RESUMO
We recently developed a series of nalfurafine analogs (TK10, TK33, and TK35) that may serve as non-addictive candidate analgesics. These compounds are mixed-action agonists at the kappa and delta opioid receptors (KOR and DOR, respectively) and produce antinociception in a mouse warm-water tail-immersion test while failing to produce typical mu opioid receptor (MOR)-mediated side effects. The warm-water tail-immersion test is an assay of pain-stimulated behavior vulnerable to false-positive analgesic-like effects by drugs that produce motor impairment. Accordingly, this study evaluated TK10, TK33, and TK35 in a recently validated assay of pain-related behavioral depression in mice that are less vulnerable to false-positive effects. For comparison, we also evaluated the effects of the MOR agonist/analgesic hydrocodone (positive control), the neurokinin 1 receptor (NK1R) antagonist aprepitant (negative control), nalfurafine as a selective KOR agonist, SNC80 as a selective DOR agonist, and a nalfurafine/SNC80 mixture. Intraperitoneal injection of dilute lactic acid (IP lactic acid) served as a noxious stimulus to depress vertical and horizontal locomotor activity in male and female ICR mice. IP lactic acid-induced locomotor depression was alleviated by hydrocodone but not by aprepitant, nalfurafine, SNC80, the nalfurafine/SNC80 mixture, or the KOR/DOR agonists. These results suggest that caution is warranted in advancing mixed-action KOR/DOR agonists as candidate analgesics.
Assuntos
Dor , Receptores Opioides delta , Receptores Opioides kappa , Animais , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Camundongos , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Masculino , Depressão/tratamento farmacológico , Depressão/etiologia , Morfinanos/farmacologia , Comportamento Animal/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Compostos de Espiro/farmacologia , Compostos de Espiro/químicaRESUMO
Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.
Assuntos
Analgésicos Opioides , Morfina , Analgésicos Opioides/efeitos adversos , Animais , Tolerância a Medicamentos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/uso terapêutico , Trato Gastrointestinal , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Morfina/uso terapêutico , Antagonistas de Entorpecentes/farmacologia , Proteína Quinase C , Receptores Opioides , Receptores Opioides mu , Transdução de SinaisRESUMO
Our previous study found that activation of adenosine A1 receptor (A1R) induced phosphorylation of delta opioid receptor (DOR) and desensitization of its downstream signaling molecules, cAMP and Akt. To further investigate the effect of A1R agonist on DOR signaling and the underlying mechanism, we examined the effect of A1R activation upon binding of its agonist N6-cyclohexyl-adenosine (CHA) on DOR-mediated Raf-1/MEK/ERK activation, and found that prolonged CHA exposure resulted in downregulation of DOR-mediated Raf-1/MEK/ERK signaling pathway. CHA-treatment time dependently attenuated Raf-1-Ser338 phosphorylation induced by [D-Pen2,5] enkephalin (DPDPE), a specific agonist of DOR, and further caused downregulation of the Raf-1/MEK/ERK signaling pathway activated by DOR agonist. Moreover, CHA exposure time-dependently induced the phosphorylation of Raf-1-Ser289/296/301, the inhibitory phosphorylation sites that were regulated by negative feedback, thereby inhibiting activation of the MEK/ERK pathway, and this effect could be blocked by MEK inhibitor U0126. Finally, we proved that the heterologous desensitization of the Raf-1/MEK/ERK cascade was essential in the regulation of anti-nociceptive effect of DOR agonists by confirming that such effect was inhibited by pretreatment of CHA. Therefore, we conclude that the activation of A1R inhibits DOR-mediated MAPK signaling pathway via heterologous desensitization of the Raf-1/MEK/ERK cascade, which is a result of ERK-mediated Raf-1-Ser289/296/301 phosphorylation mediated by activation of A1R.
Assuntos
Receptor A1 de Adenosina , Receptores Opioides delta , Fosforilação , Receptor A1 de Adenosina/metabolismo , Receptores Opioides delta/metabolismo , Analgésicos Opioides/farmacologia , Retroalimentação , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismoRESUMO
The inflammatory and immunological responses play a significant role after stroke. The innate immune activation stimulated by microglia during stroke results in the migration of macrophages and lymphocytes into the brain and are responsible for tissue damage. The immune response and inflammation following stroke have no defined targets, and the intricacies of the immunological and inflammatory processes are only partially understood. Innate immune cells enter the brain and meninges during the acute phase, which can cause ischemia damage. Activation of systemic immunity is caused by danger signals sent into the bloodstream by injured brain cells, which is followed by a significant immunodepression that encourages life-threatening infections. Neuropsychiatric sequelae, a major source of post-stroke morbidity, may be induced by an adaptive immune response that is initiated by antigen presentation during the chronic period and is directed against the brain. Thus, the current review discusses the role of immune response and inflammation in stroke pathogenesis, their role in the progression of injury during the stroke, and the emerging targets for the modulation of the mechanism of immune response and inflammation that may have possible therapeutic benefits against stroke.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/tratamento farmacológico , Inflamação/tratamento farmacológico , Encéfalo/patologia , Macrófagos/patologia , Isquemia Encefálica/tratamento farmacológico , ImunidadeRESUMO
Rubiscolins are naturally occurring opioid peptides derived from the enzymatic digestion of the ribulose bisphosphate carboxylase/oxygenase protein in spinach leaves. They are classified into two subtypes based on amino acid sequence, namely rubiscolin-5 and rubiscolin-6. In vitro studies have determined rubiscolins as G protein-biased delta-opioid receptor agonists, and in vivo studies have demonstrated that they exert several beneficial effects via the central nervous system. The most unique and attractive advantage of rubiscolin-6 over other oligopeptides is its oral availability. Therefore, it can be considered a promising candidate for the development of a novel and safe drug. In this review, we show the therapeutic potential of rubiscolin-6, mainly focusing on its effects when orally administered based on available evidence. Additionally, we present a hypothesis for the pharmacokinetics of rubiscolin-6, focusing on its absorption in the intestinal tract and ability to cross the blood-brain barrier.
Assuntos
Receptores Opioides delta , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Receptores Opioides delta/metabolismo , Oligopeptídeos , Peptídeos OpioidesRESUMO
Peptide-based opioid ligands are important candidates for the development of novel, safer, and more effective analgesics to treat pain. To develop peptide-based safer analgesics, we synthesized a mixture-based cyclic pentapeptide library containing a total of 24,624 pentapeptides and screened the mixture-based library samples using a 55 °C warm water tail-withdrawal assay. Using this phenotypic screening approach, we deconvoluted the mixture-based samples to identify a novel cyclic peptide Tyr-[D-Lys-Dap(Ant)-Thr-Gly] (CycloAnt), which produced dose- and time-dependent antinociception with an ED50 (and 95% confidence interval) of 0.70 (0.52-0.97) mg/kg i.p. mediated by the mu-opioid receptor (MOR). Additionally, higher doses (≥3 mg/kg, i.p.) of CycloAnt antagonized delta-opioid receptors (DOR) for at least 3 h. Pharmacological characterization of CycloAnt showed the cyclic peptide did not reduce breathing rate in mice at doses up to 15 times the analgesic ED50 value, and produced dramatically less hyperlocomotion than the MOR agonist, morphine. While chronic administration of CycloAnt resulted in antinociceptive tolerance, it was without opioid-induced hyperalgesia and with significantly reduced signs of naloxone-precipitated withdrawal, which suggested reduced physical dependence compared to morphine. Collectively, the results suggest this dual MOR/DOR multifunctional ligand is an excellent lead for the development of peptide-based safer analgesics.
Assuntos
Analgésicos Opioides , Peptídeos Cíclicos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Peptídeos Cíclicos/farmacologia , Receptores Opioides delta/agonistas , Morfina/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptores Opioides mu/agonistas , PeptídeosRESUMO
All possible diastereomeric C9-hydroxymethyl-, hydroxyethyl-, and hydroxypropyl-substituted 5-phenylmorphans were synthesized to explore the three-dimensional space around the C9 substituent in our search for potent MOR partial agonists. These compounds were designed to lessen the lipophilicity observed with their C9-alkenyl substituted relatives. Many of the 12 diastereomers that were obtained were found to have nanomolar or subnanomolar potency in the forskolin-induced cAMP accumulation assay. Almost all these potent compounds were fully efficacious, and three of those chosen for in vivo evaluation, 15, 21, and 36, were all extremely G-protein biased; none of the three compounds recruited beta-arrestin2. Only one of the 12 diastereomers, 21 (3-((1S,5R,9R)-9-(2-hydroxyethyl)-2-phenethyl-2-azabicyclo[3.3.1]nonan-5-yl)phenol), was a MOR partial agonist with good, but not full, efficacy (Emax = 85%) and subnanomolar potency (EC50 = 0.91 nM) in the cAMP assay. It did not have any KOR agonist activity. This compound was unlike morphine in that it had a limited ventilatory effect in vivo. The activity of 21 could be related to one or more of three well-known theories that attempt to predict a dissociation of the desired analgesia from the undesirable opioid-like side-effects associated with clinically used opioids. In accordance with the theories, 21 was a potent MOR partial agonist, it was highly G-protein biased and did not attract beta-arrestin2, and it was found to have both MOR and DOR agonist activity. All the other diastereomers that were synthesized were either much less potent than 21 or had either too little or too much efficacy for our purposes. It was also noted that a C9-methoxymethyl compound with 1R,5S,9R stereochemistry (41) was more potent than the comparable C9-hydroxymethyl compound 11 (EC50 = 0.65 nM for 41 vs. 2.05 nM for 11). Both 41 and 11 were fully efficacious.
Assuntos
Morfinanos , Receptores Opioides mu , Morfinanos/química , Morfina , Analgésicos Opioides/químicaRESUMO
Anxiety is often comorbid with pain. Delta opioid receptors (DORs) are promising targets for the treatment of pain and mental disorders with little addictive potential. However, their roles in anxiety symptoms at different stages of pain are unclear. In the current study, mice with inflammatory pain at the fourth hour following complete Freund's adjuvant (CFA) injection displayed significant anxiety-like behavior, which disappeared at the seventh day. Combining electrophysiology, optogenetics, and pharmacology, we found that activation of delta opioid receptor 1 (DOR1) in the central nucleus amygdala (CeA) inhibited both the anxiolytic excitatory input from the basolateral amygdala (BLA) and the anxiogenic excitatory input from the parabrachial nucleus (PBN). In contrast, activation of delta opioid receptor 2 (DOR2) did not affect CeA excitatory synaptic transmission in normal and 4-h CFA mice but inhibited the excitatory projection from the PBN rather than the BLA in 7-day CFA mice. Furthermore, the function of both DOR1 and DOR2 was downregulated to the point of not being detectable in the CeA of mice at the 21st day following CFA injection. Taken together, these results suggest that functional switching of DOR1 and DOR2 is associated with anxiety states at different stages of pain via modulating the activity of specific pathways (BLA-CeA and PBN-CeA).
Assuntos
Ansiedade/tratamento farmacológico , Dor/tratamento farmacológico , Receptores Opioides delta/genética , Animais , Ansiedade/genética , Ansiedade/patologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/patologia , Núcleo Central da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/patologia , Modelos Animais de Doenças , Adjuvante de Freund/farmacologia , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Optogenética/métodos , Dor/genética , Dor/patologia , Transmissão Sináptica/genéticaRESUMO
Primary afferents are responsible for transmitting signals produced by noxious stimuli from the periphery to the spinal cord. Mu and delta opioid receptors (MOP and DOP) have analgesic properties and are highly expressed in dorsal root ganglia (DRG) neurons. In humans, spinal DOP is almost exclusively located on central terminals of DRG neurons, whereas in rodents, it is expressed both on presynaptic terminals and spinal neurons. In this study, we aimed to assess the distribution of MOP and DOP in the DRGs of mice and rats. Using in situ hybridization and immunofluorescence, we visualized MOP and DOP mRNA together with various neuronal markers. In rats and mice, we show that both receptors are expressed, albeit to different extents, in all types of neurons, namely, large and medium myelinated neurons (NF200-positive), small nonpeptidergic (IB4- or P2X3R-positive) and peptidergic C fibres (Tac1-positive). Overall, DOP mRNA was found to be mainly expressed in large and medium myelinated neurons, whereas MOP mRNA was mainly found in C fibres. The distribution of MOP and DOP, however, slightly differs between rats and mice, with a higher proportion of small nonpeptidergic C fibres expressing DOP mRNA in mice than in rats. We further found that neither morphine nor inflammation affected the distribution of the receptor mRNA. Because of their location, our results confirm that MOP and DOP have the potential to alleviate similar types of pain and that this effect could slightly differ between species.
Assuntos
Gânglios Espinais , Neurônios , RNA Mensageiro , Receptores Opioides delta , Receptores Opioides mu , Animais , Gânglios Espinais/metabolismo , Camundongos , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismoRESUMO
Allosteric modulators (AMs) are molecules that can fine-tune signaling by G protein-coupled receptors (GPCRs). Although they are a promising therapeutic approach for treating a range of disorders, allosteric modulation of GPCRs in the context of the enteric nervous system (ENS) and digestive dysfunction remains largely unexplored. This study examined allosteric modulation of the delta opioid receptor (DOR) in the ENS and assessed the suitability of DOR AMs for the treatment of irritable bowel syndrome (IBS) symptoms using mouse models. The effects of the positive allosteric modulator (PAM) of DOR, BMS-986187, on neurogenic contractions of the mouse colon and on DOR internalization in enteric neurons were quantified. The ability of BMS-986187 to influence colonic motility was assessed both in vitro and in vivo. BMS-986187 displayed DOR-selective PAM-agonist activity and orthosteric agonist probe dependence in the mouse colon. BMS-986187 augmented the inhibitory effects of DOR agonists on neurogenic contractions and enhanced reflex-evoked DOR internalization in myenteric neurons. BMS-986187 significantly increased DOR endocytosis in myenteric neurons in response to the weakly internalizing agonist ARM390. BMS-986187 reduced the generation of complex motor patterns in the isolated intact colon. BMS-986187 reduced fecal output and diarrhea onset in the novel environment stress and castor oil models of IBS symptoms, respectively. DOR PAMs enhance DOR-mediated signaling in the ENS and have potential benefit for the treatment of dysmotility. This study provides proof of concept to support the use of GPCR AMs for the treatment of gastrointestinal motility disorders.NEW & NOTEWORTHY This study assesses the use of positive allosteric modulation as a pharmacological approach to enhance opioid receptor signaling in the enteric nervous system. We demonstrate that selective modulation of endogenous delta opioid receptor signaling can suppress colonic motility without causing constipation. We propose that allosteric modulation of opioid receptor signaling may be a therapeutic strategy to normalize gastrointestinal motility in conditions such as irritable bowel syndrome.
Assuntos
Sistema Nervoso Entérico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Receptores Opioides delta/efeitos dos fármacos , Xantonas/farmacologia , Analgésicos Opioides/farmacologia , Benzamidas/farmacologia , Colo/efeitos dos fármacos , Sistema Nervoso Entérico/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Humanos , Receptores Opioides/efeitos dos fármacos , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Receptores Opioides mu/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Delta-opioid receptor is widely expressed in human and rodent hearts, and has been proved to protect cardiomyocytes against ischemia/reperfusion and heart failure. The antagonist of delta-opioid receptor could block the rescue effect of lipid emulsion against local anesthetic cardiotoxicity. However, no evidence is available for the direct effect of delta-opioid-receptor agonists on the cardiotoxicity of local anesthetics. METHODS: Anesthetized Sprague Dawley rats were divided into five groups. Group NS received 2 ml·kg-1·min-1 normal saline, group LE received 2 ml·kg-1·min-1 30% lipid emulsion and group BW received 0.1, 1.0, or 5.0 mg/kg BW373U86, a delta-opioid-receptor agonist, for 5 min. Then 0.5% bupivacaine was infused intravenously at a rate of 3.0 mg·kg-1·min-1 until asystole. The time of arrhythmia, 50% mean arterial pressure-, 50% heart rate-reduction and asystole were recorded, and the dose of bupivacaine at each time point was calculated. RESULTS: All three different doses of BW373U86 did not affect the arrhythmia, 50% mean arterial pressure-reduction, 50% heart rate-reduction and asystole dose of bupivacaine compared with group NS. 30% LE significantly increased the bupivacaine threshold of 50% mean arterial pressure-reduction (17.9 [15.4-20.7] versus 7.2 [5.9-8.7], p = 0.018), 50% heart rate-reduction (18.7 ± 4.2 versus 8.8 ± 1.7, p < 0.001) and asystole (26.5 [21.0-29.1] versus 11.3 [10.7-13.4], p = 0.008) compared with group NS. There was no difference between group LE and group NS in the arrhythmia dose of bupivacaine (9.9 [8.9-11.7] versus 5.6 [4.5-7.0], p = 0.060). CONCLUSIONS: Our data show that BW373U86 does not affect the cardiotoxicity of bupivacaine compared with NS control in rats. 30% LE pretreatment protects the myocardium against bupivacaine-induced cardiotoxicity.
Assuntos
Anestésicos Locais/efeitos adversos , Benzamidas/farmacologia , Bupivacaína/efeitos adversos , Cardiotoxicidade/prevenção & controle , Piperazinas/farmacologia , Receptores Opioides/agonistas , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ratos , Ratos Sprague-DawleyRESUMO
The medial prefrontal cortex (mPFC) plays a vital role in the processing of emotional events. It has been shown that activation of the glutamatergic transmission in prelimbic subregion of the mPFC (PL-PFC) evoked anxiety-like behavior in rodents. We previously reported that local perfusion of a selective agonist to delta-opioid receptor (DOP), KNT-127, attenuated the veratrine-induced elevation of extracellular glutamate in the PL-PFC and anxiety-like behavior in mice. These results suggested the possibility that KNT-127 suppresses glutamate release from the presynaptic site in the PL-PFC. To examine this possibility directly, we performed whole-cell patch-clamp recording from principal neurons in the PL-PFC and examined the spontaneous and electrically-evoked excitatory postsynaptic currents (EPSC)s. We found that bath application of KNT-127 significantly decreased the frequency of spontaneous and miniature EPSCs. Conversely, amplitude, rise time, and decay time of spontaneous and miniature EPSCs were not affected by bath application of KNT-127. Also, KNT-127 increased paired-pulse ratios of electrically-evoked EPSCs in the PL-PFC principal neurons tested. Further, we analyzed the firing properties of pyramidal neurons in the PL-PFC and found that KNT-127 treatment significantly reduced the number of action potentials and firing threshold. These results suggested that KNT-127 suppresses glutamatergic synaptic transmission by inhibiting glutamate release from the presynaptic site and reduces neuronal excitability in the mouse PL-PFC. We propose the possibility that these suppressing effects of KNT-127 on PL-PFC activity are part of the underlying mechanisms of its anxiolytic-like effects.
Assuntos
Morfinanos/farmacologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Receptores Opioides delta/agonistas , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/fisiologiaRESUMO
BACKGROUND: Buprenorphine treatment is not equally effective in all patients with opioid use disorder (OUD). Two retrospective studies showed that, among African Americans (AAs), rs678849, a polymorphism in the delta-opioid receptor gene, moderated the therapeutic effect of sublingual buprenorphine. METHODS: We examined rs678849 as a moderator of the response to an extended-release subcutaneous buprenorphine formulation (BUP-XR) in a 24-week OUD treatment study of 127 AAs and 327 European Americans (EAs). Participants were randomly assigned to receive: (1) BUP-XR as 2 monthly injections of 300 mg followed by either 300 mg monthly or 100 mg monthly for 4 months, or (2) monthly volume-matched placebo injections. Generalized estimating equations logistic regression analyses tested, per population group, the main and interaction effects of treatment (BUP-XR vs placebo) and genotype group (rs678849*CC vs CT/TT) on weekly urine drug screens (UDS). RESULTS: Among AAs, the placebo group had higher rates of opioid-positive UDS than the BUP-XR group (log odds ratio = 1.67, 95% CI = 0.36, 2.98), but no genotype by treatment effect (P = .80). Among EAs, the placebo group also showed higher rates of opioid-positive UDS than the BUP-XR group (log odds ratio = 1.97, 95% CI = 1.14, 2.79) but a significant genotype by treatment interaction (χâ2(1) = 4.33, P = .04). CONCLUSION: We found a moderating effect of rs678849 on the response to buprenorphine treatment of OUD in EAs, but not AAs. These findings require replication in well-powered, prospective studies of both AA and EA OUD patients treated with BUP-XR and stratified on rs678849 genotype.
Assuntos
Negro ou Afro-Americano/genética , Buprenorfina/farmacologia , Entorpecentes/farmacologia , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/genética , Receptores Opioides delta/genética , População Branca/genética , Adulto , Buprenorfina/administração & dosagem , Preparações de Ação Retardada , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Entorpecentes/administração & dosagem , Testes Farmacogenômicos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Our prior studies demonstrated that the rat hippocampal opioid system can undergo sex-specific adaptations to external stimuli that can influence opioid-associated learning processes. This opioid system extensively overlaps with the cannabinoid system. Moreover, acute administration of Δ9 Tetrahydrocannabinoid (THC), the primary psychoactive constituent of cannabis, can alter cognitive behaviors that involve the hippocampus. Here, we use light and electron microscopic immunocytochemical methods to examine the effects of acute THC (5 mg/kg, i.p., 1 h) on mossy fiber Leu-Enkephalin (LEnk) levels and the distribution and phosphorylation levels of delta and mu opioid receptors (DORs and MORs, respectively) in CA3 pyramidal cells and parvalbumin dentate hilar interneurons of adult female and male Sprague-Dawley rats. In females with elevated estrogen states (proestrus/estrus stage), acute THC altered the opioid system so that it resembled that seen in vehicle-injected females with low estrogen states (diestrus) and males: (1) mossy fiber LEnk levels in CA2/3a decreased; (2) phosphorylated-DOR levels in CA2/3a pyramidal cells increased; and (3) phosphorylated-MOR levels increased in most CA3b laminae. In males, acute THC resulted in the internalization of MORs in parvalbumin-containing interneuron dendrites which would decrease disinhibition of granule cells. In both sexes, acute THC redistributed DORs to the near plasma membrane of CA3 pyramidal cell dendrites, however, the dendritic region varied with sex. Additionally, acute THC also resulted in a sex-specific redistribution of DORs within CA3 pyramidal cell dendrites which could differentially promote synaptic plasticity and/or opioid-associated learning processes in both females and males.
Assuntos
Analgésicos Opioides , Dronabinol , Analgésicos Opioides/farmacologia , Animais , Dronabinol/farmacologia , Feminino , Hipocampo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismoRESUMO
Oxycodone (Oxy) conditioned place preference (CPP) in Sprague Dawley rats results in sex-specific alterations in hippocampal opioid circuits in a manner that facilitates opioid-associative learning processes, particularly in females. Here, we examined if Oxy (3 mg/kg, I.P.) or saline (Sal) injections not paired with behavioral testing similarly affect the hippocampal opioid system. Sal-injected females compared to Sal-injected males had: (1) higher densities of cytoplasmic delta opioid receptors (DOR) in GABAergic hilar dendrites suggesting higher baseline reserve DOR pools and (2) elevated phosphorylated DOR levels, but lower phosphorylated mu opioid receptor (MOR) levels in CA3a suggesting that the baseline pools of activated opioid receptors vary in females and males. In contrast to CPP studies, Oxy-injections in the absence of behavioral tests resulted in few changes in the hippocampal opioid system in either females or males. Specifically, Oxy-injected males compared to Sal-injected males had fewer DORs near the plasma membrane of CA3 pyramidal cell dendrites and in CA3 dendritic spines contacted by mossy fibers, and lower pMOR levels in CA3a. Oxy-injected females compared to Sal-injected females had higher total DORs in GABAergic dendrites and lower total MORs in parvalbumin-containing dendrites. Thus, unlike Oxy CPP, Oxy-injections redistributed opioid receptors in hippocampal neurons in a manner that would either decrease (males) or not alter (females) excitability and plasticity processes. These results indicate that the majority of changes within hippocampal opioid circuits that would promote opioid-associative learning processes in both females and males do not occur with Oxy administration alone, and instead must be paired with CPP.
Assuntos
Condicionamento Clássico/fisiologia , Hipocampo/metabolismo , Oxicodona/administração & dosagem , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Caracteres Sexuais , Analgésicos Opioides/administração & dosagem , Animais , Condicionamento Clássico/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/ultraestrutura , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistasRESUMO
Delta-opioid receptor (DOR) is widely distributed in the central nervous system, and its activation protects against ischaemic/hypoxic brain injury. However, the role of DOR in microglia in ischaemic stroke has not yet been fully investigated. We found that DOR was expressed in both human and mouse cerebral microglia, besides, it was upregulated in activated BV2 microglial cells by immunofluorescence staining and Western blot. DOR activation by the specific agonist TAN-67 significantly enhanced BV2 microglial cell viability and reduced apoptosis, as evidenced by decreased cleaved caspase-3 levels and TdT-mediated aUTP-X nick end labelling (TUNEL) staining after LPS stimulation. Furthermore, activation of DOR significantly inhibited inducible nitric oxide synthase (iNOS) production and dose-dependently inhibited the mRNA and protein expression levels of other pro-inflammatory cytokines, including IL-1ß and IL-6, whereas it increased the expression of the anti-inflammatory cytokine IL-10 in LPS-stimulated BV2 microglial cells; these effects were correlated with diminished phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. Moreover, these effects could be reversed by the DOR antagonist naltrindole. DOR activation can activate microglia to switch to the beneficial phenotype and inhibit LPS-induced inflammation and apoptosis via the mitogen-activated protein kinase (MAPK)/caspase-3 pathway in BV2 microglial cells. This study provides new insight into neuroprotection against and treatment of ischaemic stroke.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Analgésicos Opioides , Animais , Apoptose , Caspase 3 , Caspases , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Camundongos , Microglia , Óxido Nítrico , Receptores OpioidesRESUMO
BACKGROUND: The functional mechanism is unknown for many genetic variants associated with substance use disorder phenotypes. Rs678849, an intronic variant in the delta-opioid receptor gene (OPRD1), has been found to predict regional brain volume, addiction risk, and the efficacy of buprenorphine/naloxone in treating opioid use disorder. The variant has also been implicated as an expression quantitative trait locus (eQTL) for several genes. OBJECTIVES: The objective of this study was to identify functional differences between the two alleles of rs678849 in vitro. We hypothesized that the two alleles of rs678849 would have different effects on transcriptional activity due to differential interactions with transcription factors. METHODS: 15bp regions containing the C or T alleles of rs678849 were cloned into luciferase constructs and transfected into BE(2)C neuroblastoma cells to test the effect on transcription. Electrophoretic mobility shift assays (EMSA) using nuclear lysates from BE(2)C cell or human postmortem medial prefrontal cortex were used to identify proteins that differentially bound the two alleles. RESULTS: At 24 hours post-transfection, the C allele construct had significantly lower luciferase expression than the T allele construct and empty vector control (ANOVA p < .001). Proteomic analysis and supershift assays identified XRCC6 as a transcription factor specifically binding the C allele, whereas hnRNP D0 was found to specifically bind the T allele. CONCLUSION: These functional differences between the C and T alleles may help explain the psychiatric and neurological phenotype differences predicted by rs678849 genotype and the potential role of the variant as an eQTL.
Assuntos
Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Autoantígeno Ku/metabolismo , Variantes Farmacogenômicos , Receptores Opioides delta/genética , Fatores de Transcrição/metabolismo , Alelos , Ensaio de Desvio de Mobilidade Eletroforética , Genótipo , Humanos , Luciferases de Vaga-Lume , Ligação Proteica/genética , Locos de Características Quantitativas/genéticaRESUMO
A new method for the synthesis of the highly selective delta opioid receptor (DOR) antagonist radiotracer N1 '-([11 C]methyl)naltrindole ([11 C]MeNTI) is described. The original synthesis required hydrogenation of a benzyl protecting group after 11 C-labeling, which is challenging in modern radiochemistry laboratories that tend to be heavily automated and operate according to current good manufacturing practice. To address this challenge, we describe development of a novel MeNTI precursor bearing a methoxymethyl acetal (MOM) protecting group, which is easily removed with HCl, and employ it in an updated synthesis of [11 C]MeNTI. The new synthesis is fully automated and validated for clinical use. The total synthesis time is 45 min and provides [11 C]MeNTI in good activity yield (49 ± 8 mCi), molar activity (3,926 ± 326 Ci/mmol) and radiochemical purity (97% ± 2%).
Assuntos
Indóis/química , Morfinanos/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Receptores Opioides delta/metabolismo , Radioisótopos de Carbono/químicaRESUMO
The delta opioid receptor (DOR) is a crucial receptor system that regulates pain, mood, anxiety, and similar mental states. DOR agonists, such as SNC80, and DOR-neutral antagonists, such as naltrindole, were developed to investigate the DOR in vivo and as potential therapeutics for pain and depression. However, few inverse agonists and non-competitive/irreversible antagonists have been developed, and none are widely available. This leaves a gap in our pharmacological toolbox and limits our ability to investigate the biology of this receptor. Thus, we designed and synthesized the novel compounds SRI-9342 as an irreversible antagonist and SRI-45128 as an inverse agonist. These compounds were then evaluated in vitro for their binding affinity by radioligand binding, their functional activity by 35S-GTPγS coupling, and their cAMP accumulation in cells expressing the human DOR. Both compounds demonstrated high binding affinity and selectivity at the DOR, and both displayed their hypothesized molecular pharmacology of irreversible antagonism (SRI-9342) or inverse agonism (SRI-45128). Together, these results demonstrate that we have successfully designed new inverse agonists and irreversible antagonists of the DOR based on a novel chemical scaffold. These new compounds will provide new tools to investigate the biology of the DOR or even new potential therapeutics.
Assuntos
Analgésicos Opioides/química , Ligação Competitiva , Descoberta de Drogas , Receptores Opioides delta/química , Analgésicos Opioides/síntese química , Analgésicos Opioides/farmacologia , Técnicas de Química Sintética , Descoberta de Drogas/métodos , Humanos , Ligantes , Estrutura Molecular , Ligação Proteica , Receptores Opioides delta/agonistas , Relação Estrutura-AtividadeRESUMO
Although persistent pain is estimated to affect about 20% of the adult population, current treatments have poor results. Polypharmacology, which is the administration of more than one drug targeting on two or more different sites of action, represents a prominent therapeutic approach for the clinical management of persistent pain. Thus, in the drug discovery process the "one-molecule-multiple targets" strategy nowadays is highly recognized. Indeed, multitarget ligands displaying a better antinociceptive activity with fewer side effects, combined with favorable pharmacokinetic and pharmacodynamic characteristics, have already been shown. Multitarget ligands possessing non-opioid/opioid and opioid/opioid mechanisms of action are considered as potential drug candidates for the management of various pain conditions. In particular, dual-target MOPr (mu opioid peptide receptor)/DOPr (delta opioid peptide receptor) ligands exhibit an improved antinociceptive profile associated with a reduced tolerance-inducing capability. The benzomorphan-based compounds LP1 and LP2 belong to this class of dual-target MOPr/DOPr ligands. In the present manuscript, the structure-activity relationships and the pharmacological fingerprint of LP1 and LP2 compounds as suitable drug candidates for persistent pain relief is described.