Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 225: 1-12, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428472

RESUMO

Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.


Assuntos
Proteínas de Membrana , Dobramento de Proteína , Termodinâmica , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Desnaturação Proteica , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Estreptavidina/química , Biotinilação/métodos
2.
Proc Natl Acad Sci U S A ; 111(45): 15975-80, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349413

RESUMO

Long-time molecular dynamics (MD) simulations are now able to fold small proteins reversibly to their native structures [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517-520]. These results indicate that modern force fields can reproduce the energy surface near the native structure. To test how well the force fields recapitulate the other regions of the energy surface, MD trajectories for a variant of protein G are compared with data from site-resolved hydrogen exchange (HX) and other biophysical measurements. Because HX monitors the breaking of individual H-bonds, this experimental technique identifies the stability and H-bond content of excited states, thus enabling quantitative comparison with the simulations. Contrary to experimental findings of a cooperative, all-or-none unfolding process, the simulated denatured state ensemble, on average, is highly collapsed with some transient or persistent native 2° structure. The MD trajectories of this protein G variant and other small proteins exhibit excessive intramolecular H-bonding even for the most expanded conformations, suggesting that the force fields require improvements in describing H-bonding and backbone hydration. Moreover, these comparisons provide a general protocol for validating the ability of simulations to accurately capture rare structural fluctuations.


Assuntos
Medição da Troca de Deutério , Proteínas de Ligação ao GTP/química , Hidrogênio/química , Desdobramento de Proteína , Ligação de Hidrogênio , Estrutura Terciária de Proteína , Proteínas Recombinantes/química
3.
Biochim Biophys Acta ; 1837(5): 656-63, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24333783

RESUMO

Experimental folding studies of membrane proteins are more challenging than water-soluble proteins because of the higher hydrophobicity content of membrane embedded sequences and the need to provide a hydrophobic milieu for the transmembrane regions. The first challenge is their denaturation: due to the thermodynamic instability of polar groups in the membrane, secondary structures in membrane proteins are more difficult to disrupt than in soluble proteins. The second challenge is to refold from the denatured states. Successful refolding of membrane proteins has almost always been from very subtly denatured states. Therefore, it can be useful to analyze membrane protein folding using computational methods, and we will provide results obtained with simulated unfolding of membrane protein structures using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method. Computational methods have the advantage that they allow a direct comparison between diverse membrane proteins. We will review here both, experimental and FIRST studies of the retinal binding proteins bacteriorhodopsin and mammalian rhodopsin, and discuss the extension of the findings to deriving hypotheses on the mechanisms of folding of membrane proteins in general. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.


Assuntos
Bacteriorodopsinas/química , Simulação de Dinâmica Molecular , Retinaldeído/química , Rodopsina/química , Bacteriorodopsinas/metabolismo , Euryarchaeota/química , Euryarchaeota/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Desnaturação Proteica , Dobramento de Proteína , Redobramento de Proteína , Estrutura Secundária de Proteína , Retinaldeído/metabolismo , Rodopsina/metabolismo , Homologia Estrutural de Proteína , Termodinâmica
4.
Protein Pept Lett ; 25(3): 314-324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29384048

RESUMO

BACKGROUND: Champedak galactose-binding (CGB) lectin is a tetrameric protein with noncovalently bound monomers, isolated from Artocarpus integer fruit seeds. We had previously reported existence of a structured monomer and an unfolded monomer of CGB lectin at pH 2.5 and pH 1.5, respectively. Polyols are known to induce significant refolding in denatured proteins and stabilize proteins against environmental stresses. Studies on the effect of various polyols on the acid-denatured states of CGB lectin are lacking. OBJECTIVE: The objective of this study was to investigate the effects of four different polyols, namely, ethylene glycol, erythritol, xylitol and sorbitol on the acid-denatured states of CGB lectin. METHODS: CGB lectin was subjected to acid denaturation at pH 2.5 and pH 1.5, both in the absence and presence of 30% (w/v) polyols, i.e. ethylene glycol, erythritol, xylitol and sorbitol. Thermal denaturation of the acid-denatured states was also studied in the absence and presence of these polyols. Different spectroscopic probes such as tryptophan fluorescence, ANS fluorescence and far-UV CD spectral signal were used to monitor structural changes in the acid-denatured states of CGB lectin in the presence of polyols. RESULTS: Presence of erythritol, xylitol and sorbitol in the incubation mixture was found to stabilize the lectin at both pH 2.5 and pH 1.5, as evident from the burial of the hydrophobic clusters and decreased polarity around Trp residues. These polyols also stabilized the acid-denatured states of CGB lectin against thermal denaturation by shifting the thermal transition curves towards higher temperatures. Exposure of the acid-denatured states of CGB lectin, obtained at pH 2.5 and pH 1.5 to 61°C and 51°C, respectively, induced formation of non-native ß-structures, compared to that present at 25°C, and this phenomenon was significantly suppressed in the presence of these polyols. Based on the spectral data, both sorbitol and erythritol appeared to exude better stabilizing effect. On the other hand, ethylene glycol was shown to destabilize the aciddenatured states of CGB lectin. CONCLUSION: Thermal stabilization of the lectin was noticed in the presence of erythritol, xylitol and sorbitol at both pH 2.5 and pH 1.5. These polyols also stabilize the secondary and tertiary structures of the acid-denatured CGB lectin at 25°C. Ethylene glycol was proved to be a destabilizer of the acid-denatured CGB lectin.


Assuntos
Artocarpus/química , Etilenoglicol/química , Galectinas/química , Álcoois Açúcares/química , Concentração de Íons de Hidrogênio , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Sementes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA