Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38012118

RESUMO

The present study aimed to clarify the brain function of classical trigeminal neuralgia (CTN) by analyzing 77 CTN patients and age- and gender-matched 73 healthy controls (HCs) based on three frequency bands of the static and dynamic amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality (sALFF, sReHo, sDC, dALFF, dReHo, and dDC). Compared to HCs, the number of altered brain regions was different in three frequency bands, and the classical frequency band was most followed by slow-4 in CTN patients. Cerrelellum_8_L (sReHo), Cerrelellum_8_R (sDC), Calcarine_R (sDC), and Caudate_R (sDC) were found only in classical frequency band, while Precuneus_L (sALFF) and Frontal_Inf_Tri_L (sReHo) were found only in slow-4 frequency band. Except for the above six brain regions, the others overlapped in the classical and slow-4 frequency bands. CTN seriously affects the mental health of patients, and some different brain regions are correlated with clinical parameters. The static and dynamic indicators of brain function were complementary in CTN patients, and the changing brain regions showed frequency specificity. Compared to slow-5 frequency band, slow-4 is more consistent with the classical frequency band, which could be valuable in exploring the pathophysiology of CTN.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Neuralgia do Trigêmeo , Humanos , Lobo Parietal , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38976050

RESUMO

Working memory (WM) is a distributed and dynamic process, and WM deficits are recognized as one of the top-ranked endophenotype candidates for major depressive disorders (MDD). However, there is a lack of knowledge of brain temporal-spatial profile of WM deficits in MDD. We used the dynamical degree centrality (dDC) to investigate the whole-brain temporal-spatial profile in 40 MDD and 40 controls during an n-back task with 2 conditions (i.e., '0back' and '2back'). We explored the dDC temporal variability and clustered meta-stable states in 2 groups during different WM conditions. Pearson's correlation analysis was used to evaluate the relationship between the altered dynamics with clinical symptoms and WM performance. Compared with controls, under '2back vs. 0back' contrast, patients showed an elevated dDC variability in wide range of brain regions, including the middle frontal gyrus, orbital part of inferior frontal gyrus (IFGorb), hippocampus, and middle temporal gyrus. Furthermore, the increased dDC variability in the hippocampus and IFGorb correlated with worse WM performance. However, there were no significant group-related differences in the meta-stable states were observed. This study demonstrated the increased WM-related instability (i.e., the elevated dDC variability) was represented in MDD, and enhancing stability may help patients achieve better WM performance.

3.
Cereb Cortex ; 33(11): 6785-6791, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36627244

RESUMO

Duchenne muscular dystrophy (DMD) is frequently associated with mild cognitive deficits. However, the underlying disrupted brain connectome and the neural basis remain unclear. In our current study, 38 first-episode, treatment-naive patients with DMD and 22 matched healthy controls (HC) were enrolled and received resting-sate functional magnetic resonance imaging scans. Voxel-based degree centrality (DC), seed-based functional connectivity (FC), and clinical correlation were performed. Relative to HC, DMD patients had lower height, full Intellectual Quotients (IQ), and IQ-verbal comprehension. Significant increment of DC of DMD patients were found in the left dorsolateral prefrontal cortex (DLPFC.L) and right dorsomedial prefrontal cortex (DMPFC.R), while decreased DC were found in right cerebellum posterior lobe (CPL.R), right precentral/postcentral gyrus (Pre/Postcentral G.R). DMD patients had stronger FC in CPL.R-bilateral lingual gyrus, Pre/Postcentral G.R-Insular, and DMPFC.R-Precuneus.R, had attenuated FC in DLPFC.L-Insular. These abnormally functional couplings were closely associated with the extent of cognitive impairment, suggested an over-activation of default mode network and executive control network, and a suppression of primary sensorimotor cortex and cerebellum-visual circuit. The findings collectively suggest the distributed brain connectome disturbances maybe a neuroimaging biomarker in DMD patients with mild cognitive impairment.


