Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Calcif Tissue Int ; 115(2): 185-195, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38809297

RESUMO

Medication-related osteonecrosis of the jaw is a serious disease occurring in patients with cancer and osteoporosis, who are undergoing treatment with antiresorptive agents (ARAs) such as bisphosphonate (BP) or denosumab, an antibody targeting receptor activator of NF-κB ligand. Recently, stem cell-based therapy has been shown to be effective in preventing the development of bisphosphonate-related osteonecrosis of the jaw. However, studies on denosumab-related osteonecrosis of the jaw (DRONJ) remain limited. Here, the efficacy of treatment with dental pulp stem cell conditioned media (DPSC-CM) in preventing DRONJ in a murine model was evaluated. Local administration of DPSC-CM into the extraction socket of a mouse with DRONJ decreased the number of empty osteocyte lacunae and the prevalence of ONJ. In tissues surrounding the extraction sockets in the DPSC-CM-treated group, the expression of inflammatory cytokines was attenuated and that of osteogenesis-related molecules was enhanced compared to that in the control group. Further, the expression of Wnt signaling molecules, which had been suppressed, was improved. These findings collectively suggest that DPSC-CM prevents ONJ development in a murine DRONJ model.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Denosumab , Polpa Dentária , Ligante RANK , Células-Tronco , Animais , Polpa Dentária/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Camundongos , Denosumab/farmacologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/prevenção & controle , Ligante RANK/metabolismo , Modelos Animais de Doenças , Masculino , Humanos , Osteogênese/efeitos dos fármacos
2.
Pharmacol Res ; 206: 107266, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878918

RESUMO

Cerebral ischemia-reperfusion injury (I/RI) is one of the principal pathogenic factors in the poor prognosis of ischemic stroke, for which current therapeutic options to enhance neurological recovery are notably insufficient. Dental pulp stem cell-derived extracellular vesicles (DPSC-EVs) have promising prospects in stroke treatment and the specific underlying mechanisms have yet to be fully elucidated. The present study observed that DPSC-EVs ameliorated the degree of cerebral edema and infarct volume by reducing the apoptosis of neurons. Furthermore, the miRNA sequencing and functional enrichment analysis identified that miR-877-3p as a key component in DPSC-EVs, contributing to neuroprotection and anti-apoptotic effects. Following target prediction and dual-luciferase assay indicated that miR-877-3p interacted with Bcl-2-associated transcription factor (Bclaf1) to play a function. The miR-877-3p inhibitor or Bclaf1 overexpression reversed the neuroprotective effects of DPSC-EVs. The findings reveal a novel therapeutic pathway where miR-877-3p, transferred via DPSC-EVs, confers neuroprotection against cerebral I/RI, highlighting its potential in promoting neuronal survival and recovery post-ischemia.


Assuntos
Apoptose , Polpa Dentária , Vesículas Extracelulares , MicroRNAs , Neurônios , Recuperação de Função Fisiológica , Traumatismo por Reperfusão , Transdução de Sinais , Células-Tronco , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/terapia , Neurônios/metabolismo , Neurônios/patologia , Masculino , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ratos Sprague-Dawley , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Camundongos Endogâmicos C57BL , Ratos , Células Cultivadas
3.
J Nanobiotechnology ; 22(1): 426, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030593

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) is a severe stroke subtype that lacks effective treatment. Exosomes derived from human dental pulp stem cells (DPSCs) are a promising acellular therapeutic strategy for neurological diseases. However, the therapeutic effects of DPSC-derived exosomes (DPSC-Exos) on SAH remain unknown. In this study, we investigated the therapeutic effects and mechanisms of action of DPSC-Exos in SAH. MATERIALS AND METHODS: SAH was established using 120 male Sprague-Dawley rats. One hour after SAH induction, DPSC-Exos were administered via tail vein injection. To investigate the effect of DPSC-Exos, SAH grading, short-term and long-term neurobehavioral assessments, brain water content, western blot (WB), immunofluorescence staining, Nissl staining, and HE staining were performed. The role of miR-197-3p/FOXO3 in regulating pyroptosis was demonstrated through miRNA sequencing, bioinformatics analysis, and rescue experiments. The SAH model in vitro was established by stimulating BV2 cells with hemoglobin (Hb) and the underlying mechanism of DPSC-Exos was investigated through WB and Hoechst/PI staining. RESULTS: The expressions of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) were increased after SAH. DPSC-Exos alleviated brain edema and neuroinflammation by inhibiting the expression of FOXO3 and reducing NLRP3 inflammasome activation, leading to improved neurobehavioral functions at 24 h after SAH. In vitro, the expression of the NLRP3 inflammasome components (NLRP3 and caspase1-p20), GSDMD-N, and IL-18 was inhibited in BV2 cells pretreated with DPSC-Exos. Importantly, DPSC-Exos overexpressing miR-197-3p had a more obvious protective effect than those from NC-transfected DPSCs, while those from DPSCs transfected with the miR-197-3p inhibitor had a weaker protective effect. Functional studies indicated that miR-197-3p bound to the 3'-untranslated region of FOXO3, inhibiting its transcription. Furthermore, the overexpression of FOXO3 reversed the protective effects of miR-197-3p. CONCLUSIONS: DPSC-Exos inhibited activation of the NLRP3 inflammasome and related cytokine release via the miR-197-3p/FOXO3 pathway, alleviated neuroinflammation, and inhibited microglial pyroptosis. These findings suggest that using DPSC-Exos is a promising therapeutic strategy for SAH.


Assuntos
Polpa Dentária , Exossomos , Proteína Forkhead Box O3 , Células-Tronco Mesenquimais , MicroRNAs , Microglia , Doenças Neuroinflamatórias , Piroptose , Ratos Sprague-Dawley , Hemorragia Subaracnóidea , Animais , Exossomos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Proteína Forkhead Box O3/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/terapia , Humanos , Doenças Neuroinflamatórias/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Modelos Animais de Doenças
4.
Int Endod J ; 57(2): 219-236, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971040

RESUMO

AIM: To investigate the effect of IWP-2, Wnt inhibitor, on human dental pulp stem cells (hDPSCs) responses. METHODOLOGY: hDPSCs were isolated from human dental pulp tissues. Cells were treated with 25 µM IWP-2 for 24 h, and subsequently, the gene expression profile was examined using high-throughput RNA sequencing. The mRNA expression was analysed using qPCR. The effect of IWP-2 was investigated in both normal and LPS-induced hDPSCs (inflamed hDPSCs). CD4+ T cells and CD14+ monocyte-derived macrophages were cultured with conditioned media of IWP-2 treated hDPSCs to observe the immunosuppressive property. RESULTS: RNA sequencing indicated that IWP-2 significantly downregulated several KEGG pathways, including cytokine-cytokine receptor interaction, IL-17 signalling pathway, and TNF signalling pathway. In both normal and inflamed conditions, IWP-2 markedly upregulated TGFB1 mRNA expression while the mRNA expression of pro-inflammatory cytokines, TNFA, IL1B, IFNG, and IL6, was inhibited. In the inhibition experiment, the pretreatment with p38, MAPK, or PI3K inhibitors abolished the effects of IWP-2 in LPS-induced inflammation. In terms of immune cells, IWP-2-treated-inflamed hDPSCs conditioned media attenuated T cell proliferation and regulated regulatory T cell differentiation. In addition, the migratory property of macrophage was decreased after being exposed to IWP-2-treated inflamed hDPSCs conditioned media. CONCLUSION: IWP-2 suppressed inflammatory cytokine expression in both normal and inflamed hDPSCs. Moreover, hDPSCs exerted the immunosuppressive property after IWP-2 treatment. These results suggest the role of Wnt in inflammatory responses and immunomodulation in dental pulp tissues.


Assuntos
Polpa Dentária , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco , Proliferação de Células , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Diferenciação Celular , Células Cultivadas
5.
BMC Oral Health ; 24(1): 663, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849812

RESUMO

BACKGROUND: Restorative materials are in prolonged contact with living tissues such as oral mucosa, dentin, pulp, periodontal, and periapical tissues. Therefore, the potentially harmful effects of these materials and their components on oral tissues should be evaluated before clinical use. This study aimed to compare the cell viability of different adhesive systems (ASs) on human dental pulp stem cells (hDPSCs). METHODS: Three ASs that combining methacryloyloxydecyl dihydrogen phosphate (MDP) monomer with new hydrophilic amide monomers [Clearfil Universal Bond Quick(CUBQ), Kuraray Noritake], self-reinforcing 3D monomer [Bond Force II(BFII), Tokuyama)], and dual-cure property [Futurabond DC(FBDC), VOCO] were used. Three (n = 3) samples were prepared for each group. Dental pulp stem cells were isolated from ten patients' extracted third molar teeth. Samples were incubated in Dulbecco's modified Eagle's medium (DMEM) for 24 h (h), 72 h, and 7 days (d) to obtain extracts. For the control group, cells were cultured without DBA samples. Cell viability of ASs extracts was measured using a cell proliferation detection kit (WST-1, Roche). Statistical analysis was performed using two-way ANOVA and post-hoc (Duncan) tests (p < 0.05). RESULTS: At 24 and 72 h statistically significant differences were determined between control and BFII, control and FBDC groups (p < 0.05), while no differences between control and CUBQ groups (p > 0.05). On the 7th d, statistically significant differences were found between the control and experimental groups (p < 0.05), while no differences between experimental groups (p > 0.05). A statistically significant difference was detected for the BFII group over the three-time interval (p < 0.05). The lowest cell viability was observed for the FBDC group at 24 h, and the difference was statistically significant when compared with 72 h and 7th d (p < 0.05). CONCLUSION: All ASs showed different cell viability values at various exposure times. It should be taken into consideration that pH values, as well as the contents of ASs, have a significant effect on the cell viability.


Assuntos
Sobrevivência Celular , Polpa Dentária , Adesivos Dentinários , Células-Tronco , Humanos , Polpa Dentária/citologia , Adesivos Dentinários/química , Fatores de Tempo , Células Cultivadas
6.
J Transl Med ; 21(1): 688, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789452

RESUMO

BACKGROUND: Systemic administration of oncolytic adenovirus for cancer therapy is still a challenge. Mesenchymal stem cells as cell carriers have gained increasing attention in drug delivery due to their excellent tumor tropism, immunosuppressive modulatory effects, and paracrine effects. However, the potential of human dental pulp stem cells (hDPSCs) loaded with oncolytic adenovirus for cancer biotherapy has not been investigated yet. METHODS: The stemness of hDPSCs was characterized by FACS analysis and Alizarin red staining, Oil Red O staining, and immunofluorescence assays. The biological fitness of hDPSCs loaded with oncolytic adenovirus YSCH-01 was confirmed by virus infection with different dosages and cell viability CCK-8 assays. Additionally, the expression of CAR receptor in hDPSCs was detected by qPCR assay. Tumor tropism of hDPSC loaded with YSCH-01 in vitro and in vivo was investigated by Transwell assays and living tumor-bearing mice imaging technology and immunohistochemistry, Panoramic scanning of frozen section slices assay analysis. Furthermore, the antitumor efficacy was observed through the different routes of YSCH-01/hPDSCs administration in SW780 and SCC152 xenograft models. The direct tumor cell-killing effect of YSCH-01/hDPSCs in the co-culture system was studied, and the supernatant of YSCH-01/hDPSCs inhibited cell growth was further analyzed by CCK-8 assays. RESULTS: hDPSCs were found to be susceptible to infection by a novel oncolytic adenovirus named YSCH-01 and were capable of transporting this virus to tumor sites at 1000 VP/cell infectious dosage in vitro and in vivo. Moreover, it was discovered that intraperitoneal injection of hDPSCs loaded with oncolytic adenovirus YSCH-01 exhibited potential anti-tumor effects in both SW780 and SCC152 xenograft models. The crucial role played by the supernatant secretome derived from hDPSCs loaded with YSCH-01 significantly exerted a specific anti-tumor effect without toxicity for normal cells, in both an active oncolytic virus and an exogenous protein-independent manner. Furthermore, the use of hDPSCs as a cell carrier significantly reduced the required dosage of virus delivery in vivo compared to other methods. CONCLUSIONS: These findings highlight the promising clinical potential of hDPSCs as a novel cell carrier in the field of oncolytic virus-based anti-cancer therapy.


Assuntos
Células-Tronco Mesenquimais , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Camundongos , Animais , Adenoviridae , Polpa Dentária , Sincalida , Terapia Viral Oncolítica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Stem Cells ; 40(3): 290-302, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356984

RESUMO

Cellular senescence severely limits the research and the application of dental pulp stem cells (DPSCs). A previous study conducted by our research group revealed a close implication of ROR2 in DPSC senescence, although the mechanism underlying the regulation of ROR2 in DPSCs remains poorly understood so far. In the present study, it was revealed that the expression of the ROR2-interacting transcription factor MSX2 was increased in aging DPSCs. It was demonstrated that the depletion of MSX2 inhibits the senescence of DPSCs and restores their self-renewal capacity, and the simultaneous overexpression of ROR2 enhanced this effect. Moreover, MSX2 knockdown suppressed the transcription of NOP2/Sun domain family member 2 (NSUN2), which regulates the expression of p21 by binding to and causing the 5-methylcytidine methylation of the 3'- untranslated region of p21 mRNA. Interestingly, ROR2 downregulation elevated the levels of MSX2 protein, and not the MSX2 mRNA expression, by reducing the phosphorylation level of MSX2 and inhibiting the RNF34-mediated MSX2 ubiquitination degradation. The results of the present study demonstrated the vital role of the ROR2/MSX2/NSUN2 axis in the regulation of DPSC senescence, thereby revealing a potential target for antagonizing DPSC aging.


Assuntos
Senescência Celular , Polpa Dentária , Senescência Celular/genética , Polpa Dentária/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica , RNA Mensageiro/genética
8.
Stem Cells ; 40(5): 468-478, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35294968

RESUMO

Stem cell therapies have emerged as a promising treatment strategy for various diseases characterized by ischemic injury such as ischemic stroke. Cell survival after transplantation remains a critical issue. We investigated the impact of oxidative stress, being typically present in ischemically challenged tissue, on human dental pulp stem cells (hDPSC) and human mesenchymal stem cells (hMSC). We used oxygen-glucose deprivation (OGD) to induce oxidative stress in hDPSC and hMSC. OGD-induced generation of O2•- or H2O2 enhanced autophagy by inducing the expression of activating molecule in BECN1-regulated autophagy protein 1 (Ambra1) and Beclin1 in both cell types. However, hDPSC and hMSC pre-conditioning using reactive oxygen species (ROS) scavengers significantly repressed the expression of Ambra1 and Beclin1 and inactivated autophagy. O2•- or H2O2 acted upstream of autophagy, and the mechanism was unidirectional. Furthermore, our findings revealed ROS-p38-Erk1/2 involvement. Pre-treatment with selective inhibitors of p38 and Erk1/2 pathways (SB202190 and PD98059) reversed OGD effects on the expression of Ambra1 and Beclin1, suggesting that these pathways induced oxidative stress-mediated autophagy. SIRT3 depletion was found to be associated with increased oxidative stress and activation of p38 and Erk1/2 MAPKs pathways. Global ROS inhibition by NAC or a combination of polyethylene glycol-superoxide dismutase (PEG-SOD) and polyethylene glycol-catalase (PEG-catalase) further confirmed that O2•- or H2O2 or a combination of both impacts stems cell viability by inducing autophagy. Furthermore, autophagy inhibition by 3-methyladenine (3-MA) significantly improved hDPSC viability. These findings contribute to a better understanding of post-transplantation hDPSC and hMSC death and may deduce strategies to minimize therapeutic cell loss under oxidative stress.


Assuntos
Autofagia , Peróxido de Hidrogênio , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Sobrevivência Celular , Glucose/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo
9.
Oral Dis ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37448325

RESUMO

OBJECTIVE: We aimed to identify the crucial genes involved in dental pulp stem cell (DPSC) senescence and evaluate the impact of melatonin on DPSC senescence. METHODS: Western blotting, SA-ß-Gal staining and ALP staining were used to evaluate the senescence and differentiation potential of DPSCs. The optimal concentration of melatonin was determined using the CCK-8 assay. Differentially expressed genes (DEGs) involved in DPSC senescence were obtained via bioinformatics analysis, followed by RT-qPCR. Gain- and loss-of-function studies were conducted to explore the role of MMP3 in DPSC in vitro expansion and in response to melatonin. GSEA was employed to analyse MMP3-related pathways in cellular senescence. RESULTS: Treatment with 0.1 µM melatonin attenuated cellular senescence and differentiation potential suppression in DPSCs due to long-term in vitro expansion. MMP3 was a crucial gene in senescence, as confirmed by bioinformatics analysis, RT-qPCR and Western blotting. Furthermore, gain- and loss-of-function studies revealed that MMP3 played a regulatory role in cellular senescence. Rescue assays showed that overexpression of MMP3 reversed the effect of melatonin on senescence. GSEA revealed that the MMP3-dependent anti-senescence effect of melatonin was associated with the IL6-JAK-STAT3, TNF-α-Signalling-VIA-NF-κB, COMPLEMENT, NOTCH Signalling and PI3K-AKT-mTOR pathways. CONCLUSION: Melatonin attenuated DPSC senescence caused by long-term expansion by inhibiting MMP3.

10.
Oral Dis ; 29(5): 2107-2116, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35322903

RESUMO

OBJECTIVE: Human dental pulp stem cells (hDPSCs) constitute a promising source of stem cells in tissue engineering. However, the molecular mechanism of differentiation in hDPSCs remains largely unclear. MicroRNAs (miRNAs) play crucial roles in lineage-specific differentiation of stem cells. The present study investigated the function of miRNA-342-5p in the odonto/osteogenic differentiation of hDPSCs. METHODS: The miRNA array profiling and quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) revealed the expression of miR-342-5p during odonto/osteogenic differentiation of hDPSCs. hDPSCs were treated with miR-342-5p mimic and inhibitor to investigate the regulatory roles of miR-342-5p in the differentiation of hDPSCs. Moreover, miR-342-5p inhibitor and small interference RNA (siRNA) targeting Wnt7b were applied to explore the regulatory mechanism of miR-342-5p. RESULTS: Downregulated miR-342-5p was observed during odonto/osteogenic differentiation of hDPSCs. The overexpression of miR-342-5p inhibited the odonto/osteogenic potential of DPSCs, as indicated by low levels of alkaline phosphatase activity, calcium deposition formation, and odonto/osteogenic differentiation markers, whereas silencing of miR-342-5p exhibited the opposite effect. When co-treated with siRNA targeting Wnt7b and miR-342-5p inhibitor in hDPSCs, the odonto/osteogenic potential and activation of Wnt7b/ß-catenin pathway were attenuated. CONCLUSIONS: This study showed that miR-342-5p inhibits the odonto/osteogenic differentiation of hDPSCs by interfering with Wnt/ß-catenin signaling via targeting Wnt7b.


Assuntos
MicroRNAs , Osteogênese , Humanos , Osteogênese/genética , beta Catenina/metabolismo , Polpa Dentária , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Células-Tronco , RNA Interferente Pequeno , Células Cultivadas
11.
Int Endod J ; 56(1): 92-102, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36229421

RESUMO

AIM: Calcium hydroxide is the gold standard material for pulp capping and has been widely used in clinical dentistry. Calcium hydroxide promotes proliferation, migration and osteogenic differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanism is not clear. Our study investigated the role of Wnt/ß-catenin pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation and mineralization of human DPSCs. METHODOLOGY: Protein and gene expression was detected by western blot (WB), immunofluorescence staining and quantitative real-time PCR (qPCR). Cell viability was analysed using the Cell Counting Kit-8 (CCK-8) assay. Wound-healing assay was used to analyse cell migration. The expression of alkaline phosphatase (ALP) was detected using ALP staining. Mineralization was analysed by alizarin red staining. RESULTS: Calcium hydroxide increased the protein expression of phosphorylated-GSK3ß/GSK3ß, ß-catenin and the gene expression of LEF-1. Inhibition of Wnt/ß-catenin abolished calcium hydroxide-induced proliferation and migration of DPSCs in 24 h. However, incubation with calcium hydroxide for 7 days and 14 days reduced Wnt/ß-catenin signalling. Inhibition of Wnt/ß-catenin promoted calcium hydroxide-induced osteogenic differentiation and mineralization in DPSCs. CONCLUSION: Wnt/ß-catenin pathway plays a dual role in calcium hydroxide-regulated DPSC behaviour. Incubation with calcium hydroxide promoted rapid proliferation and migration of DPSCs, while prolonged incubation negatively regulated osteogenic differentiation and mineralization.


Assuntos
Osteogênese , beta Catenina , Humanos , Hidróxido de Cálcio/farmacologia , Polpa Dentária , Diferenciação Celular , Proliferação de Células , Células-Tronco
12.
Int Endod J ; 56(12): 1534-1549, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698901

RESUMO

AIM: Fat mass and obesity-associated (FTO) protein, the first discovered N6-methyladenine (m6A) demethylase, played positive roles in bone formation. In this study, the aim was to investigate the function and potential mechanism of Fto in dentine formation. METHODOLOGY: In vivo model, postnatal 12-day (PN12), 4-week-old (4 wk), 6-week-old (6 wk) healthy male C57BL/6J were randomly divided into Fto knockout (Fto-/- ) mice and wild-type (WT) littermates according to their genotypes, with 3-5 mice in each group. The mandibles of Fto-/- mice and WT control littermates were isolated for analysis by micro-computed tomography (micro-CT), 3-dimensional reconstruction and Haematoxylin-eosin (HE) staining. In vitro, mouse dental papilla cells (mDPCs) and human dental stem pulp cells (hDPSCs) were cultured with odontogenetic medium to evaluate differentiation capacity; expression levels of odontoblastic related genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). The inclusion levels of Runt-related transcription factor 2 (RUNX2) exon 5 in mDPCs and hDPSCs were detected by semiquantitative real-time polymerase chain reaction (RT-PCR). The RNA binding motif protein 4 (RBM4) m6A site was verified through m6A methylated RNA immunoprecipitation (MeRIP) and the stability of RBM4 mRNA influenced by FTO knockdown was measured by mRNA stability assay. Differences with p values < .05 were regarded as statistically significant. RESULTS: We discovered that Fto-/- mice showed significant dentine formation defects characterized by widened pulp cavity, enlarged pulp-tooth volume ratio, thinned dentine and pre-dentine layer of root (p < .05). Fto-/- mDPCs and FTO-silencing hDPSCs not only exhibited insufficient mineralization ability and decreased expression levels of odontoblastic mineralization related genes (p < .05), but showed significantly reduced Runx2 exon 5 inclusion level (p < .05). FTO knockdown increased the m6A level of RBM4 and destabilized the mRNA of RBM4, thus contributing to the reduced RBM4 expression level. Moreover, Rbm4 overexpression in Fto-/- mDPCs can partly restore Runx2 exon 5 inclusion level and the differentiation ability disrupted by Fto knockout. CONCLUSION: Thus, within the limitations of this study, the data suggest that FTO promotes odontoblastic differentiation during dentine formation by stabilizing RBM4 mRNA to promote RUNX2 exon 5 inclusion.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Odontoblastos , Animais , Humanos , Masculino , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Polpa Dentária , Dentina/metabolismo , Éxons/genética , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Microtomografia por Raio-X
13.
Odontology ; 111(2): 461-473, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36350427

RESUMO

Dental pulp stem cells (DPSCs) are a new type of mesenchymal stem cells (MSCs) found in the oral cavity with immunomodulation and tissue regeneration capacities. This study determined the impacts of nano-hydroxyapatite (nHA) prepared through Elaeagnus Angustifolia extract (EAE) to enhance the relative expression of immunomodulatory/dentin-pulp regeneration genes in DPSCs. To produce nHA and modified nHA via EAE (nHAEA), the sol-gel technique was used. The functional groups of nanoparticles (NPs), morphological, and optical features were determined using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) together with energy-dispersive X-ray analysis (EDAX), and Transmission electron microscopy (TEM). The cell viability was then determined using the MTT method in the presence of various EAE, nHA, and nHAEA concentrations. Target gene expression was quantified using a real-time PCR procedure after treating DPSCs with an optimally non-toxic dose of EAE and NPs. The presence of the HA phase was reported with the XRD and FTIR results. According to the results of SEM and TEM, the rod-like NPs could be fabricated. nHAEAs were found to be characterized with low crystallite size, reduced diameter, lengthier, needle-like, and less agglomerated particles compared with nHA. The real-time PCR results demonstrated that nHAEA remarkably increased the expression of human leukocyte antigen-G5 (HLA-G5), vascular endothelial growth factor (VEGF), dentin sialophosphoprotein (DSPP), and interleukin6 (IL6) genes compared to the nHA group. These findings suggest that nHAEAs might have the potential application in the stemness capability of DPSCs for the treatment of inflamed/damaged pulp.


Assuntos
Polpa Dentária , Durapatita , Humanos , Durapatita/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco , Regeneração , Diferenciação Celular , Dentina , Células Cultivadas , Proliferação de Células
14.
J Pak Med Assoc ; 73(11): 2214-2218, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38013531

RESUMO

Irisin is a novel adipomyokine which has extensive systemic and local effects in different tissues of the body. The scientific interest in understanding the physiological roles of irisin in the body has increased tremendously in the past few years due to its vast therapeutic potential in different fields of medicine. The current narrative review was planned to describe the molecular mechanisms by which irisin regulates oral hard and soft tissues. The information gleaned provided useful insights for future researchers to investigate newly discovered roles of irisin in craniofacial health and disease, and to explore the potential of irisin as a promising therapeutic and diagnostic agent in clinical dentistry.


Assuntos
Odontologia , Fibronectinas , Humanos
15.
Dev Neurosci ; 44(2): 91-101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986480

RESUMO

Stem cell-based therapy has been evaluated in many different clinical trials for various diseases. This capability was applied in various neurodegenerative diseases, such as multiple sclerosis, which is characterized by demyelination, axonal injury, and neuronal loss. Dental pulp stem cells (DPSCs) are mesenchymal stem cells from the oral cavity that have been studied with potential application for the regeneration of different tissues. Heat shock protein 27 (HSP27) regulates neurogenesis in the process of neural differentiation of placenta multipotent stem cells. Here, we hypothesize that HSP27 expression is also critical for the neural differentiation of DPSCs. An evaluation of the possible role of HSP27 in the differentiation of DPSCs was performed using gene knockdown and neural immunofluorescent staining. We found that HSP27 played a role in the differentiation of DPSCs and that knockdown of HSP27 in DPSCs rendered cells to oligodendrocyte progenitors; i.e., small hairpin specific for HSP27 DPSCs exhibited NG2-positive immunoreactivity and gave rise to oligodendrocytes or type-2 astrocytes. This neural differentiation of DPSCs may have clinical significance in the treatment of patients with neurodegenerative diseases. In conclusion, our data provide an example of the oligodendrocyte differentiation of a DPSC model, which may be applied in human regenerative medicine.


Assuntos
Polpa Dentária , Proteínas de Choque Térmico HSP27 , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Oligodendroglia , Células-Tronco
16.
J Transl Med ; 20(1): 208, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562763

RESUMO

BACKGROUND: Extracellular vesicles (EVs) play a key role in constructing a microenvironment that favors the differentiation of stem cells. The present work aimed to determine the molecular mechanisms by which EV derived from inflammatory dental pulp stem cell (iDPSC-EV) influence periodontal ligament stem cells (PDLSCs) and provide a potential strategy for bone and dental pulp regeneration. METHODS: The osteogenic and odontogenic differentiation was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, alkaline phosphatase (ALP) activity assay, ALP staining, alizarin red S (ARS) staining, and immunofluorescence staining. To detect proliferation, the Cell Counting Kit-8 (CCK-8) assay, and flow cytometry analysis were used. EVs were isolated by the Exoperfect kit and ultrafiltration and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot. The expression profile of miRNAs in EVs was studied using miRNA sequence and bioinformatics, and one of the upregulated miRNAs was evaluated on PDLSCs. RESULTS: The inflammatory microenvironment stimulated osteogenic and odontogenic differentiation of DPSCs and iDPSC-EV behaved alike on PDLSCs. MiR-758-5p was upregulated in iDPSC-EV and was demonstrated to play a significant role in the osteogenic and odontogenic commitment of PDLSCs. A dual-luciferase reporter assay confirmed the binding site between miR-758-5p and limb development membrane protein 1 (LMBR1). The knockdown of LMBR1 also enhanced the above potential. Mechanically, bone morphogenetic protein (BMP) signaling was activated. CONCLUSIONS: EVs from the inflammatory microenvironment enhanced the osteogenic and odontogenic differentiation of PDLSCs partly by shuttering LMBR1-targeting miR-758-5p via BMP signaling.


Assuntos
Vesículas Extracelulares , MicroRNAs , Diferenciação Celular/genética , Células Cultivadas , Polpa Dentária , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Ligamento Periodontal , Regeneração , Células-Tronco
17.
Cytotherapy ; 24(6): 597-607, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304075

RESUMO

BACKGROUND AIMS: To facilitate artificial bone construct integration into a patient's body, scaffolds are enriched with different biologically active molecules. Among various scaffold decoration techniques, coating surfaces with cell-derived extracellular matrix (ECM) is a rapidly growing field of research. In this study, for the first time, this technology was applied using primary dental pulp stem cells (DPSCs) and tested for use in artificial bone tissue construction. METHODS: Rat DPSCs were grown on three-dimensional-printed porous polylactic acid scaffolds for 7 days. After the predetermined time, samples were decellularized, and the remaining ECM detailed proteomic analysis was performed. Further, DPSC-secreated ECM impact to mesenchymal stromal cells (MSC) behaviour as well as its role in osteoregeneration induction were analysed. RESULTS: It was identified that DPSC-specific ECM protein network ornamenting surface-enhanced MSC attachment, migration and proliferation and even promoted spontaneous stem cell osteogenesis. This protein network also demonstrated angiogenic properties and did not stimulate MSCs to secrete molecules associated with scaffold rejection. With regard to bone defects, DPSC-derived ECM recruited endogenous stem cells, initiating the bone self-healing process. Thus, the DPSC-secreted ECM network was able to significantly enhance artificial bone construct integration and induce successful tissue regeneration. CONCLUSIONS: DPSC-derived ECM can be a perfect tool for decoration of various biomaterials in the context of bone tissue engineering.


Assuntos
Proteômica , Alicerces Teciduais , Animais , Regeneração Óssea , Diferenciação Celular , Polpa Dentária , Matriz Extracelular/metabolismo , Osteogênese , Ratos , Células-Tronco/metabolismo
18.
Mol Biol Rep ; 49(6): 4411-4420, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35301656

RESUMO

BACKGROUND: Human Dental pulp derived-mesenchymal stem cells (hDP-MSCs) have the capability of selfrenewal, multipotency, as well as immunosuppressive properties. They are ideal candidates for regenerating damaged dental tissue and treating inflammation-related diseases. However, methods (such as genetic variation) to improve the immunomodulatory and regenerative efficiency of MSCs in different diseases still need to be developed. Curcumin (CUR) is known for its broad applications in regenerative medicine and the treatment of inflammatory disorders via its anti-inflammatory and anti-oxidant effects. This study was conducted to investigate the effect and underlying mechanisms of CUR on the immunomodulatory and regenerative function of hDP-MSCs and whether treating these cells with CUR can improve therapeutic efficacy. METHODS AND RESULTS: hDP-MSCs were isolated from dental pulp and then treated with CUR. Cell viability rate was observed in hDP-MSCs after treatment of CUR by MTT assay. Real-time quantitative (RT-PCR) was applied to estimate the expression of immunomodulatory and regenerative genes after treatment of CUR. The RT-PCR results showed that VEGF-A and STAT3 markers were up-regulated while HLA-G5 and VCAM-1 markers were down-regulated by CUR (20 µM) treatment in hDP-MSCs (P < 0.001). Besides, this research indicated that there were no significant changes in the expressions of RelA and DSPP after 48 h (P = 0.33, P = 1). CONCLUSION: Our findings demonstrate that CUR can enhance the immunomodulatory and regenerative effects of hDP-MSCs and improve their therapeutic efficacy. These findings can give an understanding of the mechanism for improving restorative and immunomodulatory activity in hDP-MSCs by curcumin.


Assuntos
Curcumina , Células-Tronco Mesenquimais , Biomarcadores , Diferenciação Celular , Curcumina/farmacologia , Polpa Dentária , Humanos , Imunomodulação
19.
Clin Oral Investig ; 26(7): 4789-4796, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35292845

RESUMO

OBJECTIVE: The study aims to evaluate the effect of bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta 1 (TGF-ß1) co-stimulation on odontogenic differentiation of human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS: The viability/proliferation of hDPSCs treated with BMP-2 (group B), TGF-ß1 (group T), or BMP-2/TGF-ß1 (group BT) were evaluated. The experiments on odontogenic differentiation were done for 14 days. The following subgroups were added to investigate the effect of co-stimulation with different timing: subgroup B1, TGF-ß1 co-stimulation in the first week; subgroup B2, TGF-ß1 co-stimulation in the second week; subgroup T1, BMP-2 co-stimulation in the first week; and subgroup T2, BMP-2 co-stimulation in the second week. The mineralization was assessed using alizarin red staining. The expression of following genes was assessed using quantitative real-time polymerase chain reaction: dentin sialophosphoprotein (DSPP), dentin matrix protein-1 (DMP1), osteopontin (OPN), and alkaline phosphatase. RESULTS: All groups showed viability similar to the control group (P > .05). The greater mineralization was detected in B groups on day 14. The expressions of DSPP, DMP-1, and OPN increased on day 14 (P < .05). In the combination groups, the higher expressions of DSPP and DMP-1 were observed in subgroups B1 and B2 than groups B and T (P < .05). CONCLUSIONS: BMP-2 was the key in odontogenic differentiation of hDPSCs, which was further enhanced by co-stimulation with TGF-ß1. Continuous stimulation with TGFß-1 did not improve the differentiation of hDPSCs. CLINICAL RELEVANCE: Combined use of the BMP-2 and TGFß-1 at the specific sequence can provide a tissue engineering approach for the future guided dentin regeneration.


Assuntos
Polpa Dentária , Fator de Crescimento Transformador beta1 , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Humanos , Odontogênese/fisiologia , Células-Tronco , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
20.
Cell Tissue Bank ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906514

RESUMO

Tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function. The aims of this work were to compare chemically and physically processed human Amniotic Membranes (hAM) and analyze the cytocompatibility and proliferation rate (PR) of two primary human mesenchymal stromal cell lines, from different sources and donor conditions seeded over these scaffolds. The evaluated hAM processes were: cold shock to obtain a frozen amniotic membrane (FEAM) with remaining dead epithelial cells, denudation of hAM with trypsin for 20/10 min (DEAM20/10) or treatment with sodium dodecyl sulfate to decellularized hAM (DAM). All samples were sterilized with gamma radiation. The selection of the treated hAM to then generate composites was performed by scanning and transmission electron microscopy and characterization by X-ray diffraction, selecting DEAM10 and FEAM as scaffolds for cell seeding. Two sources of primary human stromal cells were used, both developed by our researchers, human Dental Pulp Stem Cells (hDPSC) from living donors and human Mesenchymal Stromal Cells (hMSC) from bone marrow isolated from brain dead donors. This last line of cells conveys a novel source of human cells that, to our knowledge, have not been tested as part of this type of construct. We developed four in vitro constructs without cytotoxicity signs and with different PR depending on the scaffolds and cells. hDPSC and hMSC grew over both FEAM and DEAM10, but DEAM10 allowed higher PR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA