built to simulate the blood flow and CTC mechanical deformation under fluid shear stresses (FSS) in the bloodstream.Several factors contribute to the mechanical deformation and death of CTCs as they circulate. While FSS can damage CTC structure, diverse interactions between CTCs and blood components may either promote or hinder the next metastatic step-extravasation at a remote site. Overall understanding of how these factors influence the deformation and death of CTCs could serve as a basis for future experiments and simulations, enabling researchers to predict CTC death more accurately. Ultimately, these efforts can lead to improved metastasis-specific therapeutics and diagnostics specific in the future.
RESUMO
Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell-ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.
Assuntos
Matriz Extracelular , Esferoides Celulares , Humanos , Matriz Extracelular/metabolismo , Esferoides Celulares/citologia , Animais , Movimento Celular , Géis/química , Adesão Celular , Microscopia de Força Atômica/métodos , Análise de Célula Única/métodos , Hidrogéis/químicaRESUMO
Due to their potential role in the peculiar geophysical properties of the ice giants Neptune and Uranus, there has been a growing interest in superionic (SI) phases of water ice. So far, however, little attention has been given to their mechanical properties, even though plastic deformation processes in the interiors of planets are known to affect long-term processes, such as plate tectonics and mantle convection. Here, using density functional theory calculations and machine learning techniques, we assess the mechanical response of high-pressure/temperature solid phases of water in terms of their ideal shear strength (ISS) and dislocation behavior. The ISS results are well described by the renormalized Frenkel model of ideal strength and indicate that the SI ices are expected to be highly ductile. This is further supported by deep neural network molecular dynamics simulations for the behavior of lattice dislocations for the SI face-centered cubic (fcc) phase. Dislocation velocity data indicate effective shear viscosities that are orders of magnitude smaller than that of Earth's lower mantle, suggesting that the plastic flow of the internal icy layers in Neptune and Uranus may be significantly faster than previously foreseen.
RESUMO
Solid-solid phase transformations can affect energy transduction and change material properties (e.g., superelasticity in shape memory alloys and soft elasticity in liquid crystal elastomers). Traditionally, phase-transforming materials are based on atomic- or molecular-level thermodynamic and kinetic mechanisms. Here, we develop elasto-magnetic metamaterials that display phase transformation behaviors due to nonlinear interactions between internal elastic structures and embedded, macroscale magnetic domains. These phase transitions, similar to those in shape memory alloys and liquid crystal elastomers, have beneficial changes in strain state and mechanical properties that can drive actuations and manage overall energy transduction. The constitutive response of the elasto-magnetic metamaterial changes as the phase transitions occur, resulting in a nonmonotonic stress-strain relation that can be harnessed to enhance or mitigate energy storage and release under high-strain-rate events, such as impulsive recoil and impact. Using a Landau free energy-based predictive model, we develop a quantitative phase map that relates the geometry and magnetic interactions to the phase transformation. Our work demonstrates how controllable phase transitions in metamaterials offer performance capabilities in energy management and programmable material properties for high-rate applications.
RESUMO
The manipulation and control of electron spins, the fundamental building blocks of magnetic domains and spin textures, are at the core of spintronics. Of particular interest is the effect of the electric current on topological magnetic skyrmions, such as the current-induced deformation of isolated skyrmions. The deformation has consequences ranging from perturbed dynamics to modified packing configurations. In this study, we measured the current-driven real-space deformation of isolated, pinned skyrmions within Co10Zn10 at room temperature. We observed that the skyrmions are surprisingly soft, readily deforming during electric current application into an elliptical shape with a well-defined deformation axis (semimajor axis). We found that this axis rotates unidirectionally toward the current direction irrespective of electric current polarity and that the elliptical deformation reverses back upon current termination. We quantified the average distortion δ, which increased by â¼90% during the largest applied current density |j| = 8.46 ×109 A/m2 when compared with the skyrmion's intrinsic shape ([Formula: see text]). Additionally, we demonstrated an approximately 120% average skyrmion core size expansion during current application, highlighting the skyrmions' inherent topological protection. This evaluation of in situ electric current-induced skyrmion deformation paints a clearer picture of spin-polarized electron-skyrmion interactions and may prove essential in designing spintronic devices.
RESUMO
The deformation mode of the Tibetan Plateau is of crucial importance for understanding its construction and extrusion processes, as well as for the assessment of regional earthquake potential. Block motion and viscous flow models have been proposed to describe the deformation field but are not fully supported by modern geophysical observations. The 2021 Mw 7.4 Maduo earthquake, which occurred inside the Songpan-Ganzi terrane (SGT) in central-east Tibet, provides a chance to evaluate the associated deformation mode of the region. We conduct a joint inversion for this earthquake and resolve a bilateral rupture process, which is characterized by super- and subshear rupture velocities, respectively. We interpret this distinct rupture behavior to be the result of the respective slip concentration depths of the two ruptured segments. We analyze geological, seismic, and geodetic evidence and find that the SGT upper crust shows distributed shear deformation and distinct transverse anisotropy, which are associated with folded structures originating from compression of the paleo-Tethys ocean accretional prism realigned by following shear deformation. The SGT receives lateral shear loading from its NS boundary and accommodates a right-step sinistral motion across the terrane boundary faults. The unique tectonic setting of the SGT defines locations and behaviors of internal faulting and strong earthquakes such as the 2021 Maduo earthquake, with the latter occurring on slow-moving faults at intervals of several thousands of years.
RESUMO
SignificanceCreating structures to realize function-oriented mechanical responses is desired for many applications. Yet, the use of a single material phase and heuristics-based designs may fail to attain specific target behaviors. Here, through a deterministic algorithmic procedure, multiple materials with dissimilar properties are intelligently synthesized into composite structures to achieve arbitrary prescribed responses. Created structures possess unconventional geometry and seamless integration of multiple materials. Despite geometric complexity and varied material phases, these structures are fabricated by multimaterial manufacturing, and tested to demonstrate that wide-ranging nonlinear responses are physically and accurately realized. Upon heteroassembly, resulting structures provide architectures that exhibit highly complex yet navigable responses. The proposed strategy can benefit the design of function-oriented nonlinear mechanical devices, such as actuators and energy absorbers.
RESUMO
SignificanceThe exothermic metamorphic reaction in orthopyroxene (Opx), a major component of oceanic lithospheric mantle, is shown to trigger brittle failure in laboratory deformation experiments under conditions where garnet exsolution takes place. The reaction product is an extremely fine-grained material, forming narrow reaction zones that are mechanically weak, thereby facilitating macroscopic faulting. Oceanic subduction zones are characterized by two separate bands of seismicity, known as the double seismic zone. The upper band of seismicity, located in the oceanic crust, is well explained by dehydration-induced mechanical instability. Our newly discovered metamorphism-induced mechanical instability provides an alternative physical mechanism for earthquakes in the lower band of seismicity (located in the oceanic lithospheric mantle), with no requirement of hydration/dehydration processes.
RESUMO
We present a numerical method specifically designed for simulating three-dimensional fluid-structure interaction (FSI) problems based on the reference map technique (RMT). The RMT is a fully Eulerian FSI numerical method that allows fluids and large-deformation elastic solids to be represented on a single fixed computational grid. This eliminates the need for meshing complex geometries typical in other FSI approaches and greatly simplifies the coupling between fluid and solids. We develop a three-dimensional implementation of the RMT, parallelized using the distributed memory paradigm, to simulate incompressible FSI with neo-Hookean solids. As part of our method, we develop a field extrapolation scheme that works efficiently in parallel. Through representative examples, we demonstrate the method's suitability in investigating many-body and active systems, as well as its accuracy and convergence. The examples include settling of a mixture of heavy and buoyant soft ellipsoids, lid-driven cavity flow containing a soft sphere, and swimmers actuated via active stress.
Assuntos
Simulação por Computador , Suspensões , Humanos , Locomoção , Mecânica , Modelos CardiovascularesRESUMO
The shrinkage and collapse of wood cell walls during carbonization make it challenging to control the size and shape of carbonized wood (CW) through pre- or postprocessing (e.g., sawing, cutting, and milling). Herein, a shape-adaptive MXene shell (MS) is created on the surface of the wood cell walls. The MS limits the deformation of wood cell walls by spatial confinement and traction effects, which is supported by the inherent dimensional stability of the MS and the formation of new C-O-Ti covalent bonds between the wood cell wall and MS. Consequently, the volumetric shrinkage ratio of CW encapsulated by the MS (CW-MS) is significantly reduced from 54.8% for CW to 2.6% for CW-MS even at 800 °C. The harnessing of this collapse enables the production of CW-MS with prolonged stability and high electric conductivity (384 S m-1). These properties make CW-MS suitable for energy storage devices with various designed shapes, matching the increasingly compact and complex structures of electronic devices.
RESUMO
Optically and magnetically responsive soft actuators are gaining attention for their noncontact actuation, flexibility, and remote control capabilities. However, they face challenges in rapidly switching motion postures and modes, which limits their performance in complex environments. We developed bilayer hydrogel actuators based on poly(N-isopropylacrylamide) (PNIPAm) using an ice-templating method combined with free radical polymerization. This approach results in the formation of large, interconnected pores within the hydrogel. Under near-infrared light (27 W/cm2), the actuation speed of the actuator reached 38.5°/s, with complete recovery to the original shape 8 s after light cessation. In addition, the reversible changes in stiffness and volume enable the actuators to lock and dynamically adjust their magnetization curve, allowing for the decoupling of deformation and movement as well as the regulation of motion postures and modes. This work opens new pathways for multigait robots and shows promising applications in environmental monitoring and underwater exploration.