Assuntos
Disfunção Cognitiva , Conectoma , Distrofia Muscular de Duchenne , Córtex Sensório-Motor , Humanos , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Função Executiva , Mapeamento Encefálico/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Imageamento por Ressonância Magnética/métodos
4.
BMC Psychiatry ; 24(1): 137, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373944

RESUMO

BACKGROUND: Bipolar disorder (BD) is a complex mental illness characterized by different mood states, including depression, mania/hypomania, and euthymia. This study aimed to comprehensively evaluate dynamic changes in intrinsic brain activity by using dynamic fractional amplitude of low-frequency fluctuations (dfALFF) and dynamic degree centrality (dDC) in patients with BD euthymia or depression and healthy individuals. METHODS: The resting-state functional magnetic resonance imaging data were analyzed from 37 euthymic and 28 depressed patients with BD, as well as 85 healthy individuals. Using the sliding-window method, the dfALFF and dDC were calculated for each participant. These values were compared between the 3 groups using one-way analysis of variance (ANOVA). Additional analyses were conducted using different window lengths, step width, and window type to ensure the reliability of the results. RESULTS: The euthymic group showed significantly lower dfALFF and dDC values of the left and right cerebellum posterior lobe compared with the depressed and control groups (cluster level PFWE < 0.05), while the latter two groups were comparable. Brain regions showing significant group differences in the dfALFF analysis overlapped with those with significant differences in the dDC analysis. These results were consistent across different window lengths, step width, and window type. CONCLUSIONS: These findings suggested that patients with euthymic BD exhibit less flexibility of temporal functional activities in the cerebellum posterior lobes compared to either depressed patients or healthy individuals. These results could contribute to the development of neuropathological models of BD, ultimately leading to improved diagnosis and treatment of this complex illness.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/diagnóstico , Reprodutibilidade dos Testes , Encéfalo , Transtorno Ciclotímico , Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
5.
BMC Musculoskelet Disord ; 25(1): 450, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844898

RESUMO

OBJECTIVE: To investigate the brain mechanism of non-correspondence between imaging presentations and clinical symptoms in cervical spondylotic myelopathy (CSM) patients and to test the utility of brain imaging biomarkers for predicting prognosis of CSM. METHODS: Forty patients with CSM (22 mild-moderate CSM, 18 severe CSM) and 25 healthy controls (HCs) were recruited for rs-fMRI and cervical spinal cord diffusion tensor imaging (DTI) scans. DTI at the spinal cord (level C2/3) with fractional anisotropy (FA) and degree centrality (DC) were recorded. Then one-way analysis of covariance (ANCOVA) was conducted to detect the group differences in the DC and FA values across the three groups. Pearson correlation analysis was then separately performed between JOA with FA and DC. RESULTS: Among them, degree centrality value of left middle temporal gyrus exhibited a progressive increase in CSM groups compared with HCs, the DC value in severe CSM group was higher compared with mild-moderate CSM group. (P < 0.05), and the DC values of the right superior temporal gyrus and precuneus showed a decrease after increase. Among them, DC values in the area of precuneus in severe CSM group were significantly lower than those in mild-moderate CSM and HCs. (P < 0.05). The fractional anisotropy (FA) values of the level C2/3 showed a progressive decrease in different clinical stages, that severe CSM group was the lowest, significantly lower than those in mild-moderate CSM and HCs (P < 0.05). There was negative correlation between DC value of left middle temporal gyrus and JOA scores (P < 0.001), and the FA values of dorsal column in the level C2/3 positively correlated with the JOA scores (P < 0.001). CONCLUSION: Structural and functional changes have taken place in the cervical spinal cord and brain of CSM patients. The Brain reorganization plays an important role in maintaining the symptoms and signs of CSM, aberrant DC values in the left middle temporal gyrus may be the possible mechanism of inconsistency between imaging findings and clinical symptoms. Degree centrality is a potentially useful prognostic functional biomarker in cervical spondylotic myelopathy.


Assuntos
Vértebras Cervicais , Imagem de Tensor de Difusão , Plasticidade Neuronal , Índice de Gravidade de Doença , Espondilose , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Espondilose/diagnóstico por imagem , Espondilose/fisiopatologia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/fisiopatologia , Plasticidade Neuronal/fisiologia , Adulto , Imageamento por Ressonância Magnética , Idoso , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologia , Estudos de Casos e Controles , Anisotropia
6.
Hum Brain Mapp ; 44(17): 6245-6257, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37837649

RESUMO

Rumination is closely linked to the onset and maintenance of major depressive disorder (MDD). Prior neuroimaging studies have identified the association between self-reported rumination trait and the functional coupling among a network of brain regions using resting-state functional magnetic resonance imaging (MRI). However, little is known about the underlying neural circuitry mechanism during active rumination in MDD. Degree centrality (DC) is a simple metric to denote network integration, which is critical for higher-order psychological processes such as rumination. During an MRI scan, individuals with MDD (N = 45) and healthy controls (HC, N = 46) completed a rumination state task. We examined the interaction effect between the group (MDD vs. HC) and condition (rumination vs. distraction) on vertex-wise DC. We further characterized the identified brain region's functional involvement with Neurosynth and BrainMap. Network-wise seed-based functional connectivity (FC) analysis was also conducted for the identified region of interest. Finally, exploratory correlation analysis was conducted between the identified region of interest's network FCs and self-reported in-scanner affect levels. We found that a left superior frontal gyrus (SFG) region, generally overlapped with the frontal eye field, showed a significant interaction effect. Further analysis revealed its involvement with executive functions. FCs between this region, the frontoparietal, and the dorsal attention network (DAN) also showed significant interaction effects. Furthermore, its FC to DAN during distraction showed a marginally significant negative association with in-scanner affect level at the baseline. Our results implicated an essential role of the left SFG in the rumination's underlying neural circuitry mechanism in MDD and provided novel evidence for the conceptualization of rumination in terms of impaired executive control.


Assuntos
Transtorno Depressivo Maior , Humanos , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal , Função Executiva , Lobo Frontal , Imageamento por Ressonância Magnética , Mapeamento Encefálico
7.
Psychol Med ; 53(6): 2216-2228, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34702384

RESUMO

BACKGROUND: Based on hubs of neural circuits associated with addiction and their degree centrality (DC), this study aimed to construct the addiction-related brain networks for patients diagnosed with heroin dependence undertaking stable methadone maintenance treatment (MMT) and further prospectively identify the ones at high risk for relapse with cluster analysis. METHODS: Sixty-two male MMT patients and 30 matched healthy controls (HC) underwent brain resting-state functional MRI data acquisition. The patients received 26-month follow-up for the monthly illegal-drug-use information. Ten addiction-related hubs were chosen to construct a user-defined network for the patients. Then the networks were discriminated with K-means-clustering-algorithm into different groups and followed by comparative analysis to the groups and HC. Regression analysis was used to investigate the brain regions significantly contributed to relapse. RESULTS: Sixty MMT patients were classified into two groups according to their brain-network patterns calculated by the best clustering-number-K. The two groups had no difference in the demographic, psychological indicators and clinical information except relapse rate and total heroin consumption. The group with high-relapse had a wider range of DC changes in the cortical-striatal-thalamic circuit relative to HC and a reduced DC in the mesocorticolimbic circuit relative to the low-relapse group. DC activity in NAc, vACC, hippocampus and amygdala were closely related with relapse. CONCLUSION: MMT patients can be identified and classified into two subgroups with significantly different relapse rates by defining distinct brain-network patterns even if we are blind to their relapse outcomes in advance. This may provide a new strategy to optimize MMT.


Assuntos
Dependência de Heroína , Heroína , Humanos , Masculino , Heroína/uso terapêutico , Metadona/uso terapêutico , Encéfalo , Dependência de Heroína/psicologia , Recidiva , Tratamento de Substituição de Opiáceos
8.
Neuroradiology ; 65(1): 145-155, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36056968

RESUMO

PURPOSE: We aimed to identify the aberrant functional hubs in patients with acute severe traumatic brain injury (sTBI) and investigate whether they could help inform prognosis. METHODS: Twenty-eight sTBI patients and health controls underwent imaging scanning. The graph-theoretical measure of degree centrality (DC) was applied to identify the abnormal brain functional hubs and conjoined with regions of interest-based analysis to investigate their interaction and impact on whole-brain. We further split sTBI patients into two subgroups according to their recovery to explore whether the fractional amplitude of low-frequency fluctuation (fALFF) roles in functional connectivity (FC) differential areas to help inform the patients' long-term prognosis. RESULTS: We identified the part of prefrontal cortex (PFC), precentral and postcentral gyrus (Pre-/Post-CG), cingulate gyrus (CgG), posterior medial cortex (PMC), and brainstem that could be core hubs whose DC was significantly increased in patients with acute sTBI. The interaction strength of the paired hubs could be enhanced (CG-PFC, CgG-PFC, CG-brainstem, CgG-brainstem, PMC-brainstem, and PFC-brainstem) and weakened (CG-CgG, CG-PMC, CgG-PMC, and PMC-PFC), compared with healthy controls. We also found abnormal FC in 5 hubs to whole-brain. The spontaneous brain activities in the FC differential regions [e.g., the fALFF and mean fALFF value] were valid to predict outcome at 6-month in patients with sTBI. CONCLUSION: We demonstrated a compensatory mechanism that part of brain regions will converge into abnormal functional hubs in patients with acute sTBI, which provides a potential approach to objectively predicting patients' long-term outcome.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas/diagnóstico por imagem , Mapeamento Encefálico/métodos
9.
BMC Psychiatry ; 23(1): 894, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037006

RESUMO

BACKGROUND: Alcohol use disorder (AUD) has a negative impact on one's health and wastes a lot of societal resources since it damages one's brain tissue. Yet the knowledge of the neural mechanisms underlying alcohol addiction still remains limited. This study aims to investigate the neural mechanisms underlying alcohol addiction by using voxel-wise binarized degree centrality (DC), weighted DC and functional connectivity (FC) methods to analyze brain network activity in individuals with AUD. METHODS: Thirty-three AUD patients and 29 healthy controls (HC) participated in this study. Binarized and weighted DC approach coupled with a second seed-based FC algorithm was used to assess the abnormal intrinsic hub features in AUD. We also examined the correlation between changes in functional network nodes and the severity of alcohol dependence. RESULTS: Thirty AUD patients and 26 HC were retained after head motion correction. The spatial distribution maps of the binarized DC and weighted DC for the AUD and HC groups were roughly similar. In comparison to HC, the AUD group had decreased binarized DC and decreased weighted DC in the left precentral gyrus (PreCG) and the left inferior parietal lobule (IPL). Significantly different brain regions in the DC analysis were defined as seed points in the FC analysis. Compared with HC, changes in FC within the right inferior temporal gyrus (ITG), right middle temporal gyrus (MTG), left dorsolateral superior frontal gyrus (SFGdor), bilateral IPL, left precuneus (PCUN), left lingual gyrus (LING), right cerebellum_crus1/ITG/inferior occipital gyrus (IOG) and right superior parietal gyrus (SPG) were observed. The correlation analysis revealed that FC of right MTG-right PreCG was negatively correlated with MAST scores, and FC of right IPL-left IPL was positively correlated with ADS scores. CONCLUSIONS: Alcohol use disorder is associated with aberrant regional activities in multiple brain areas. Binarized DC, weighted DC and FC analyses may be useful biological indicators for the detection of regional brain activities in patients with AUD. Intergroup differences in FC have also been observed in AUD patients, and these variations were connected to the severity of the symptoms. The AUD patients with lower FC value of the right IPL - left IPL has a lighter dependence on alcohol. This difference in symptom severity may be a compensation for cognitive impairment, indicating a difference in pathological pathways. Future AUD research will now have a fresh path thanks to these discoveries.


Assuntos
Alcoolismo , Humanos , Alcoolismo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem
10.
Neurol Sci ; 44(8): 2915-2922, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36869275

RESUMO

PURPOSE: To explore the alterations of whole brain functional network using the degree centrality (DC) analysis in neovascular glaucoma (NVG) and the correlation between DC values and NVG clinical indices. MATERIALS AND METHODS: Twenty NVG patients and twenty normal controls (NC), closely matched in age, sex, and education, were recruited for this study. All subjects underwent comprehensive ophthalmologic examinations and a resting-state functional magnetic resonance imaging (rs-fMRI) scan. The differences in DC values of brain network between NVG and NC groups were analyzed, and correlation analysis was performed to explore the relationships between DC values and clinical ophthalmological indices in NVG group. RESULTS: Compared with NC group, significantly decreased DC values were found in the left superior occipital gyrus and left postcentral gyrus, while significantly increased DC values in the right anterior cingulate gyrus and left medial frontal gyrus in NVG group. (All P < 0.05, FDR corrected). In the NVG group, the DC value in left superior occipital gyrus showed significantly positive correlations with retinal nerve fiber layer (RNFL) thickness (R = 0.484, P = 0.031) and mean deviation of visual field (MDVF) (R = 0.678, P = 0.001). Meanwhile, the DC value in the left medial frontal gyrus demonstrated significantly negative correlations with RNFL (R = - 0.544, P = 0.013) and MDVF (R = - 0.481, P = 0.032). CONCLUSIONS: NVG exhibited decreased network degree centrality in visual and sensorimotor brain regions and increased degree centrality in cognitive-emotional processing brain region. Additionally, the DC alterations might be complementary imaging biomarkers to assess disease severity.


Assuntos
Glaucoma Neovascular , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Emoções
11.
Can J Psychiatry ; 68(1): 22-32, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35244484

RESUMO

OBJECTIVES: Up to 70%-80% of patients with bipolar disorder are misdiagnosed as having major depressive disorder (MDD), leading to both delayed intervention and worsening disability. Differences in the cognitive neurophysiology may serve to distinguish between the depressive phase of type 1 bipolar disorder (BDD-I) from MDD, though this remains to be demonstrated. To this end, we investigate the discriminatory signal in the topological organization of the functional connectome during a working memory (WM) task in BDD-I and MDD, as a candidate identification approach. METHODS: We calculated and compared the degree centrality (DC) at the whole-brain voxel-wise level in 31 patients with BDD-I, 35 patients with MDD, and 80 healthy controls (HCs) during an n-back task. We further extracted the distinct DC patterns in the two patient groups under different WM loads and used machine learning approaches to determine the distinguishing ability of the DC map. RESULTS: Patients with BDD-I had lower accuracy and longer reaction time (RT) than HCs at high WM loads. BDD-I is characterized by decreased DC in the default mode network (DMN) and the sensorimotor network (SMN) when facing high WM load. In contrast, MDD is characterized by increased DC in the DMN during high WM load. Higher WM load resulted in better classification performance, with the distinct aberrant DC maps under 2-back load discriminating the two disorders with 90.91% accuracy. CONCLUSIONS: The distributed brain connectivity during high WM load provides novel insights into the neurophysiological mechanisms underlying cognitive impairment of depression. This could potentially distinguish BDD-I from MDD if replicated in future large-scale evaluations of first-episode depression with longitudinal confirmation of diagnostic transition.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtorno Bipolar/diagnóstico , Imageamento por Ressonância Magnética/métodos , Transtorno Depressivo Maior/diagnóstico , Memória de Curto Prazo/fisiologia , Depressão , Encéfalo/diagnóstico por imagem
12.
Acta Radiol ; 64(2): 784-791, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35484787

RESUMO

BACKGROUND: Patients with Parkinson's disease (PD) have been documented with disrupted dynamic profiles of functional connectivity. However, the complementary information that is relevant to the dynamic pattern of global synchronization in patients with PD requires further investigation. PURPOSE: To reveal the aberrant dynamic profiles of global synchronization involved in PD with a focus on temporal variability, strength, and property. MATERIAL AND METHODS: A total of 46 patients with PD and 50 matched healthy controls (HCs) were enrolled. Degree centrality (DC) was used as the metric of global synchronization. The intergroup differences in the dynamic DC (dDC) pattern were compared, followed by further analysis of their clinical relevance in PD. RESULTS: Relative to HCs, the PD group showed decreased dDC variability in right inferior occipital gyrus, right insula, right middle occipital gyrus (MOG), and bilateral postcentral gyrus. The dDC variability in the MOG was significantly correlated with MoCA score. Two states (state I and state II) were suggested. Relative to HCs, the PD group demonstrated a shorter mean dwell time (MDT) in state I, a longer MDT in state II, and fewer transitions. For the PD group, dDC properties were significantly correlated with UPDRS-III scores. In state II, significantly decreased dynamic dDC strength in bilateral supplementary motor area was observed in the PD group, with a significant correlation with UPDRS-III scores. CONCLUSION: These findings on PD imply that dynamic alterations of global synchronization are engaged in the dysfunction of movement and cognition, deepening the understanding of deteriorations that underlie PD with complementary evidence.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cognição
13.
Eur Child Adolesc Psychiatry ; 32(7): 1317-1327, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35318540

RESUMO

Major depression disorder (MDD) is one of the most common psychiatric disorders. Previous studies have demonstrated structural and functional abnormalities in adult depression. However, the neurobiology of adolescent depression has not been fully understood. The aim of this study was to investigate the intrinsic dysconnectivity pattern of voxel-level whole-brain functional networks in first-episode, drug-naïve adolescents with MDD. Resting-state functional magnetic resonance imaging data were acquired from 66 depressed adolescents and 47 matched healthy controls. Voxel-wise degree centrality (DC) analysis was performed to identify voxels that showed altered whole-brain functional connectivity (FC) with other voxels. We further conducted seed-based FC analysis to investigate in more detail the connectivity patterns of the identified DC changes. The relationship between altered DC and clinical variables in depressed adolescents was also analyzed. Compared with controls, depressed adolescents showed lower DC in the bilateral hippocampus, left superior temporal gyrus and right insula. Seed-based analysis revealed that depressed adolescents, relative to controls, showed hypoconnectivity between the hippocampus to the medial prefrontal regions and right precuneus. Furthermore, the DC values in the bilateral hippocampus were correlated with the Hamilton Depression Rating Scale score and duration of disease (all P < 0.05, false discovery rate corrected). Our study indicates abnormal intrinsic dysconnectivity patterns of whole-brain functional networks in drug-naïve, first-episode adolescents with MDD, and abnormal DC in the hippocampus may affect the association of prefrontal-hippocampus circuit. These findings may provide new insights into the pathophysiology of adolescent-onset MDD.


Assuntos
Transtorno Depressivo Maior , Adulto , Humanos , Adolescente , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/psicologia , Depressão , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
14.
Int J Neuropsychopharmacol ; 25(9): 709-719, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35524732

RESUMO

BACKGROUND: Although methylphenidate (MPH) and atomoxetine (ATX) can improve clinical symptoms and functional impairments in attention deficit/hyperactive disorder (ADHD), the underlying psychopharmacological mechanisms have not been clearly elucidated. Therefore, we aimed to explore the shared and unique neurologic basis of these 2 medications in alleviating the clinical symptoms and functional impairments observed in ADHD. METHODS: Sixty-seven ADHD and 44 age-matched children with typical development were included and underwent resting-state functional magnetic resonance imaging scans at baseline. Then patients were assigned to MPH, ATX, or untreated subgroups, based on the patients' and their parents' choice, for a 12-week follow-up and underwent a second functional magnetic resonance imaging scan. The treatment effect on degree centrality (DC) was identified and correlated with clinical symptoms and functional impairments in the ADHD group. RESULTS: Both MPH and ATX normalized the DC value in extensive brain regions mainly involving fronto-cingulo-parieto-cerebellum circuits. However, ATX showed limited significant effects on the cerebellum compared with ADHD at baseline. The improvements in clinical symptoms were correlated with increased DC in the right inferior temporal gyrus in both MPH and ATX subgroups but showed opposite effects. The alleviation of functional impairments in the school/learning domain negatively correlated with decreased DC in the bilateral cerebellum after MPH treatment, and the family functional domain positively correlated with decreased DC in the cerebellum and negatively correlated with decreased DC in the postcentral gyrus after ATX treatment. CONCLUSIONS: Both MPH and ATX can normalize abnormal brain functions that mainly involve the fronto-cingulo-parieto-cerebellum circuit in ADHD. Furthermore, the 2 medications showed shared and unique effects on brain functions to alleviate clinical symptoms and functional impairment.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Inibidores da Captação Adrenérgica/uso terapêutico , Cloridrato de Atomoxetina/farmacologia , Cloridrato de Atomoxetina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Encéfalo , Estimulantes do Sistema Nervoso Central/farmacologia , Criança , Humanos , Metilfenidato/farmacologia
15.
BMC Psychiatry ; 22(1): 531, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931995

RESUMO

BACKGROUND: Interleukin-18 (IL-18) may participate in the development of major depressive disorder, but the specific mechanism remains unclear. This study aimed to explore whether IL-18 correlates with areas of the brain associated with depression. METHODS: Using a case-control design, 68 subjects (34 patients and 34 healthy controls) underwent clinical assessment, blood sampling, and resting-state functional Magnetic Resonance Imaging (fMRI). The total Hamilton depression-17 (HAMD-17) score was used to assess depression severity. Enzyme-linked immunosorbent assay (ELISA) was used to detect IL-18 levels. Rest-state fMRI was conducted to explore spontaneous brain activity. RESULTS: The level of IL-18 was higher in patients with depression in comparison with healthy controls. IL-18 was negatively correlated with degree centrality of the left posterior cingulate gyrus in the depression patient group, but no correlation was found in the healthy control group. CONCLUSION: This study suggests the involvement of IL-18 in the pathophysiological mechanism for depression and interference with brain activity.


Assuntos
Transtorno Depressivo Maior , Interleucina-18/metabolismo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Humanos , Interleucina-18/sangue , Imageamento por Ressonância Magnética/métodos
16.
BMC Psychiatry ; 22(1): 279, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443639

RESUMO

BACKGROUND: It is yet unknown if the whole-brain resting-state network is altered in multiple system atrophy with symptoms of depression. This study aimed to investigate if and how depression symptoms in multiple system atrophy are associated with resting-state network dysfunction. METHODS: We assessed the resting-state functional network matric using Degree centrality (DC) coupling with a second ROI-wise functional connectivity (FC) algorithm in a multimodal imaging case-control study that enrolled 32 multiple system atrophy patients with depression symptoms (MSA-D), 30 multiple system atrophy patients without depression symptoms (MSA-ND), and 34 healthy controls (HC). RESULTS: Compared to HC, MSA-D showed more extensive DC hub dysfunction in the left precentral and right middle frontal cortex than MSA-ND. A direct comparison between MSA-D and MSA-ND detected increased DC in the right anterior cingulum cortex, but decreased DC in the left cerebellum lobule IV and lobule V, left middle pole temporal cortex, and right superior frontal cortex. Only right anterior cingulum cortex mean DC values showed a positive correlation with depression severity, and used ACC as seed, a second ROI-wise functional connectivity further revealed MSA-D patients showed decreased connectivity between the ACC and right thalamus and right middle temporal gyrus (MTG). CONCLUSIONS: These findings revealed that dysfunction of rACC, right middle temporal lobe and right thalamus involved in depressed MSA. Our study might help to the understanding of the neuropathological mechanism of depression in MSA.


Assuntos
Atrofia de Múltiplos Sistemas , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Depressão/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Atrofia de Múltiplos Sistemas/diagnóstico por imagem
17.
Int J Med Sci ; 19(1): 105-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975304

RESUMO

Objective: The brain network in panic disorder (PD) is still an intriguing issue for research. In this study, we hoped to investigate the role of DC (degree centrality) for the pathophysiology of PD, especially for the fear network. Methods: We enrolled 60 patients with PD and 60 controls in the current study. The gender and age were matched for two groups. All participants received the resting-state functional magnetic resonance imaging to survey the baseline brain activity. Then the DC values of all participants were using REST toolbox. We also compared the DC values between PD and controls. The statistical threshold was set as FDR (false discovery rate) < 0.05. Results: The DC values were significantly lower in the right superior frontal gyrus of PD patients compared to controls (FDR < 0.05). In addition, a negative correlation between the DC values and panic severity was observed in the right superior frontal gyrus and left inferior frontal gyrus. However, there was no significant association between the DC values and illness duration. Conclusion: The DC seemed significantly altered in the frontal lobe of PD patients. The role of the frontal lobe might be more emphasized in the pathophysiology research for PD.


Assuntos
Lobo Frontal/fisiopatologia , Transtorno de Pânico/fisiopatologia , Adulto , Estudos de Casos e Controles , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Transtorno de Pânico/diagnóstico por imagem
18.
J Integr Neurosci ; 21(4): 116, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864767

RESUMO

BACKGROUND: The difference in spontaneous brain activity between acute subjective tinnitus patients (with or without hearing loss) and control participants was explored using the amplitude of low-frequency fluctuations and degree centrality methods through resting-state functional magnetic resonance imaging. The study aimed to provide an objective basis for clinical diagnosis and pathogenesis of patients with acute subjective tinnitus. METHODS: Fourteen acute subjective tinnitus (AST) patients with hearing loss (AST-HL), 6 AST patients with no hearing loss (AST-NHL), and 14 healthy controls (HCs) with age, sex, and education status matched were recruited for this study. Resting-state functional magnetic resonance imaging (fMRI) examinations were performed in a resting state and the amplitude of low-frequency fluctuations (ALFF) and degree centrality (DC) values of each group were acquired. Statistical analysis was performed to assess the ALFF and DC values of different brain areas of the participants (AST-HL and AST-NHL were compared with HCs, but AST-HL and AST-NHL were not). RESULTS: Patients with acute subjective tinnitus and hearing loss showed a significantly increased amplitude of low-frequency fluctuation values in the left middle temporal gyrus and bilateral frontal gyrus/marginal lobe/cingulate gyrus but a decreased amplitude of low-frequency fluctuations values in the bilateral superior temporal gyrus/anterior cerebellar lobe in comparison with healthy controls. The amplitude of low-frequency fluctuation values of patients with acute subjective tinnitus and hearing loss in the right posterior lobe of the cerebellum, bilateral temporal gyrus, bilateral lenticular nucleus, bilateral frontal gyrus, right inferior occipital gyrus, were higher, but were significantly lower in the bilateral anterior lobe of cerebellum/superior temporal gyrus and left posterior cerebellar lobe as compared with those of healthy controls. Degree centrality values in the healthy controls group were increased in the right superior marginal gyrus and decreased in the right thalamus in patients with acute subjective tinnitus and hearing loss, while patients with acute subjective tinnitus with no hearing loss presented significantly higher degree centrality values in the left frontal lobe and lower degree centrality values in the left center rear return. CONCLUSIONS: Aberrant amplitude of low-frequency fluctuations and values exist in various brain regions, indicating abnormal spontaneous brain activity in both acute subjective tinnitus and hearing loss and acute subjective tinnitus no hearing loss patients. The pathogenesis of acute subjective tinnitus may be related to abnormalities in both the auditory cortex and nonauditory cortex. These findings provide more evidence to help clarify the neuronal symptoms of acute subjective tinnitus patients.


Assuntos
Zumbido , Encéfalo , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/patologia , Zumbido/diagnóstico por imagem , Zumbido/patologia
19.
Pattern Recognit Lett ; 153: 246-253, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34975182

RESUMO

Network structures have attracted much interest and have been rigorously studied in the past two decades. Researchers used many mathematical tools to represent these networks, and in recent days, hypergraphs play a vital role in this analysis. This paper presents an efficient technique to find the influential nodes using centrality measure of weighted directed hypergraph. Genetic Algorithm is exploited for tuning the weights of the node in the weighted directed hypergraph through which the characterization of the strength of the nodes, such as strong and weak ties by statistical measurements (mean, standard deviation, and quartiles) is identified effectively. Also, the proposed work is applied to various biological networks for identification of influential nodes and results shows the prominence the work over the existing measures. Furthermore, the technique has been applied to COVID-19 viral protein interactions. The proposed algorithm identified some critical human proteins that belong to the enzymes TMPRSS2, ACE2, and AT-II, which have a considerable role in hosting COVID-19 viral proteins and causes for various types of diseases. Hence these proteins can be targeted in drug design for an effective therapeutic against COVID-19.

20.
Neuroimage ; 237: 118187, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34020011

RESUMO

Brain signal variability has been consistently linked to functional integration; however, whether this coupling is associated with cognitive functions and/or psychiatric diseases has not been clarified. Using multiple multimodality datasets, including resting-state functional magnetic resonance imaging (rsfMRI) data from the Human Connectome Project (HCP: N = 927) and a Beijing sample (N = 416) and cerebral blood flow (CBF) and rsfMRI data from a Hangzhou sample (N = 29), we found that, compared with the existing variability measure (i.e., SDBOLD), the mean-scaled (standardized) fractional standard deviation of the BOLD signal (mfSDBOLD) maintained very high test-retest reliability, showed greater cross-site reliability and was less affected by head motion. We also found strong reproducible couplings between the mfSDBOLD and functional integration measured by the degree centrality (DC), both cross-voxel and cross-subject, which were robust to scanning and preprocessing parameters. Moreover, both mfSDBOLD and DC were correlated with CBF, suggesting a common physiological basis for both measures. Critically, the degree of coupling between mfSDBOLD and long-range DC was positively correlated with individuals' cognitive total composite scores. Brain regions with greater mismatches between mfSDBOLD and long-range DC were more vulnerable to brain diseases. Our results suggest that BOLD signal variability could serve as a meaningful index of local function that underlies functional integration in the human brain and that a strong coupling between BOLD signal variability and functional integration may serve as a hallmark of balanced brain networks that are associated with optimal brain functions.


Assuntos
Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Cognição/fisiologia , Conectoma/normas , Imageamento por Ressonância Magnética/normas , Transtornos Mentais/fisiopatologia , Modelos Teóricos , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Conjuntos de Dados como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos Mentais/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA