Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 259(2): 39, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265504

RESUMO

MAIN CONCLUSION: The nuclear localized TaWZY1-2 helps plants resist abiotic stress by preserving the cell's ability to remove reactive oxygen species and decrease lipid oxidation under such conditions. In light of the unpredictable environmental conditions in which food crops grow, precise strategies must be developed by crops to effectively cope with abiotic stress and minimize damage over their lifespan. A key component in this endeavor is the group II of late embryogenesis abundant (LEA) proteins, known as dehydrins, which play crucial roles in enhancing the tolerance of plants to abiotic stress. Tawzy1-2 is a dehydrin-encoding gene which is constitutively expressed in various tissues of wheat. However, the biological function of TaWZY1-2 is not yet fully understood. In this study, TaWZY1-2 was isolated and identified in the wheat genome, and its functional role in conferring tolerance to abiotic stresses was detected in both prokaryotic and eukaryotic cells. Results showed that TaWZY1-2 is a nuclear localized hydrophilic protein that accumulates in response to multiple stresses. Escherichia coli cells expressing TaWZY1-2 showed enhanced tolerance to multiple stress conditions. Overexpression of TaWZY1-2 in Nicotiania benthamiana improved growth, germination and survival rate of the transgenic plants exposed to four kinds of abiotic stress conditions. Our results show that Tawzy1-2 transgenic plants exhibit improved capability in clearing reactive oxygen species and reducing lipid degradation, thereby enhancing their resistance to abiotic stress. This demonstrates a significant role of TaWZY1-2 in mitigating abiotic stress-induced damage. Consequently, these findings not only establish a basis for future investigation into the functional mechanism of TaWZY1-2 but also contribute to the expansion of functional diversity within the dehydrin protein family. Moreover, they identify potential candidate genes for crop optimization.


Assuntos
Produtos Agrícolas , Escherichia coli , Nicotiana , Lipídeos , Proteínas Nucleares , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Estresse Fisiológico
2.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126099

RESUMO

Dynamic climate changes pose a significant challenge for plants to cope with numerous abiotic and biotic stressors of increasing intensity. Plants have evolved a variety of biochemical and molecular defense mechanisms involved in overcoming stressful conditions. Under environmental stress, plants generate elevated amounts of reactive oxygen species (ROS) and, subsequently, modulate the activity of the antioxidative enzymes. In addition, an increase in the biosynthesis of important plant compounds such as anthocyanins, lignin, isoflavonoids, as well as a wide range of low molecular weight stress-related proteins (e.g., dehydrins, cyclotides, heat shock proteins and pathogenesis-related proteins), was evidenced. The induced expression of these proteins improves the survival rate of plants under unfavorable environmental stimuli and enhances their adaptation to sequentially interacting stressors. Importantly, the plant defense proteins may also have potential for use in medical applications and agriculture (e.g., biopesticides). Therefore, it is important to gain a more thorough understanding of the complex biological functions of the plant defense proteins. It will help to devise new cultivation strategies, including the development of genotypes characterized by better adaptations to adverse environmental conditions. The review presents the latest research findings on selected plant defense proteins.


Assuntos
Proteínas de Plantas , Plantas , Estresse Fisiológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Peso Molecular , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo
3.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743226

RESUMO

Eight Trichoderma strains were evaluated for their potential to protect wheat seedlings against severe (no irrigation within two weeks) water stress (WS). Considering the plant fresh weight and phenotype, T. asperellum T140, which displays 1-aminocyclopropane-1-carboxylic acid deaminase activity and which is able to produce several phytohormones, was selected. The molecular and biochemical results obtained from 4-week-old wheat seedlings linked T140 application with a downregulation in the WS-response genes, a decrease in antioxidant activities, and a drop in the proline content, as well as low levels of hydrogen peroxide and malondialdehyde in response to severe WS. All of these responses are indicative of T140-primed seedlings having a higher tolerance to drought than those that are left untreated. A greenhouse assay performed under high nitrogen fertilization served to explore the long-term effects of T140 on wheat plants subjected to moderate (halved irrigation) WS. Even though all of the plants showed acclimation to moderate WS regardless of T140 application, there was a positive effect exerted by T. asperellum on the level of tolerance of the wheat plants to this stress. Strain T140 modulated the expression of a plant ABA-dependent WS marker and produced increased plant superoxide dismutase activity, which would explain the positive effect of Trichoderma on increasing crop yields under moderate WS conditions. The results demonstrate the effectiveness of T. asperellum T140 as a biostimulant for wheat plants under WS conditions, making them more tolerant to drought.


Assuntos
Desidratação , Triticum , Desidratação/metabolismo , Secas , Hypocreales , Plântula/metabolismo , Triticum/metabolismo
4.
Genomics ; 112(2): 1902-1915, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31733270

RESUMO

In this investigation, whole-genome identification and functional characterization of the cotton dehydrin genes was carried out. A total of 16, 7, and 7 dehydrin proteins were identified in G. hirsutum, G. arboreum and G. raimondii, respectively. Through RNA sequence data and RT-qPCR validation, Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) were highly upregulated, and knockdown of the two genes, significantly reduced the ability of the plants to tolerate the effects of osmotic and salt stress. The VIGS-plants recorded significantly higher concentration levels of oxidants, hydrogen peroxide (H2O2) and malondialdehyde (MDA), furthermore, the four stress responsive genes GhLEA2, Gh_D12G2017 (CDKF4), Gh_A07G0747 (GPCR) and a transcription factor, trihelix, Gh_A05G2067, were significantly downregulated in VIGS-plants, but upregulated in wild types under osmotic and salt stress condition. The result indicated that dehydrin proteins are vital for plants and can be exploited in developing a more osmotic and salt stress-resilient germplasm to boost and improve cotton production.


Assuntos
Gossypium/genética , Pressão Osmótica , Proteínas de Plantas/genética , Tolerância ao Sal , Gossypium/metabolismo , Estresse Oxidativo , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200124

RESUMO

Identifying and characterizing cold responsive genes in Fragaria vesca associated with or responsible for low temperature tolerance is a vital part of strawberry cultivar development. In this study we have investigated the transcript levels of eight genes, two dehydrin genes, three putative ABA-regulated genes, two cold-inducible CBF genes and the alcohol dehydrogenase gene, extracted from leaf and crown tissues of three F. vesca genotypes that vary in cold tolerance. Transcript levels of the CBF/DREB1 transcription factor FvCBF1E exhibited stronger cold up-regulation in comparison to FvCBF1B.1 in all genotypes. Transcripts of FvADH were highly up-regulated in both crown and leaf tissues from all three genotypes. In the 'ALTA' genotype, FvADH transcripts were significantly higher in leaf than crown tissues and more than 10 to 20-fold greater than in the less cold-tolerant 'NCGR1363' and 'FDP817' genotypes. FvGEM, containing the conserved ABRE promoter element, transcript was found to be cold-regulated in crowns. Direct comparison of the kinetics of transcript and protein accumulation of dehydrins was scrutinized. In all genotypes and organs, the changes of XERO2 transcript levels generally preceded protein changes, while levels of COR47 protein accumulation preceded the increases in COR47 RNA in 'ALTA' crowns.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Fragaria/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Genótipo
6.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809823

RESUMO

Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene "CaDHN3" from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•- contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.


Assuntos
Capsicum/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico , Adaptação Biológica , Arabidopsis/fisiologia , Técnicas de Silenciamento de Genes , Inativação Gênica , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Ativação Transcricional
7.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360938

RESUMO

During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Germinação , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Plântula/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta
8.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142722

RESUMO

The wide natural variation present in rice is an important source of genes to facilitate stress tolerance breeding. However, identification of candidate genes from RNA-Seq studies is hampered by the lack of high-quality genome assemblies for the most stress tolerant cultivars. A more targeted solution is the reconstruction of transcriptomes to provide templates to map RNA-seq reads. Here, we sequenced transcriptomes of ten rice cultivars of three subspecies on the PacBio Sequel platform. RNA was isolated from different organs of plants grown under control and abiotic stress conditions in different environments. Reconstructed de novo reference transcriptomes resulted in 37,500 to 54,600 plant-specific high-quality isoforms per cultivar. Isoforms were collapsed to reduce sequence redundancy and evaluated, e.g., for protein completeness (BUSCO). About 40% of all identified transcripts were novel isoforms compared to the Nipponbare reference transcriptome. For the drought/heat tolerant aus cultivar N22, 56 differentially expressed genes in developing seeds were identified at combined heat and drought in the field. The newly generated rice transcriptomes are useful to identify candidate genes for stress tolerance breeding not present in the reference transcriptomes/genomes. In addition, our approach provides a cost-effective alternative to genome sequencing for identification of candidate genes in highly stress tolerant genotypes.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , RNA-Seq/métodos , Estresse Fisiológico , Transcriptoma , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679718

RESUMO

Phosphatidic acid (PA) is involved in the regulation of plant growth and development, as well as responses to various environmental stimuli. Several PA targets in plant cells were identified, including two SNF1-related protein kinases 2 (SnRK2s), SnRK2.10 and SnRK2.4, which are not activated by abscisic acid (ABA). Here, we investigated the effects of PA on various elements of ABA-non-activated SnRK2 signaling. PA 16:0/18:1 was found to modulate the SnRK2 structure and the phosphorylation of some SnRK2 targets. Conversely, phosphorylation by the ABA-non-activated SnRK2s, of one of such targets, dehydrin Early Responsive to Dehydration 14 (ERD14), affects its interaction with PA and subcellular localization. Moreover, PA 16:0/18:1 modulates the activity and/or localization of negative regulators of the ABA-non-activated SnRK2s, not only of the ABA insensitive 1 (ABI1) phosphatase, which was identified earlier, but also of another protein phosphatase 2C, PP2CA. The activity of both phosphatases was inhibited by about 50% in the presence of 50 µM PA. PA 16:0/18:1 also impacts the phosphorylation and subcellular localization of SnRK2-interacting calcium sensor, known to inhibit SnRK2 activity in a calcium-dependent manner. Thus, PA was found to regulate ABA-non-activated SnRK2 signaling at several levels: the activity, phosphorylation status and/or localization of SnRK2 cellular partners.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/análise , Fosforilação , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/análise
10.
Planta ; 249(5): 1583-1598, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30771046

RESUMO

MAIN CONCLUSION: A water-deficit period, leading to stomatal control and overexpression of protective proteins (sHSP and DHN), contributes to olive´s tolerance to later imposed stress episodes. Aquaporins modulation is important in olive recovery. Olive is traditionally cultivated in dry farming or in high water demanding irrigated orchards. The impact of climate change on these orchards remains to unveil, as heat and drought episodes are increasing in the Mediterranean region. To understand how young plants face such stress episodes, olive plants growing in pots were exposed to well-irrigated and non-irrigated treatments. Subsequently, plants from each treatment were either exposed to 40 °C for 2 h or remained under control temperature. After treatments, all plants were allowed to grow under well-irrigated conditions (recovery). Leaves were compared for photosynthesis, relative water content, mineral status, pigments, carbohydrates, cell membrane permeability, lipid peroxidation and expression of the protective proteins' dehydrin (OeDHN1), heat-shock proteins (OeHSP18.3), and aquaporins (OePIP1.1 and OePIP2.1). Non-irrigation, whilst increasing carbohydrates, reduced some photosynthetic parameters to values below the ones of the well-irrigated plants. However, when both groups of plants were exposed to heat, well-irrigated plants suffered more drastic decreases of net CO2 assimilation rate and chlorophyll b than non-irrigated plants. Overall, OeDHN1 and OeHSP18.3 expression, which was increased in non-irrigated treatment, was potentiated by heat, possibly to counteract the increase of lipid peroxidation and loss of membrane integrity. Plants recovered similarly from both irrigation and temperature treatments, and recovery was associated with increased aquaporin expression in plants exposed to one type of stress (drought or heat). These data represent an important contribution for further understanding how dry-farming olive will cope with drought and heat episodes.


Assuntos
Olea/metabolismo , Olea/fisiologia , Fotossíntese/fisiologia , Irrigação Agrícola , Aquaporinas/metabolismo , Mudança Climática , Secas , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Plantas/metabolismo
11.
Ann Bot ; 123(4): 681-689, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30418484

RESUMO

BACKGROUND AND AIMS: It has been reported that low temperatures (LTs) and the plant hormone abscisic acid (ABA) induce the expression of CBF/DREB1 transcription factors in vegetative tissues and seedlings of Vitis vinifera and Vitis riparia and that foliar applications of ABA to V. vinifera increase the freezing tolerance or cold-hardiness of dormant buds. However, the combined effect of ABA and LTs on the expression of CBF/DREB1 transcription factors and on the acquisition of freezing tolerance in dormant grapevine buds has not been investigated. The objective of this study was to analyse the combined effect of ABA and LT treatments on the expression of CBF/DREB transcription factors and the acquisition of freezing tolerance. METHODS: In vitro experiments with single-bud cuttings of grapevines were used to analyse the effect of ABA, ABA + LT and LT on the expression of CBF/DREB transcription factors, dehydrin and antioxidant genes, the acquisition of freezing tolerance and the endogenous content of ABA. Gene expression analysis was performed by quantitative real-time PCR and freezing tolerance was determined by measuring the low-temperature exotherm by differential thermal analysis. ABA levels were determined by gas chromatography coupled to an electron capture detector. KEY RESULTS: The LT treatment and exogenous application of ABA to grapevine dormant buds increased the expression of the CBF/DREB1 transcription factors VvCBF2, VvCBF3, VvCBF4 and VvCBF6. The joint application of LT and ABA produced a huge increase in the expression of these transcription factors, which was greater than the sum of the increases produced by them individually, which indicates the existence of a synergistic effect between ABA and LT on the activation of these transcription factors. This synergic effect was also observed on the increase in bud cold-hardiness and on the expression of antioxidant and dehydrin genes. CONCLUSIONS: The synergy between ABA and LT on the expression of CBF/DREB1 transcription factors VvCBF2, VvCBF3, VvCBF4 and VvCBF6 plays a key role in cold acclimatization of grapevine buds. The results highlight the importance of the combination of stimuli in the improvement of genetic and physiological responses and help us to understand the adaption of plants to complex environments.


Assuntos
Ácido Abscísico/metabolismo , Aclimatação , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Vitis/genética
12.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861623

RESUMO

Dehydrins play an important role in improving plant resistance to abiotic stresses. In this study, we isolated a dehydrin gene from pepper (Capsicum annuum L.) leaves, designated as CaDHN4. Sub-cellular localization of CaDHN4 was to be found in the nucleus and membrane. To authenticate the function of CaDHN4 in cold- and salt-stress responses and abscisic acid (ABA) sensitivity, we reduced the CaDHN4 expression using virus-induced gene silencing (VIGS), and overexpressed the CaDHN4 in Arabidopsis. We found that silencing of CaDHN4 reduced the growth of pepper seedlings and CaDHN4-silenced plants exhibited more serious wilting, higher electrolyte leakage, and more accumulation of ROS in the leaves compared to pTRV2:00 plants after cold stress, and lower chlorophyll contents and higher electrolyte leakage compared to pTRV2:00 plants under salt stress. However, CaDHN4-overexpressing Arabidopsis plants had higher seed germination rates and post-germination primary root growth, compared to WT plants under salt stress. In response to cold and salt stresses, the CaDHN4-overexpressed Arabidopsis exhibited lower MDA content, and lower relative electrolyte leakage compared to the WT plants. Under ABA treatments, the fresh weight and germination rates of transgenic plants were higher than WT plants. The transgenic Arabidopsis expressing a CaDHN4 promoter displayed a more intense GUS staining than the normal growth conditions under treatment with hormones including ABA, methyl jasmonate (MeJA), and salicylic acid (SA). Our results suggest that CaDHN4 can protect against cold and salt stresses and decrease ABA sensitivity in Arabidopsis.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/crescimento & desenvolvimento , Capsicum/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Capsicum/genética , Núcleo Celular/metabolismo , Resposta ao Choque Frio , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino
13.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802195

RESUMO

The late embryogenesis abundant (LEA) family is composed of a diverse collection of multidomain and multifunctional proteins found in all three domains of the tree of life, but they are particularly common in plants. Most members of the family are known to play an important role in abiotic stress response and stress tolerance in plants but are also part of the plant hypersensitive response to pathogen infection. The mechanistic basis for LEA protein functionality is still poorly understood. The group of LEA 2 proteins harbor one or more copies of a unique domain, the water stress and hypersensitive response (WHy) domain. This domain sequence has recently been identified as a unique open reading frame (ORF) in some bacterial genomes (mostly in the phylum Firmicutes), and the recombinant bacterial WHy protein has been shown to exhibit a stress tolerance phenotype in Escherichia coli and an in vitro protein denaturation protective function. Multidomain phylogenetic analyses suggest that the WHy protein gene sequence may have ancestral origins in the domain Archaea, with subsequent acquisition in Bacteria and eukaryotes via endosymbiont or horizontal gene transfer mechanisms. Here, we review the structure, function, and nomenclature of LEA proteins, with a focus on the WHy domain as an integral component of the LEA constructs and as an independent protein.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Evolução Molecular , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/química , Plantas/classificação , Plantas/genética , Domínios Proteicos
14.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149642

RESUMO

The objective of this study was to determine the effect of soaking with γ-aminobutyric acid (GABA) on white clover (Trifolium repens cv. Haifa) seed germination under salt stress induced by 100 mM NaCl. Seeds soaking with GABA (1 µM) significantly alleviated salt-induced decreases in endogenous GABA content, germination percentage, germination vigor, germination index, shoot and root length, fresh and dry weight, and root activity of seedling during seven days of germination. Exogenous application of GABA accelerated starch catabolism via the activation of amylase and also significantly reduced water-soluble carbohydrate, free amino acid, and free proline content in seedlings under salt stress. In addition, improved antioxidant enzyme activities (SOD, GPOX, CAT, APX, DHAR, GR and MDHR) and gene transcript levels (Cu/ZnSOD, FeSOD, MnSOD, CAT, GPOX, APX, MDHR, GPX and GST) was induced by seeds soaking with GABA, followed by decreases in O2∙-, H2O2, and MDA accumulation during germination under salt stress. Seeds soaking with GABA could also significantly improve Na⁺/K⁺ content and transcript levels of genes encoding Na⁺/K⁺ transportation (HKT1, HKT8, HAL2, H⁺-ATPase and SOS1) in seedlings of white clover. Moreover, exogenous GABA significantly induced the accumulation of dehydrins and expression of genes encoding dehydrins (SK2, Y2K, Y2SK, and dehydrin b) in seedlings under salt stress. These results indicate that GABA mitigates the salt damage during seeds germination through enhancing starch catabolism and the utilization of sugar and amino acids for the maintenance of growth, improving the antioxidant defense for the alleviation of oxidative damage, increasing Na⁺/K⁺ transportation for the osmotic adjustment, and promoting dehydrins accumulation for antioxidant and osmotic adjustment under salt stress.


Assuntos
Germinação , Tolerância ao Sal/genética , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico/genética , Trifolium/genética , Trifolium/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Oxirredução , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Plântula/efeitos dos fármacos , Sódio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Trifolium/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
15.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642585

RESUMO

Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of RNA editing machinery) were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation.


Assuntos
Brassica/metabolismo , Biogênese de Organelas , Proteoma/genética , Estresse Fisiológico , Transcriptoma , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Secas , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Porinas/genética , Porinas/metabolismo , Proteoma/metabolismo
16.
Int J Mol Sci ; 19(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857479

RESUMO

Gamma-aminobutyric acid (GABA) may play a positive role in regulating plant tolerance to drought or heat stress. The objectives of this study were to investigate the physiological effects of GABA on tolerance of creeping bentgrass (Agrostis stolonifera) to heat and drought stress and to determine whether enhanced heat and drought tolerance due to GABA treatment was associated with the up-regulation of selected genes and transcriptional factors involved in stress protection. Creeping bentgrass (cultivar "Penncross") plants were treated with 0.5 mM GABA or water (untreated control) as a foliar spray and were subsequently exposed to heat stress (35/30 °C, day/night), drought stress by withholding irrigation, or non-stress conditions in controlled-environment growth chambers. Exogenous application of GABA significantly improved plant tolerance to heat and drought stress, as reflected by increased leaf water content, cell membrane stability, and chlorophyll content. The analysis of gene transcript level revealed that exogenous GABA up-regulated the expression of ABF3, POD, APX, HSP90, DHN3, and MT1 during heat stress and the expression of CDPK26, MAPK1, ABF3, WRKY75, MYB13, HSP70, MT1, 14-3-3, and genes (SOD, CAT, POD, APX, MDHAR, DHAR, and GR) encoding antioxidant enzymes during drought stress. The up-regulation of the aforementioned stress-protective genes and transcriptional factors could contribute to improved heat and drought tolerance in creeping bentgrass.


Assuntos
Adaptação Biológica , Agrostis/fisiologia , Secas , Temperatura Alta , Estresse Fisiológico , Ácido gama-Aminobutírico/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais
17.
Planta ; 246(3): 553-566, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28577177

RESUMO

MAIN CONCLUSION: Epigenetic memory affects the timing of bud burst phenology and the expression of bud burst-related genes in genetically identical Norway spruce epitypes in a manner usually associated with ecotypes. In Norway spruce, a temperature-dependent epigenetic memory established during embryogenesis affects the timing of bud burst and bud set in a reproducible and predictable manner. We hypothesize that the clinal variation in these phenological traits, which is associated with adaptation to growth under frost-free conditions, has an epigenetic component. In Norway spruce, dehydrins (DHNs) have been associated with extreme frost tolerance. DHN transcript levels decrease gradually prior to flushing, a time when trees are highly sensitive to frost. Furthermore, EARLY BUD BREAK 1 genes (EBB1) and the FT-TFL1-LIKE 2-gene (PaFTL2) were previously suggested to be implied in control of bud phenology. Here we report an analysis of transcript levels of 12 DHNs, 3 EBB1 genes and FTL2 in epitypes of the same genotype generated at different epitype-inducing temperatures, before and during spring bud burst. Earlier flushing of epitypes originating from embryos developed at 18 °C as compared to 28 °C, was associated with differential expression of these genes between epitypes and between buds and last year's needles. The majority of these genes showed significantly different expressions between epitypes in at least one time point. The general trend in DHN expression pattern in buds showed the expected reduction in transcript levels when approaching flushing, whereas, surprisingly, transcript levels peaked later in needles, mainly at the moment of bud burst. Collectively, our results demonstrate that the epigenetic memory of temperature during embryogenesis affects bud burst phenology and expression of the bud burst-related DHN, EBB1 and FTL2 genes in genetically identical Norway spruce epitypes.


Assuntos
Epigênese Genética/fisiologia , Picea/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Epigênese Genética/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Picea/genética , Picea/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Sementes/fisiologia , Temperatura , Transcriptoma
18.
Biomolecules ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540671

RESUMO

We conducted analyses on 253 protein sequences (Pfam00257) derived from 25 woody plant species, including trees, shrubs, and vines. Our goal was to gain insights into their architectural types, biochemical characteristics, and potential involvement in mitigating abiotic stresses, such as drought, cold, or salinity. The investigated protein sequences (253) comprised 221 angiosperms (85 trees/shrubs and 36 vines) and 32 gymnosperms. Our sequence analyses revealed the presence of seven architectural types: Kn, KnS, SKn, YnKn, YnSKn, FSKn, and FnKn. The FSKn type predominated in tree and shrub dehydrins of both gymnosperms and angiosperms, while the YnSKn type was more prevalent in vine dehydrins. The YnSKn and YnKn types were absent in gymnosperms. Gymnosperm dehydrins exhibited a shift towards more negative GRAVY scores and Fold Indexes. Additionally, they demonstrated a higher Lys content and lower His content. By analyzing promoter sequences in the angiosperm species, including trees, shrubs, and vines, we found that these dehydrins are induced by the ABA-dependent and light-responsive pathways. The presence of stress- and hormone-related cis-elements suggests a protective effect against dehydration, cold, or salinity. These findings could serve as a foundation for future studies on woody dehydrins, especially in the context of biotechnological applications.


Assuntos
Proteínas de Plantas , Estresse Fisiológico , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas
19.
Plants (Basel) ; 13(19)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39409624

RESUMO

Under a water deficit, the protective proteins known as dehydrins (DHNs) prevent nonspecific interactions in protein and membrane structures and their damage, in addition to playing an antioxidant role. The DHNs of a widespread xerophytic species Scots pine (Pinus sylvestris L.) have been poorly studied, and their role in resistance to water deficits has not been revealed. In this paper, we have expanded the list of DHNs that accumulate in the cells of Scots pine under the conditions of water deficits and revealed their relationship with the effects of water deficits. In this investigation, callus cultures of branches and buds of Scots pine were used. A weak water deficit was created by adding polyethylene glycol to the culture medium. Under the conditions of a water deficit, the activity of catalase and peroxidase enzymes increased in the callus cultures. A moderate decrease in the total water content was correlated with a decrease in the growth rate of the callus cultures, as well as with an increase in the activity of lipid peroxidation. The accumulation of Mr 72, 38, and 27 kDa DHNs occurred in the callus cultures of buds, and the accumulation of Mr 72 and 27 kDa DHNs positively correlated with the lipid peroxidation activity. An increase in the content of DHNs was observed in cultures that differed in origin, growth indicators, and biochemical parameters, indicating the universality of this reaction. Thus, previously undescribed DHNs were identified, the accumulation of which is caused by water deficiency and is associated with manifestations of oxidative stress in the kidney cells of Scots pine.

20.
Tree Physiol ; 43(9): 1603-1618, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37171580

RESUMO

Drought-induced mortality is a major direct effect of climate change on tree health, but drought can also affect trees indirectly by altering their susceptibility to pathogens. Here, we report how a combination of mild or severe drought and pathogen infection affected the growth, pathogen resistance and gene expression in potted 5-year-old Norway spruce trees [Picea abies (L.) Karst.]. After 5 weeks of drought, trees were inoculated with the fungal pathogen Endoconidiophora polonica. Combined drought-pathogen stress over the next 8 weeks led to significant reductions in the growth of drought-treated trees relative to well-watered trees and more so in trees subjected to severe drought. Belowground, growth of the smallest fine roots was most affected. Aboveground, shoot diameter change was most sensitive to the combined stress, followed by shoot length growth and twig biomass. Both drought-related and some resistance-related genes were upregulated in bark samples collected after 5 weeks of drought (but before pathogen infection), and gene expression levels scaled with the intensity of drought stress. Trees subjected to severe drought were much more susceptible to pathogen infection than well-watered trees or trees subjected to mild drought. Overall, our results show that mild drought stress may increase the tree resistance to pathogen infection by upregulating resistance-related genes. Severe drought stress, on the other hand, decreased tree resistance. Because drought episodes are expected to become more frequent with climate change, combined effects of drought and pathogen stress should be studied in more detail to understand how these stressors interactively influence tree susceptibility to pests and pathogens.


Assuntos
Picea , Picea/genética , Secas , Noruega , Árvores/genética , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA