Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Immunity ; 52(1): 109-122.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882361

RESUMO

Recent work suggests that cholesterol metabolism impacts innate immune responses against infection. However, the key enzymes or the natural products and mechanisms involved are not well elucidated. Here, we have shown that upon DNA and RNA viral infection, macrophages reduced 7-dehydrocholesterol reductase (DHCR7) expression. DHCR7 deficiency or treatment with the natural product 7-dehydrocholesterol (7-DHC) could specifically promote phosphorylation of IRF3 (not TBK1) and enhance type I interferon (IFN-I) production in macrophages. We further elucidated that viral infection or 7-DHC treatment enhanced AKT3 expression and activation. AKT3 directly bound and phosphorylated IRF3 at Ser385, together with TBK1-induced phosphorylation of IRF3 Ser386, to achieve IRF3 dimerization. Deletion of DHCR7 and the DHCR7 inhibitors including AY9944 and the chemotherapy drug tamoxifen promoted clearance of Zika virus and multiple viruses in vitro or in vivo. Taken together, we propose that the DHCR7 inhibitors and 7-DHC are potential therapeutics against emerging or highly pathogenic viruses.


Assuntos
Desidrocolesteróis/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Macrófagos/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Estomatite Vesicular/imunologia , Células A549 , Animais , Linhagem Celular , Colesterol/metabolismo , Ativação Enzimática/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética , Vírus da Estomatite Vesicular Indiana/imunologia
2.
Biochem Biophys Res Commun ; 712-713: 149932, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38626530

RESUMO

The DHCR7 enzyme converts 7-DHC into cholesterol. Mutations in DHCR7 can block cholesterol production, leading to abnormal accumulation of 7-DHC and causing Smith-Lemli-Opitz syndrome (SLOS). SLOS is an autosomal recessive disorder characterized by multiple malformations, including microcephaly, intellectual disability, behavior reminiscent of autism, sleep disturbances, and attention-deficit/hyperactivity disorder (ADHD)-like hyperactivity. Although 7-DHC affects neuronal differentiation in ex vivo experiments, the precise mechanism of SLOS remains unclear. We generated Dhcr7 deficient (dhcr7-/-) zebrafish that exhibited key features of SLOS, including microcephaly, decreased neural stem cell pools, and behavioral phenotypes similar to those of ADHD-like hyperactivity. These zebrafish demonstrated compromised myelination, synaptic anomalies, and neurotransmitter imbalances. The axons of the dhcr7-/- zebrafish showed increased lysosomes and attenuated autophagy, suggesting that autophagy-related neuronal homeostasis is disrupted.


Assuntos
Axônios , Colesterol , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Peixe-Zebra , Animais , Autofagia , Axônios/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Neurogênese , Neurônios/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Nutr Neurosci ; : 1-11, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761117

RESUMO

OBJECTIVES: Vitamin D deficiency has been associated with psychiatric disorders and behavioral phenotypes such as Attention-Deficit/Hyperactivity Disorder (ADHD). Considering that vitamin D levels are polygenic, we aim to evaluate the overall effects of its genetic architecture on symptoms of inattention, hyperactivity, and impulsivity and on the serum levels of vitamin D in two independent samples of adults, as well as the specific effects of five relevant polymorphisms in vitamin D-related genes. METHODS: We evaluated 870 subjects from an ADHD sample (407 cases and 463 controls) and 319 subjects from an academic community (nutrigenetic sample). Vitamin D serum levels were obtained through Elisa test and genetic data by TaqMan™ allelic discrimination and Infinium PsychArray-24 BeadChip genotyping. Polygenic Scores (PGS) were calculated on PRSice2 based on the latest GWAS for Vitamin D and statistical analyses were conducted at Plink and SPSS software. RESULTS: Vitamin D PGSs were associated with inattention in the ADHD sample and with hyperactivity when inattention symptoms were included as covariates. In the nutrigenetic sample, CYP2R1 rs10741657 and DHCR7 rs12785878 were nominally associated with impulsivity and hyperactivity, respectively, and both with vitamin D levels. In the clinical sample, RXRG rs2134095 was associated with impulsivity. DISCUSSION: Our findings suggest a shared genetic architecture between vitamin D levels and ADHD symptoms, as evidenced by the associations observed with PGS and specific genes related to vitamin D levels. Interestingly, differential effects for vitamin D PGS were found in inattention and hyperactivity, which should be considered in further studies involving ADHD.

4.
Adv Exp Med Biol ; 1441: 467-480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884726

RESUMO

Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.


Assuntos
Estudo de Associação Genômica Ampla , Comunicação Interatrial , Humanos , Comunicação Interatrial/genética , Predisposição Genética para Doença/genética , Mutação
5.
Anim Biotechnol ; 35(1): 2298399, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38157229

RESUMO

Cholesterol is regarded as a signaling molecule in regulating the metabolism and function of fat cells, in which 7-Dehydrocholesterol reductase (DHCR7) is a key enzyme that catalyzes the conversion of 7-dehydrocholesterol to cholesterol, however, the exact function of DHCR7 in goat adipocytes remains unknown. Here, the effect of DHCR7 on the formation of subcutaneous and intramuscular fat in goats was investigated in vitro, and the result indicated that the mRNA level of DHCR7 showed a gradual downward trend in subcutaneous adipogenesis, but an opposite trend in intramuscular adipogenesis. In the process of subcutaneous preadipocytes differentiation, overexpression of DHCR7 inhibited the expression of adipocytes differentiation marker genes (CEBP/α, CEBP/ß, SREBP1 and AP2), lipid metabolism-related genes (AGPAT6, FASN, SCD1 and LPL), and the lipid accumulation. However, in intramuscular preadipocyte differentiation, DHCR7 overexpression showed a promoting effect on adipocyte differentiation marker genes (CEBP/α, CEBP/ß, PPARγ and SREBP1) and lipid metabolism-related genes (GPAM, AGPAT6, DGAT1 and SCD1) expression, and on lipid accumulation. In summary, our work demonstrated that DHCR7 played an important role in regulating adipogenic differentiation and lipid metabolism in preadipocytes in goats, which is of great significance for uncovering the underlying molecular mechanism of adipocyte differentiation and improving goat meat quality.


Assuntos
Cabras , Oxirredutases , Animais , Cabras/genética , Diferenciação Celular/genética , Adipogenia/genética , Adipócitos/metabolismo , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/farmacologia , Colesterol/metabolismo , Lipídeos , PPAR gama/metabolismo
6.
Int J Neurosci ; 132(5): 439-449, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32938288

RESUMO

PURPOSE/AIM OF THE STUDY: Parkinson's disease (PD) is the second most common neurodegenerative disorder. Vitamin D deficiency is suggested to be related to PD. A genome-wide association study indicated that genes involved in vitamin D metabolism affect vitamin D levels. Among these genes, single nucleotide polymorphisms (SNPs) of the vitamin D receptor (VDR) and vitamin D binding protein (VDBP/GC) genes have also been demonstrated to be associated with PD risk. Our aim was to investigate the relevance of SNPs within the 7-dehydrocholesterol reductase/nicotinamide adenine dinucleotide synthetase 1 (DHCR7/NADSYN1) locus and vitamin D 25-hydroxylase (CYP2R1) gene, which encode important enzymes that play a role in the vitamin D synthesis pathway, with PD and its clinical features. MATERIALS AND METHODS: Genotypes of 382 PD patients and 240 cognitively healthy individuals were evaluated by a LightSNiP assay for a total of 10 SNPs within the DHCR7/NADSYN1 locus and CYP2R1 gene. RESULTS: There were no significant differences in the allele and genotype distributions of any of the SNPs between any patient groups and healthy subjects. However, our results indicated that all of the SNPs within the DHCR7/NADSYN1 locus and CYP2R1 gene, except rs1993116, were associated with clinical motor features of PD including initial predominant symptom, freezing of gait (FoG) and falls as well as disease stage and duration of the disease. CONCLUSIONS: In conclusion, genetic variants of the DHCR7/NADSYN1 locus and the CYP2R1 gene might be related to the inefficient utilization of vitamin D independent from vitamin D levels, and it might result in differences in the clinical features of PD patients.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Colestanotriol 26-Mono-Oxigenase , Família 2 do Citocromo P450 , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Doença de Parkinson , Vitamina D , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Colestanotriol 26-Mono-Oxigenase/genética , Família 2 do Citocromo P450/genética , Transtornos Neurológicos da Marcha/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Vitamina D/metabolismo , Deficiência de Vitamina D
7.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36012386

RESUMO

BACKGROUND: Studies have demonstrated the link between vitamin-D-related genetic variations and nonskeletal outcomes. We aimed to identify all available data on the association of vitamin-D-related genetic variations with nonalcoholic fatty liver disease (NAFLD). METHODS: Potentially eligible studies were identified from Embase and Medline databases from inception to June 2022 using a search strategy that comprised terms for "Vitamin D" and "NAFLD". Eligible studies must report the association between vitamin D-related genetic variations and presence, severity or response to treatment of NAFLD. Data were extracted from each eligible study. RESULTS: A total of 3495 articles were identified. After a systematic review, twelve studies were included. A total of 26 genetic variations were identified. Presence of NAFLD was associated with variations of GC (rs222054, rs222020, rs10011000, rs7041), VDR (rs2228570, rs11168287, rs10783219, rs4752), CYP24A1 (rs3787557, rs6068816, rs2296241, rs2248359) and CYP27B1 (rs4646536). Severity of NAFLD was associated with variations of GC (rs4588), VDR (rs2228570, rs4334089), CYP2R1 (rs10741657), DHCR7 (rs1544410, rs3829251, rs12785878) and CYP24A1 (rs3787557, rs6068816, rs6097809, rs6127119, rs2248359, rs3787554, rs4809960, rs6022999). Response to calcitriol treatment was associated with variation of VDR (rs10735810). CONCLUSIONS: Multiple vitamin D-related genetic variations were associated with NAFLD, indicating the role of vitamin D in the pathogenesis of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Vitamina D , Colestanotriol 26-Mono-Oxigenase/genética , Família 2 do Citocromo P450/genética , Variação Genética , Genótipo , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Vitamina D3 24-Hidroxilase/genética , Vitaminas
8.
Balkan J Med Genet ; 24(1): 99-102, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34447666

RESUMO

The aim of this paper is to present a patient with the Smith-Lemli-Opitz syndrome (SLOS), with an overview of the modality of diagnosis, and the treatment of the patient. Exome analysis showed two variants in exon 6 of the 7-dehydrocholesterol reductase (DHCR7) gene have been determined: missense variant 1) NM_001360.2: c.470T>C (p.Leu157Pro) and 2) nonsense variant c.452G>A (W151*). Therefore the DHCR7 genotype of the patient is NM_001360.2: c.[470T>C; c.452G>A]. The proband, aged 6 years, has global developmental retardation with missing contact gaze and lacking motor development for her age and with peripheral spastic-enhanced muscle tone, and is under the supervision of children neurologists, gastroenterologists, nephrologists and cardiologists.

9.
J Inherit Metab Dis ; 42(5): 934-943, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30891795

RESUMO

Cholesterol serves as a building material for cellular membranes and plays an important role in cellular metabolism. The brain relies on its own cholesterol biosynthesis, which starts during embryonic development. Cholesterol is synthesized from two immediate precursors, desmosterol and 7-dehydrocholesterol (7-DHC). Mutations in the DHCR24 enzyme, which converts desmosterol into cholesterol, lead to desmosterolosis, an autosomal recessive developmental disorder. In this study, we assessed the brain content of desmosterol, 7-DHC, and cholesterol from development to adulthood, and analyzed the biochemical, molecular, and anatomical consequences of Dhcr24 mutations on the sterol profile in a mouse model of desmosterolosis and heterozygous Dhcr24+/- carriers. Our HPLC-MS/MS studies revealed that by P0 desmosterol almost entirely replaced cholesterol in the Dhcr24-KO brain. The greatly elevated desmosterol levels were also present in the Dhcr24-Het brains irrespective of maternal genotype, persisting into adulthood. Furthermore, Dhcr24-KO mice brains showed complex changes in expression of lipid and sterol transcripts, nuclear receptors, and synaptic plasticity transcripts. Cultured Dhcr24-KO neurons showed increased arborization, which was also present in the Dhcr24-KO mouse brains. Finally, we observed a shared pathophysiological mechanism between the mouse models of desmosterolosis and Smith-Lemli-Opitz syndrome (a genetic disorder of conversion of 7-DHC to cholesterol).


Assuntos
Anormalidades Múltiplas/metabolismo , Encéfalo/metabolismo , Colesterol/biossíntese , Erros Inatos do Metabolismo Lipídico/metabolismo , Anormalidades Múltiplas/genética , Animais , Membrana Celular/metabolismo , Desidrocolesteróis/metabolismo , Desmosterol/metabolismo , Feminino , Homeostase , Erros Inatos do Metabolismo Lipídico/genética , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Síndrome de Smith-Lemli-Opitz , Esteróis/metabolismo , Espectrometria de Massas em Tandem
10.
Biosci Biotechnol Biochem ; 82(3): 497-506, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29370734

RESUMO

We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.


Assuntos
Gorduras na Dieta/análise , Crescimento e Desenvolvimento/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Aminoácidos/sangue , Animais , Catecolaminas/urina , Hipotálamo/fisiologia , Masculino , Hipófise/fisiologia , Ratos , Ratos Wistar , Transcriptoma/efeitos dos fármacos
11.
Int J Mol Sci ; 19(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300326

RESUMO

Smith-Lemli-Opitz syndrome (SLOS) is a cholesterol synthesis disorder characterized by physical, mental, and behavioral symptoms. It is caused by mutations in 7-dehydroxycholesterolreductase gene (DHCR7) encoding DHCR7 protein, which is the rate-limiting enzyme in the cholesterol synthesis pathway. Here we demonstrate that pathogenic mutations in DHCR7 protein are located either within the transmembrane region or are near the ligand-binding site, and are highly conserved among species. In contrast, non-pathogenic mutations observed in the general population are located outside the transmembrane region and have different effects on the conformational dynamics of DHCR7. All together, these observations suggest that the non-classified mutation R228Q is pathogenic. Our analyses indicate that pathogenic effects may affect protein stability and dynamics and alter the binding affinity and flexibility of the binding site.


Assuntos
Biologia Computacional/métodos , Mutação de Sentido Incorreto/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Síndrome de Smith-Lemli-Opitz/genética , Frequência do Gene/genética , Humanos , Ligantes , Simulação de Dinâmica Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Software
12.
J Biol Chem ; 291(16): 8363-73, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26887953

RESUMO

Cholesterol is detrimental to human health in excess but is also essential for normal embryogenesis. Hence, enzymes involved in its synthesis possess many layers of regulation to achieve balanced cholesterol levels. 7-Dehydrocholesterol reductase (DHCR7) is the terminal enzyme of cholesterol synthesis in the Kandutsch-Russell pathway, converting 7-dehydrocholesterol (7DHC) to cholesterol. In the absence of functional DHCR7, accumulation of 7DHC and a lack of cholesterol production leads to the devastating developmental disorder, Smith-Lemli-Opitz syndrome. This study identifies that statin treatment can ameliorate the low DHCR7 expression seen with common Smith-Lemli-Opitz syndrome mutations. Furthermore, we show that wild-type DHCR7 is also relatively labile. In an example of end-product inhibition, cholesterol accelerates the proteasomal degradation of DHCR7, resulting in decreased protein levels and activity. The loss of enzymatic activity results in the accumulation of the substrate 7DHC, which leads to an increased production of vitamin D. Thus, these findings highlight DHCR7 as an important regulatory switch between cholesterol and vitamin D synthesis.


Assuntos
Desidrocolesteróis/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Vitamina D/biossíntese , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Complexo de Endopeptidases do Proteassoma/genética , Síndrome de Smith-Lemli-Opitz/enzimologia , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia , Vitamina D/genética
13.
BMC Med Genet ; 17: 22, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26969503

RESUMO

BACKGROUND: Smith Lemli Opitz syndrome (SLOS; OMIM #270400) is an autosomal recessive metabolic disorder caused by mutations in the DHCR7 gene. SLOS is characterized by a plethora of abnormalities involving mainly the brain and the genitalia but also the cardiac, skeletal and gastroenteric system, typical dysmorphic facial features, and variable degrees of developmental delay and intellectual disability (ID). SLOS has a broad phenotypic spectrum, ranging from multiple congenital malformation syndrome, to mild developmental delay and minor malformations. A large number of mutations have been described in the DHCR7 gene, with few common mutations accounting for the majority of mutated alleles found in patients and a large number of very rare or even private variants. Due to the wide variety of clinical presentations, diagnosis can be difficult, especially in the milder forms of the disorder. Furthermore, establishing a molecular diagnosis can be complicated by finding variants of unknown clinical significance in such cases. CASE PRESENTATION: We report a case of SLOS at the mild end of the clinical spectrum, presenting with bilateral pelvis ectasia, mild dysmorphic features and mild intellectual disability. The case is compound heterozygous for a known pathogenic mutation (c.724C > T, p.Arg242Cys) and a mutation that has only been reported once in a Portuguese patient (c.521 T > C, p.Phe174Ser) whose pathogenicity has not been yet assessed. We compared the two patients carrying the p.Phe174Ser variant and concluded that this variant is associated with mild forms of SLOS. CONCLUSION: We report a patient with a mild case of SLOS, highlighting the importance of recognizing subtle anomalies of the genitourinary system, associated with mild dysmorphic features and mild intellectual disability in establishing the diagnosis of mild forms of SLOS. With this report, we confirm the pathogenicity of the p.Phe174Ser variant and we also provide evidence of its association with mild forms of SLOS. This finding further facilitates the establishment of a genotype-phenotype correlation for SLOS. This helps in counselling for this disorder and in predicting therapeutic responses.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Síndrome de Smith-Lemli-Opitz/genética , Alelos , Pré-Escolar , Humanos , Masculino , Mutação , Síndrome de Smith-Lemli-Opitz/diagnóstico
15.
Biochim Biophys Acta ; 1842(10): 1431-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25048193

RESUMO

The enzyme 7-dehydrocholesterol reductase (DHCR7) catalyzes the final step of cholesterol synthesis via the Kandutsch-Russell pathway, and is crucial in maintaining cellular cholesterol levels. Its absence leads to the devastating fetal developmental disorder Smith-Lemli-Opitz Syndrome (SLOS). How this enzyme is regulated has implications in controlling not only cholesterol synthesis, but also the synthesis of Vitamin D - another product of 7-dehydrocholesterol. In this study, we look specifically at how DHCR7 is regulated by the sterol regulatory element-binding protein-2 (SREBP-2) transcription factor. Sterol regulation has previously been studied in the rat DHCR7 promoter, but we have found that its regulatory elements are not all conserved in humans. Rather, the human promoter contains two binding sites for SREBP-2 (at -155 and -55) and a binding site for the nuclear factor-Y (NF-Y) cofactor (at -136). The -155 site is a particularly responsive sterol regulatory element (SRE) which is well conserved in mammals, and was possibly overlooked in the rat promoter study. The exact location of the weaker -55 site (close to the known rat SRE) may have shifted during evolution. Furthermore, we established that the two SREs that bind SREBP-2 work in cooperation to synergistically activate DHCR7. We have previously characterized the SREs in DHCR24, the final enzyme in the alternate Bloch pathway of cholesterol synthesis. Here, comparison of the sterol regulation of these terminal enzymes demonstrates the unique cooperative system that helps to control cholesterol synthesis.

16.
Clin Genet ; 88(2): 149-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25040602

RESUMO

Pathogenic variants in the DHCR7 gene cause Smith-Lemli-Opitz syndrome (SLOS), a defect of cholesterol biosynthesis resulting in an autosomal recessive congenital metabolic malformation disorder. In approximately 4% of patients, the second mutation remains unidentified. In this study, 12 SLOS patients diagnosed clinically and/or by elevated 7-dehydrocholesterol (7-DHC) have been investigated by customized multiplex ligation-dependent probe amplification (MLPA) analysis, because only one DHCR7 sequence variant has been detected. Two unrelated patients of this cohort carry different large deletions in the DHCR7 gene. One patient showed a deletion of exons 3-6. The second patient has a deletion of exons 1 and 2 (non-coding) and lacks the major part of the promoter. These two patients show typical clinical and biochemical phenotypes of SLOS. Second disease-causing mutations are p.(Arg352Trp) and p.(Thr93Met), respectively. Deletion breakpoints were characterized successfully in both cases. Such large deletions are rare in the DHCR7 gene but will resolve some of the patients in whom a second mutation has not been detected.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Deleção de Sequência/genética , Síndrome de Smith-Lemli-Opitz/genética , Pré-Escolar , Desidrocolesteróis/sangue , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex , Regiões Promotoras Genéticas/genética , Síndrome de Smith-Lemli-Opitz/diagnóstico
17.
Clin Genet ; 87(6): 570-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24813812

RESUMO

Data from massively parallel sequencing or 'Next Generation Sequencing' of the human exome has reached a critical mass in both public and private databases, in that these collections now allow researchers to critically evaluate population genetics in a manner that was not feasible a decade ago. The ability to determine pathogenic allele frequencies by evaluation of the full coding sequences and not merely a single nucleotide polymorphism (SNP) or series of SNPs will lead to more accurate estimations of incidence. For demonstrative purposes, we analyzed the causative gene for the disorder Smith-Lemli-Opitz Syndrome (SLOS), the 7-dehydrocholesterol reductase (DHCR7) gene and determined both the carrier frequency for DHCR7 mutations, and predicted an expected incidence of the disorder. Estimations of the incidence of SLOS have ranged widely from 1:10,000 to 1:70,000 while the carrier frequency has been reported as high as 1 in 30. Using four exome data sets with a total of 17,836 chromosomes, we ascertained a carrier frequency of pathogenic DHRC7 mutations of 1.01%, and predict a SLOS disease incidence of 1/39,215 conceptions. This approach highlights yet another valuable aspect of the exome sequencing databases, to inform clinical and health policy decisions related to genetic counseling, prenatal testing and newborn screening.


Assuntos
Frequência do Gene , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Síndrome de Smith-Lemli-Opitz/epidemiologia , Síndrome de Smith-Lemli-Opitz/genética , Alelos , Conjuntos de Dados como Assunto , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Incidência
18.
Vet Microbiol ; 290: 110000, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278042

RESUMO

Pseudorabies virus (PRV) is an alpha-herpesvirus capable of infecting a range of animal species, particularly its natural host, pigs, resulting in substantial economic losses for the swine industry. Recent research has shed light on the significant role of cholesterol metabolism in the replication of various viruses. However, the specific role of cholesterol metabolism in PRV infection remains unknown. Here, we demonstrated that the expression of 7-dehydrocholesterol reductase (DHCR7) is upregulated following PRV infection, as evidenced by the proteomic analysis. Subsequently, we showed that DHCR7 plays a crucial role in promoting PRV replication by converting 7-dehydrocholesterol (7-DHC) into cholesterol, leading to increased cellular cholesterol levels. Importantly, DHCR7 inhibits the phosphorylation of interferon regulatory factor 3 (IRF3), resulting in reduced levels of interferon-beta (IFN-ß) and interferon-stimulated genes (ISGs). Finally, we revealed that the DHCR7 inhibitor, trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride (AY9944), significantly suppresses PRV replication both in vitro and in vivo. Taken together, the study has established a connection between cholesterol metabolism and PRV replication, offering novel insights that may guide future approaches to the prevention and treatment of PRV infections.


Assuntos
Herpesvirus Suídeo 1 , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Pseudorraiva , Doenças dos Suínos , Animais , Suínos , Herpesvirus Suídeo 1/genética , Interferons , Oxirredutases , Proteômica , Replicação Viral , Colesterol
19.
Aging (Albany NY) ; 16(7): 5967-5986, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526324

RESUMO

BACKGROUND: Energy metabolism has a complex intersection with pathogenesis and development of breast cancer (BC). This allows for the possibility of identifying energy-metabolism-related genes (EMRGs) as novel prognostic biomarkers for BC. 7-dehydrocholesterol reductase (DHCR7) is a key enzyme of cholesterol biosynthesis involved in many cancers, and in this paper, we investigate the effects of DHCR7 on the proliferation and mitochondrial function of BC. METHODS: EMRGs were identified from the Gene Expression Omnibus (GEO) and MSigDB databases using bioinformatics methods. Key EMRGs of BC were then identified and validated by functional enrichment analysis, interaction analysis, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, Cox analysis, and immune infiltration. Western blot, qRT-PCR, immunohistochemistry (IHC), MTT assay, colony formation assay and flow cytometry assay were then used to analyze DHCR7 expression and its biological effects on BC cells. RESULTS: We identified 31 EMRGs in BC. These 31 EMRGs and related transcription factors (TFs), miRNAs, and drugs were enriched in glycerophospholipid metabolism, glycoprotein metabolic process, breast cancer, and cell cycle. Crucially, DHCR7 was a key EMRG in BC identified and validated by WGCNA, LASSO regression and receiver operating characteristic (ROC) curve analysis. High DHCR7 expression was significantly associated with tumor immune infiltration level, pathological M, and poor prognosis in BC. In addition, DHCR7 knockdown inhibited cell proliferation, induced apoptosis and affected mitochondrial function in BC cells. CONCLUSIONS: DHCR7 was found to be a key EMRG up-regulated in BC cells. This study is the first to our knowledge to report that DHCR7 acts as an oncogene in BC, which might become a novel therapeutic target for BC patients.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Mitocôndrias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Feminino , Proliferação de Células/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Prognóstico , Células MCF-7
20.
Mol Genet Metab Rep ; 38: 101030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38077958

RESUMO

Background: Smith-Lemli-Opitz syndrome (SLOS) is an inherited disorder of cholesterol biosynthesis associated with congenital malformations, growth delay, intellectual disability and behavior problems. SLOS is caused by bi-allelic mutations in DHCR7, which lead to reduced activity of 7-dehydrocholesterol reductase that catalyzes the last step in cholesterol biosynthesis. Symptoms of SLOS are thought to be due to cholesterol deficiency and accumulation of its precursor 7-dehydrocholesterol (7-DHC) and 8-dehydrocholesterol (8-DHC), and toxic oxysterols. Therapy for SLOS often includes dietary cholesterol supplementation, but lipids are poorly absorbed from the diet, possibly due to impaired bile acid synthesis. We hypothesized that bile acid supplementation with cholic acid would improve dietary cholesterol absorption and raise plasma cholesterol levels. Methods: Twelve SLOS subjects (10 M, 2F, ages 2-27 years) who had plasma cholesterol ≤125 mg/dL were treated with cholic acid (10 mg/kg/day) divided twice daily for 2 months. Plasma cholesterol, 7-DHC and 8-DHC were measured by GC-MS. Oxysterols were measured by ultra-high-performance LC-MS/MS. Data were analyzed using paired t-tests. Results: At baseline, plasma cholesterol was 75 ± 24 mg/dL (mean ± SD; range 43-125, n = 12). After 2 months on cholic acid, mean plasma cholesterol increased to 97 ± 29 mg/dL (p = 0.011). Eleven of 12 subjects showed an increase in plasma cholesterol that varied from 3.8% to 85.7% (mean 38.7 ± 23.3%). 7-Hydroxycholesterol decreased by 20.6% on average (p = 0.013) but no significant changes were seen in 7-DHC or 8-DHC. Mean body weight tended to increase (3.6% p = 0.069). Subjects tolerated cholic acid well and experienced no drug-related adverse events. Conclusions: In this pilot study, cholic acid supplementation was well tolerated and safe and resulted in an increase in plasma cholesterol in most SLOS subjects. Further controlled longitudinal studies are needed to look for the sustainability of the biochemical effect and possible clinical benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA