Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(13): e2116136119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312357

RESUMO

SignificanceTheoretically, symmetry in bilateral animals is subject to sexual selection, since it can serve as a proxy for genetic quality of competing mates during mate choice. Here, we report female preference for symmetric males in Drosophila, using a mate-choice paradigm where males with environmentally or genetically induced wing asymmetry were competed. Analysis of courtship songs revealed that males with asymmetric wings produced songs with asymmetric features that served as acoustic cues, facilitating this female preference. Females experimentally evolved in the absence of mate choice lost this preference for symmetry, suggesting that it is maintained by sexual selection.


Assuntos
Drosophila , Preferência de Acasalamento Animal , Acústica , Animais , Corte , Drosophila/genética , Feminino , Masculino , Comportamento Sexual Animal , Vocalização Animal
2.
Evol Dev ; 25(2): 153-169, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36373204

RESUMO

Developing organisms are often exposed to fluctuating environments that destabilize tissue-scale processes and induce abnormal phenotypes. This might be common in species that lay eggs in the external environment and with little parental care, such as many reptiles. In turtles, morphological development has provided striking examples of abnormal phenotypic patterns, though the influence of the environment remains unclear. To this end, we compared fluctuating asymmetry, as a proxy for developmental instability, in turtle hatchlings incubated in controlled laboratory and unstable natural conditions. Wild and laboratory hatchlings featured similar proportions of supernumerary scales (scutes) on the dorsal shell (carapace). Such abnormal scutes likely elevated shape asymmetry, which was highest in natural nests. Moreover, we tested the hypothesis that hot and dry environments cause abnormal scute formation by subjecting eggs to a range of hydric and thermal laboratory incubation regimes. Shape asymmetry was similar in hatchlings incubated at five constant temperatures (26-30°C). A hot (30°C) and severely Dry substrate yielded smaller hatchlings but scutes were not overtly affected. Our study suggests that changing nest environments contribute to fluctuating asymmetry in egg-laying reptiles, while clarifying the conditions at which turtle shell development remains buffered from the external environment.


Assuntos
Tartarugas , Animais , Embrião não Mamífero , Exoesqueleto , Temperatura
3.
Naturwissenschaften ; 110(4): 28, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289369

RESUMO

Habitat fragmentation and ecosystem changes have the potential to affect animal populations in different ways. To effectively monitor these changes, biomonitoring tools have been developed and applied to detect changes in population structure and/or individual traits that reflect such changes. Fluctuating asymmetry (FA) represents random deviations from perfect symmetry in bilateral traits from perfect symmetry in response to genetic and/or environmental stresses. In this study, we evaluated the use of FA as a tool to monitor stress caused by forest fragmentation and edge formation, using the tropical butterfly M. helenor (Nymphalidae) as a model species. We collected adult butterflies from three fragments of Atlantic Forest in Brazil encompassing both edge and interior habitats. Four wing traits (wing length, wing width, ocelli area, and ocelli diameter) were evaluated. Butterflies captured at edge sites exhibited higher FA values for wing length and wing width compared to those captured at interior sites, whereas traits related to ocelli did not show differences between the two habitat types. Our results suggest that the differences in abiotic and biotic conditions between forest interior and edges can act as a source of stress, impacting the symmetry of flight-related traits. On the other hand, as ocelli are crucial for butterfly camouflage and counter-predator strategies, our results indicate that this trait may be more conserved. By employing FA, we identified trait-specific responses to habitat fragmentation, thus suggesting its potential as a biomarker for environmental stress that can be used in butterflies to monitor habitat quality and change.


Assuntos
Borboletas , Ecossistema , Animais , Borboletas/genética , Florestas , Asas de Animais , Fenótipo
4.
J Exp Zool B Mol Dev Evol ; 338(8): 484-494, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34813170

RESUMO

Measures of fluctuating asymmetry (FA) have been adopted widely as an estimate of developmental instability. Arising from various sources of stress, developmental instability is associated with an organism's capacity to maintain fitness. The process of domestication has been framed as an environmental stress with human-specified parameters, suggesting that FA may manifest to a larger degree among domesticates compared to their wild relatives. This study used three-dimensional geometric morphometric landmark data to (a) quantify the amount of FA in the cranium of six domestic mammal species and their wild relatives and, (b) provide novel assessment of the commonalities and differences across domestic/wild pairs concerning the extent to which random variation arising from the developmental system assimilates into within-population variation. The majority of domestic mammals showed greater disparity for asymmetric shape, however, only two forms (Pig, Dog) showed significantly higher disparity as well as a higher degree of asymmetry compared to their wild counterparts (Wild Boar, Wolf). Contra to predictions, most domestic and wild forms did not show a statistically significant correspondence between symmetric shape variation and FA, however, a moderate correlation value was recorded for most pairs (r-partial least squares >0.5). Within pairs, domestic and wild forms showed similar correlation magnitudes for the relationship between the asymmetric and symmetric components. In domesticates, new variation may therefore retain a general, conserved pattern in the gross structuring of the cranium, whilst also being a source for response to selection on specific features.


Assuntos
Mamíferos , Crânio , Animais , Cães , Suínos , Humanos
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293324

RESUMO

Developmental instability (DI) is thought to be inversely related to a capacity of an organism to buffer its development against random genetic and environmental perturbations. DI is represented by a trait's inter- and intra-individual variabilities. The inter-individual variability (inversely referred to as canalization) indicates the capability of organisms to reproduce a trait from individual to individual. The intra-individual variability reflects an organism's capability to stabilize a trait internally under the same conditions, and, for symmetric traits, it is expressed as fluctuating asymmetry (FA). When representing a trait as a random variable conditioned on environmental fluctuations, it is clear that, in statistical terms, the DI partitions into "extrinsic" (canalization) and "intrinsic" (FA) components of a trait's variance/noise. We established a simple statistical framework to dissect both parts of a symmetric trait variance/noise using a PCA (principal component analysis) projection of the left/right measurements on eigenvectors followed by GAMLSS (generalized additive models for location scale and shape) modeling of eigenvalues. The first eigenvalue represents "extrinsic" and the second-"intrinsic" DI components. We applied this framework to investigate the impact of mother-fetus major histocompatibility complex (MHC)-mediated immune cross-talk on gene expression noise and developmental stability. We showed that "intrinsic" gene noise for the entire transcriptional landscape could be estimated from a small subset of randomly selected genes. Using a diagnostic set of genes, we found that allogeneic MHC combinations tended to decrease "extrinsic" and "intrinsic" gene noise in C57BL/6J embryos developing in the surrogate NOD-SCID and BALB/c mothers. The "intrinsic" gene noise was negatively correlated with growth (embryonic mass) and the levels of placental growth factor (PLGF), but not vascular endothelial growth factor (VEGF). However, it was positively associated with phenotypic growth instability and noise in PLGF. In mammals, the mother-fetus MHC interaction plays a significant role in development, contributing to the fitness of the offspring. Our results demonstrate that a positive impact of distant MHC combinations on embryonic growth could be mediated by the reduction of "intrinsic" gene noise followed by the developmental stabilization of growth.


Assuntos
Fatores de Crescimento Endotelial , Mães , Camundongos , Animais , Feminino , Humanos , Fator de Crescimento Placentário , Fator A de Crescimento do Endotélio Vascular , Fenótipo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Feto , Expressão Gênica , Mamíferos
6.
Front Zool ; 18(1): 55, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689812

RESUMO

BACKGROUND: Mammalian mandible and cranium are well-established model systems for studying canalization and developmental stability (DS) as two elements of developmental homeostasis. Nematode infections are usually acquired in early life and increase in intensity with age, while canalization and DS of rodent skulls could vary through late postnatal ontogeny. We aimed to estimate magnitudes and describe patterns of mandibular and cranial canalization and DS related to age and parasite intensity (diversity) in adult yellow-necked mice (Apodemus flavicollis). RESULTS: We found the absence of age-related changes in the levels of canalization for mandibular and cranial size and DS for mandibular size. However, individual measures of mandibular and cranial shape variance increased, while individual measures of mandibular shape fluctuating asymmetry (FA) decreased with age. We detected mandibular and cranial shape changes during postnatal ontogeny, but revealed no age-related dynamics of their covariance structure among and within individuals. Categories regarding parasitism differed in the level of canalization for cranial size and the level of DS for cranial shape. We observed differences in age-related dynamics of the level of canalization between non-parasitized and parasitized animals, as well as between yellow-necked mice parasitized by different number of nematode species. Likewise, individual measures of mandibular and cranial shape FA decreased with age for the mandible in the less parasitized category and increased for the cranium in the most parasitized category. CONCLUSIONS: Our age-related results partly agree with previous findings. However, no rodent study so far has explored age-related changes in the magnitude of FA for mandibular size or mandibular and cranial FA covariance structure. This is the first study dealing with the nematode parasitism-related canalization and DS in rodents. We showed that nematode parasitism does not affect mandibular and cranial shape variation and covariance structure among and within individuals. However, parasite intensity (diversity) is related to ontogenetic dynamics of the levels of canalization and DS. Overall, additional studies on animals from natural populations are required before drawing some general conclusions.

7.
Ann Hum Biol ; 48(4): 280-293, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33961509

RESUMO

BACKGROUND: Developmental instability is a component of non-genetic variation that results from random variation in developmental processes. It is considered a sensitive indicator of the physiological state of individuals. It is reflected in various ways, but in this study we focussed on its reflection in fluctuating asymmetry (FA) and morphological integration. AIM: To assess how, if at all, variations of facial morphology mirror developmental instability across childhood with respect to sex, growth rate and socioeconomic/environmental factors. SUBJECTS AND METHODS: A set of 210 three-dimensional facial models (of children aged between 6.3 and 14.3 years) originating from the FIDENTIS 3D Face Database was subjected to landmark-based methods of geometric morphometrics to quantify the degree of facial asymmetry and facial morphological integration. In addition, the association with age, sex, and socioeconomic factors was assessed. RESULTS: Our results showed a nonlinear increase of FA with age up to the age of 14 years. The pattern of sex-related variants in facial FA differed in relation to age, as girls exhibited higher values of FA than boys up to the age of 9 years. We found that a signal of modularity based on functional demands and organisation of the face is of particular importance. Here, girls exhibited higher morphological covariation among modules. During more rapid adolescence-related growth, however, covariation among modules at the asymmetrical level decreased in both sexes. CONCLUSION: We can conclude that facial morphology was shown to be strongly integrated, particularly until adolescence. This covariation can facilitate an increase of FA. In addition, the results of this study indicate there is a weak association between socioeconomic stress and facial asymmetries. In contrast, sex and growth rate are reflected in developmental instability.


Assuntos
Face , Assimetria Facial , Adolescente , Criança , Assimetria Facial/genética , Feminino , Cabeça , Humanos , Masculino , Fatores Socioeconômicos
8.
Proc Biol Sci ; 287(1937): 20201349, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33081611

RESUMO

A key focus of evolutionary developmental biology is on how phenotypic diversity is generated. In particular, both plasticity and developmental instability contribute to phenotypic variation among genetically identical individuals, but the interactions between the two phenomena and their general fitness impacts are unclear. We discovered a striking example of asymmetry in pea aphids: the presence of wings on one side and the complete or partial absence of wings on the opposite side. We used this asymmetric phenotype to study the connection between plasticity, developmental instability and fitness. We found that this asymmetric wing development (i) occurred equally on both sides and thus is a developmental instability; (ii) is present in some genetically unique lines but not others, and thus has a genetic basis; and (iii) has intermediate levels of fecundity, and thus does not necessarily have negative fitness consequences. We conclude that this dramatic asymmetry may arise from incomplete switching between developmental targets, linking plasticity and developmental instability. We suspect that what we have observed may be a more widespread phenomenon, occurring across species that routinely produce distinct, alternative phenotypes.


Assuntos
Afídeos/fisiologia , Asas de Animais , Animais , Evolução Biológica , Pisum sativum , Fenótipo
9.
J Evol Biol ; 32(11): 1207-1229, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420901

RESUMO

The measurement of fitness in wild populations is a challenging task, and a number of proxies have been proposed with different degrees of success. Developmental instability/stability (DI) is an organismal property associated with variance in bilateral asymmetry (fluctuating asymmetry-FA) and a correlated effect on fitness. This study provides evidence to corroborate the hypothesis that asymmetry partly reflects DI and is correlated with a reduction in fitness measured by survival and reproduction in bats. We studied two colonies of the bat Carollia perspicillata in southeastern Brazil over 5 years, marking and recapturing individuals. Gaussian mixture models for signed Forearm Asymmetry (ForA) distribution indicated that ~20% of asymmetry variation was due to DI heterogeneity among individuals. ForA, body condition (Scaled Mass Index-SMI) and Forearm Length (ForL) were used as predictors of survival probability in Cormack-Jolly-Seber models. Asymmetry was negatively associated with survival, whereas SMI and ForL were positively associated. The male C. perspicillata defend sites within the roost that are favoured by female harems, but there are mating opportunities for bachelor males, leading to both territorial disputes and sperm competition. As predicted by sexual selection, ForA was negatively associated with relative Testicle Length, a measure of reproductive potential. In females, ForA was negatively associated with the probability of two pregnancies (as opposed to one) in a given breeding season. The effect magnitudes and directions of associations suggest that asymmetry, even though not perfectly reflecting DI variation, is a useful predictor for fitness components in C. perspicillata.


Assuntos
Quirópteros/anatomia & histologia , Aptidão Genética , Animais , Quirópteros/genética , Feminino , Masculino , Reprodução
10.
J Evol Biol ; 31(2): 197-210, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29134739

RESUMO

Fluctuating asymmetry (FA) is widely used to quantify developmental instability (DI) in ecological and evolutionary studies. It has long been recognized that FA may not exclusively originate from DI for sessile organisms such as plants, because phenotypic plasticity in response to heterogeneities in the environment might also produce FA. This study provides the first empirical evidence for this hypothesis. We reasoned that solar irradiance, which is greater on the southern side than on the northern side of plants growing in the temperate zone of the Northern Hemisphere, would cause systematic morphological differences and asymmetry associated with the orientation of plant parts. We used geometric morphometrics to characterize the size and shape of flower parts in Iris pumila grown in a common garden. The size of floral organs was not significantly affected by orientation. Shape and particularly its asymmetric component differed significantly according to orientation for three different floral parts. Orientation accounted for 10.4% of the total shape asymmetry within flowers in the falls, for 11.4% in the standards and for 2.2% in the style branches. This indicates that phenotypic plasticity in response to a directed environmental factor, most likely solar irradiance, contributes to FA of flowers under natural conditions. That FA partly results from phenotypic plasticity and not just from DI needs to be considered by studies of FA in plants and other sessile organisms.


Assuntos
Adaptação Fisiológica , Flores/crescimento & desenvolvimento , Gênero Iris/crescimento & desenvolvimento , Luz Solar
11.
Laterality ; 23(1): 1-19, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28276876

RESUMO

Individuals often display a preference for one side of their body during aggressive encounters. This may be a lateralized preference for using one structure of a bilateral trait during display or physical attack, or for keeping the opponent in one visual field. Alternatively, it may be the case that behavioural lateralization and the degree of symmetry expressed by bilateral structures are correlated forms of developmental instability. We examined whether there was an association between lateralization during a lateral display and different measurements of antler size and symmetry (beam length, beam circumference, brow tine length and coronet circumference). Three models addressed different structural measures: the right antler, the larger antler and antler symmetry. Results showed that beam length was negatively associated with behavioural lateralization irrespective of structural measure. A second analysis using a composite score of the four antler measurements, one for each structural measure, showed that only antler symmetry was negatively associated with lateralization during lateral display. Therefore, our second prediction was supported. We discuss these findings in relation to predator detection capability and stress reduction in prey species such as the fallow deer.


Assuntos
Chifres de Veado/fisiologia , Cervos/anatomia & histologia , Cervos/crescimento & desenvolvimento , Lateralidade Funcional/fisiologia , Agressão/fisiologia , Animais , Chifres de Veado/citologia , Masculino , Caminhada/fisiologia
12.
Dev Biol ; 385(2): 189-99, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24269905

RESUMO

Phenotypic robustness requires a process of developmental buffering that is largely not understood, but which can be disrupted by mutations. Here we show that in mef2ca(b1086) loss of function mutant embryos and early larvae, development of craniofacial hyoid bones, the opercle (Op) and branchiostegal ray (BR), becomes remarkably unstable; the large magnitude of the instability serves as a positive attribute to learn about features of this developmental buffering. The OpBR mutant phenotype variably includes bone expansion and fusion, Op duplication, and BR homeosis. Formation of a novel bone strut, or a bone bridge connecting the Op and BR together occurs frequently. We find no evidence that the phenotypic stability in the wild type is provided by redundancy between mef2ca and its co-ortholog mef2cb, or that it is related to the selector (homeotic) gene function of mef2ca. Changes in dorsal-ventral patterning of the hyoid arch also might not contribute to phenotypic instability in mutants. However, subsequent development of the bone lineage itself, including osteoblast differentiation and morphogenetic outgrowth, shows marked variation. Hence, steps along the developmental trajectory appear differentially sensitive to the loss of buffering, providing focus for the future study.


Assuntos
Desenvolvimento Ósseo/genética , Larva/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Genes Homeobox , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
13.
Proc Biol Sci ; 282(1803): 20142437, 2015 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25673675

RESUMO

The stochastic nature of biochemical processes is a source of variability that influences developmental stability. Developmental instability (DI) is often estimated through fluctuating asymmetry (FA), a parameter that deals with within-individual variation in bilateral structures. A relevant goal is to shed light on how environment, physiology and genotype relate to DI, thus providing a more comprehensive view of organismal development. Using Drosophila melanogaster isogenic lines, we investigated the effect of parental age, parental diet and offspring heterozygosity on DI. In this work, we have uncovered a clear relationship between parental age and offspring asymmetry. We show that asymmetry of the progeny increases concomitantly with parental age. Moreover, we demonstrate that enriching the diet of parents mitigates the effect of age on offspring symmetry. We show as well that increasing the heterozygosity of the progeny eliminates the effect of parental age on offspring symmetry. Taken together, our results suggest that diet, genotype and age of the parents interact to determine offspring DI in wild populations. These findings provide us with an avenue to understand the mechanisms underlying DI.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Drosophila melanogaster/genética , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Feminino , Heterozigoto , Masculino , Fenótipo , Fenômenos Reprodutivos Fisiológicos , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento
14.
Am J Phys Anthropol ; 153(1): 45-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24318940

RESUMO

Historically, medical concerns about the deleterious effects of closely inbred marriages have focused on the risk posed by recessive Mendelian disease, with much less attention to developmental instability. We studied the effects of inbreeding (first-cousin marriage) on growth and fluctuating asymmetry of 200 full-term infants (101 inbred and 99 outbred) whose parents were of similar socioeconomic status in Sivas Province, Turkey. In addition to differences in their mean inbreeding coefficients (f = 1/16 for first cousins and f < 1/1,024 for unrelated parents), the consanguineous parents were less well educated (3 years, on average for both husbands and wives). We measured weight, height, head circumference, and chest circumference of the newborns, as well as four bilateral traits (ear width, ear length, and second and fourth digit lengths). After taking education into account, none of the measures of size (weight, height, head circumference, and chest circumference) and fluctuating asymmetry differed between the inbred and outbred groups. Male children of well-educated parents, however, were larger and had less fluctuating asymmetry. Female children of well-educated parents weighed more than those of less well-educated parents, but were otherwise indistinguishable for height, head circumference, chest circumference, and fluctuating asymmetry. We conclude that inbreeding depression causes neither an increase in fluctuating asymmetry of full-term newborns, nor a decrease in body size. Unmeasured variables correlated with education appear to have an effect on fluctuating asymmetry and size of male children and only a weak effect on size (weight) of female children.


Assuntos
Consanguinidade , Escolaridade , Recém-Nascido/crescimento & desenvolvimento , Fenótipo , Análise de Variância , Peso ao Nascer/fisiologia , Feminino , Humanos , Masculino , Turquia
15.
Artigo em Inglês | MEDLINE | ID: mdl-24039084

RESUMO

Fluctuating asymmetry (the directionally random asymmetry of bilateral structures, FA) is commonly used as a measure of developmental instability, and may increase with stress. As several studies reported a relation between FA and developmental abnormalities, we investigate whether FA could be an additional perhaps more sensitive marker of developmental toxicity. The aim of this work is analyzing patterns of FA in multiple traits in a large dataset of rabbit fetuses, which were prenatally exposed to a toxic compound and sacrificed just before natural delivery. Gravid females were exposed to three doses of this compound, inducing abnormalities in the fetuses at the high dose only. The average FA, however, was already higher than control in rabbit fetuses of the low-dose group but did not further increase with higher concentrations. Moreover, the increase in FA differed between traits, with the hindlimbs showing the strongest response. In addition, we did not find any association between FA and the presence of fetal abnormalities at the individual level. Although these results suggest that FA may act as "an early warning system," we did not find a dose-response relationship with increasing stress and effects were trait-specific. Further testing is needed before FA may be considered as a sensitive marker in developmental toxicity studies.


Assuntos
Biomarcadores/metabolismo , Estresse Fisiológico , Testes de Toxicidade , Animais , Feminino , Feto/patologia , Membro Posterior/embriologia , Membro Posterior/patologia , Coelhos , Análise de Regressão , Fatores de Risco
16.
Ecol Evol ; 13(8): e10425, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575591

RESUMO

As natural disasters become more frequent due to climate change, understanding the biological impact of these ecological catastrophes on wild populations becomes increasingly pertinent. Fluctuating asymmetry (FA), or random deviations from bilateral symmetry, is reflective of developmental instability and has long been positively associated with increases in environmental stress. This study investigates craniofacial FA in a population of free-ranging rhesus macaques (Macaca mulatta) that has experienced multiple Category 3 hurricanes since the colony's inception on Cayo Santiago, including 275 individuals from ages 9 months to 31 years (F = 154; M = 121). Using geometric morphometrics to quantify FA and a linear mixed-effect model for analysis, we found that sex, age, and decade of birth did not influence the amount of FA in the individuals included in the study, but the developmental stage at which individuals experienced these catastrophic events greatly impacted the amount of FA exhibited (p = .001). Individuals that experienced these hurricanes during fetal life exhibited greater FA than any other post-natal developmental period. These results indicate that natural disasters can be associated with developmental disruption that results in long-term effects if occurring during the prenatal period, possibly due to increases in maternal stress-related hormones.


A medida que los desastres naturales se vuelven más frecuentes debido al cambio climático, entender el impacto biológico de estas catástrofes ecológicas en poblaciones silvestres va en aumento pertinente. La asimetría fluctuante (AF), o desviaciones aleatorias de simetría bilateral, es reflejo de inestabilidad durante el desarrollo y se ha asociado positivamente con incrementos en estrés ambiental durante mucho tiempo. Este estudio investiga AF craneofacial en una población de macacos rhesus (Macaca mulatta) en libertad que ha experimentado múltiples huracanes categoría 3 desde el inicio de la colonia en Cayo Santiago, e incluye 275 individuos de 9 meses a 31 años de edad (F = 154; M = 121). Usando morfometría geométrica para cuantificar AF y un modelo lineal de efectos mixtos para análisis, encontramos que el sexo, la edad y la década de nacimiento no influyeron en la cantidad de AF en los individuos incluidos en el estudio, pero la etapa de desarrollo en la que los individuos experimentaron estos eventos catastróficos impactó altamente la cantidad de AF exhibida (p = .001). Los individuos que experimentaron estos huracanes durante el período fetal exhibieron mayor AF que cualquier otro período de desarrollo posnatal. Estos resultados indican que los desastres naturales pueden asociarse con trastornos del desarrollo que tienen efectos a largo plazo si ocurren durante el período prenatal, posiblemente debido al aumento de hormonas maternas relacionadas con el estrés.

17.
Emerg Top Life Sci ; 6(3): 303-310, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35621351

RESUMO

Empirical studies of phenotypic variation show that genetic and environmental heterogeneity account for only part of it. Usually, the magnitude of the residual variation is comparable with that of the genetic component, while notably exceeding the magnitude of the environmental component. This can be interpreted in two ways. A deterministic interpretation associates it with artifacts such as measurement error and genetic and environmental heterogeneity that is unaccounted for. An indeterministic interpretation argues that it is random or stochastic phenotypic variation (SPV) resulting from developmental instability - a developing organism's inability to produce a consistent phenotype in a given environment. Classical example of debates between determinists and indeterminists took place about a century ago in quantum physics. In discussing Heidelberg's Uncertainty Principle, Einstein metaphorically expressed his deterministic position: 'God does not play dice with universe'. The indeterministic Uncertainty Principle, however, was eventually widely accepted. Currently, most biologists implicitly or explicitly support deterministic interpretations of phenotypic variation patterns. Here, a wide range of data on morphological traits (studied with analysis of fluctuating asymmetry) and non-morphological traits are analyzed to provide evidence that SPV is not an artifact, but a valid phenomenon. This evidence supports conclusions that observed associations between SPV and stress can be analyzed in the framework of dynamic energy budget theory, and are inextricably linked through energy homeostasis.


Assuntos
Variação Biológica da População , Fenótipo
18.
Animals (Basel) ; 12(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203179

RESUMO

The aim of this research was to contribute to the study of the doming geometry of Testudo carapace as an unstable point of equilibrium when animals are overturned. We performed this research using geometric morphometric using a sample of 64 Testudo individuals belonging to different species (T. hermannin = 30, T. graecan = 3, T. marginata n = 13 and T. horsfieldii n = 18), sexes and ages. A set of four sagittal landmarks (discrete homologous points) and 15 pairs of semi-landmarks, on the frontal doming of the carapace, were digitized on individual carapace pictures. Significative fluctuating asymmetry was detected, defined as small, completely random departures from bilateral symmetry, but much less than directional asymmetry, which appeared highly significative. Anti-symmetry did not appear. Carapace asymmetry was dominated by a clear right directionality. A possible biological speculation could be that this asymmetry more that easing the self-righting potential ("kinematic instability", understood as the ability to self-right without effort), makes stable ventral turning difficult ("static stability", understood as the ability to resist passively turning the body produced by destabilizing forces). This asymmetry is present among both sexes but more marked among males. An explanation for this sexually differentiated pattern could be the higher locomotion and the fight for mating in males, making them consequently more prone to losing their balance and falling on their back. These data may be useful in studying adaptative traits in Testudo species as well as establishing a seminal base for future studies. This research is the first attempt to explore a suitable method to assess doming asymmetry which could be useful in future, more extensive investigations, on a larger interspecific sample.

19.
Am J Biol Anthropol ; 177(2): 286-299, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-36790754

RESUMO

OBJECTIVES: Craniofacial fluctuating asymmetry (FA) refers to the random deviations from symmetry exhibited across the craniofacial complex and can be used as a measure of developmental instability for organisms with bilateral symmetry. This article addresses the lack of data on craniofacial FA in nonhuman primates by analyzing FA magnitude and variation in chimpanzees, gorillas, and macaques. We offer a preliminary investigation into how FA, as a proxy for developmental instability, varies within and among nonhuman primates. MATERIALS AND METHODS: We generated 3D surface models of 121 crania from Pan troglodytes troglodytes, Gorilla gorilla gorilla, and Macaca fascicularis fascicularis. Using geometric morphometric techniques, the magnitude of observed FA was calculated and compared for each individual, sex, and taxon, along with the variation of FA across cranial regions and for each bilateral landmark. RESULTS: Gorillas and macaques exhibited higher and more similar magnitudes of FA to each other than either taxon did to chimpanzees; variation in magnitude of FA followed this same trend. No significant differences were detected between sexes using pooled data across species, but sex did influence FA magnitude within taxa in gorillas. Further, variation in FA variance across cranial regions and by landmark was not distributed in any particular pattern. CONCLUSION: Possible environmentally induced causes for these patterns of FA magnitude include differences in growth rate and physiological stress experienced during life. Developmental stability may be greatest in chimpanzees in this sample. Additionally, these results point to appropriate landmarks for future FA analyses and may help suggest more urgent candidate taxa for conservation efforts.


Assuntos
Gorilla gorilla , Hominidae , Animais , Gorilla gorilla/fisiologia , Pan troglodytes/fisiologia , Macaca , Crânio , Assimetria Facial
20.
Biology (Basel) ; 11(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35453698

RESUMO

Background: Morphological integration refers to the tendency of anatomical structures to show correlated variations because they develop in response to shared developmental processes or function in concert with other structures. The objective of this study was to determine the relationships between the dimensions of different cranial-cervical-facial structures in patients with Down syndrome (DS). Methodology: The study group consisted of 41 individuals with DS who had undergone cone-beam computed tomography (CBCT) at the Dental Radiology Unit of the University of Santiago de Compostela (Spain). In the historical archive of this same unit, 41 CBCTs belonging to individuals with no known systemic disorders or severe malformations of the maxillofacial region were selected, forming an age and sex-matched control group. Twenty-nine measurements were performed on each participant's CBCT images, which were grouped into three blocks: atlantoaxial dimensions, craniovertebral dimensions and cephalometric dimensions. To determine whether there were significant differences between the dimensions obtained in the DS and control groups, we applied multiple analysis of variance and linear discriminant analysis tests. The analysis of the association between blocks (in pairs) was performed with the canonical correlation analysis test. Results: The dimensions evaluated in the three blocks of variables of individuals with DS differ significantly from those of nonsyndromic controls (p < 0.001). The highest discriminative capacity to identify controls and patients with DS was obtained with the cephalometric dimensions (87.5%). With regard to the association between blocks (two-by-two measurements), we found no significant relationship in the DS group. However, we confirmed a statistically significant correlation between all pairs of blocks of variables in the controls, especially between the atlantoaxial and cephalometric dimensions (p < 0.001) and between the craniovertebral and cephalometric dimensions (p < 0.001). Conclusions: Our results confirm a very poor morphological integration of the cranial-cervical-maxillary complex in individuals with DS. This finding reinforces the proposal that gene overload enhances the channeling process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA