Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Biol Chem ; 299(9): 105174, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37599002

RESUMO

Recent studies provide evidence that peroxisomal ß-oxidation negatively regulates mitochondrial fatty acid oxidation, and induction of peroxisomal ß-oxidation causes hepatic lipid accumulation. However, whether there exists a triggering mechanism inducing peroxisomal ß-oxidation is not clear. Long-chain dicarboxylic acids (LCDAs) are the product of mono fatty acids subjected to ω-oxidation, and both fatty acid ω-oxidation and peroxisomal ß-oxidation are induced under ketogenic conditions, indicating there might be a crosstalk between. Here, we revealed that administration of LCDAs strongly induces peroxisomal fatty acid ß-oxidation and causes hepatic steatosis in mice through the metabolites acetyl-CoA and hydrogen peroxide. Under ketogenic conditions, upregulation of fatty acid ω-oxidation resulted in increased generation of LCDAs and induction of peroxisomal ß-oxidation, which causes hepatic accumulation of lipid droplets in animals. Inhibition of fatty acid ω-oxidation reduced LCDA formation and significantly lowered peroxisomal ß-oxidation and improved hepatic steatosis. Our results suggest that endogenous LCDAs act as triggering molecules inducing peroxisomal ß-oxidation and hepatic triacylglycerol deposition. Targeting fatty acid ω-oxidation might be an effective pathway in treating fatty liver and related metabolic diseases through regulating peroxisomal ß-oxidation.

2.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629947

RESUMO

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Assuntos
Nitratos , Fotólise , Nitratos/química , Ácidos Dicarboxílicos/química , Ácido Nitroso/química , Umidade , Malonatos/química , Poluentes Atmosféricos/química
3.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611799

RESUMO

Wall paintings are integral to cultural heritage and offer rich insights into historical and religious beliefs. There exist various wall painting techniques that pose challenges in binder and pigment identification, especially in the case of egg/oil-based binders. GC-MS identification of lipidic binders relies routinely on parameters like the ratios of fatty acids within the plaster. However, the reliability of these ratios for binder identification is severely limited, as demonstrated in this manuscript. Therefore, a more reliable tool for effective differentiation between egg and oil binders based on a combination of diagnostic values, specific markers (cholesterol oxidation products), and PCA is presented in this study. Reference samples of wall paintings with egg and linseed oil binders with six different pigments were subjected to modern artificial ageing methods and subsequently analysed using two GC-MS instruments. A statistically significant difference (at a 95% confidence level) between the egg and oil binders and between the results from two GC-MS instruments was observed. These discrepancies between the results from the two GC-MS instruments are likely attributed to the heterogeneity of the samples with egg and oil binders. This study highlights the complexities in identifying wall painting binders and the need for innovative and revised analytical methods in conservation efforts.


Assuntos
Ácidos Graxos , Análise de Componente Principal , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes
4.
Environ Sci Technol ; 57(44): 16974-16988, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37885068

RESUMO

The partitioning of semivolatile organic compounds (SVOCs) between the condensed and gas phases can have significant implications for the properties of aerosol particles. In addition to affecting size and composition, this partitioning can alter radiative properties and impact cloud activation processes. We present measurements and model predictions on how activity and pH influence the evaporation of SVOCs from particles to the gas phase, specifically investigating aqueous inorganic particles containing dicarboxylic acids (DCAs). The aerosols are studied at the single-particle level by using optical trapping and cavity-enhanced Raman spectroscopy. Optical resonances in the spectra enable precise size tracking, while vibrational bands allow real-time monitoring of pH. Results are compared to a Maxwell-type model that accounts for volatile and nonvolatile solutes in aqueous droplets that are held at a constant relative humidity. The aerosol inorganic-organic mixture functional group activity coefficients thermodynamic model and Debye-Hückel theory are both used to calculate the activities of the species present in the droplet. For DCAs, we find that the evaporation rate is highly sensitive to the particle pH. For acidity changes of approximately 1.5 pH units, we observe a shift from a volatile system to one that is completely nonvolatile. We also observe that the pH itself is not constant during evaporation; it increases as DCAs evaporate, slowing the rate of evaporation until it eventually ceases. Whether a DCA evaporates or remains a stable component of the droplet is determined by the difference between the lowest pKa of the DCA and the pH of the droplet.


Assuntos
Ácidos Dicarboxílicos , Compostos Orgânicos , Ácidos Dicarboxílicos/química , Termodinâmica , Aerossóis , Concentração de Íons de Hidrogênio
5.
Appl Microbiol Biotechnol ; 107(20): 6219-6236, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572123

RESUMO

Acyl-CoA-thioesterases, which hydrolyze acyl-CoA-esters and thereby release the respective acid, have essential functions in cellular metabolism and have also been used to produce valuable compounds in biotechnological processes. Thioesterase YciA originating from Haemophilus influenzae has been previously used to produce specific dicarboxylic acids from CoA-bound intermediates of the ethylmalonyl CoA pathway (EMCP) in Methylorubrum extorquens. In order to identify variants of the YciA enzyme with the capability to hydrolyze so far inaccessible CoA-esters of the EMCP or with improved productivity, we engineered the substrate-binding region of the enzyme. Screening a small semi-rational mutant library directly in M. extorquens yielded the F35L variant which showed a drastic product level increase for mesaconic acid (6.4-fold) and 2-methylsuccinic acid (4.4-fold) compared to the unaltered YciA enzyme. Unexpectedly, in vitro enzyme assays using respective M. extorquens cell extracts or recombinantly produced thioesterases could not deliver congruent data, as the F35L variant showed strongly reduced activity in these experiments. However, applied in an Escherichia coli production strain, the protein variant again outperformed the wild-type enzyme by allowing threefold increased 3-hydroxybutyric acid product titers. Saturation mutagenesis of the codon for position 35 led to the identification of another highly efficient YciA variant and enabled structure-function interpretations. Our work describes an important module for dicarboxylic acid production with M. extorquens and can guide future thioesterase improvement approaches. KEY POINTS: • Substitutions at position F35 of YciAHI changed the productivity of YciA-based release of carboxylic acid products in M. extorquens AM1 and E. coli. • YciAHI F35N and F35L are improved variants for dicarboxylic production of 2-methylsuccinic acid and mesaconic acid with M. extorquens AM1. • In vitro enzyme assays did not reveal superior properties of the optimized protein variants.

6.
Appl Environ Microbiol ; 88(2): e0187321, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731045

RESUMO

Many homologous genes encoding ß-oxidation enzymes have been found in the genome of Cupriavidus necator H16 (synonym Ralstonia eutropha H16). By proteome analysis, the degradation of adipic acid was investigated and showed differences from the degradation of hexanoic acid. During ß-oxidation of adipic acid, activation with coenzyme A (CoA) is catalyzed by the two-subunit acyl-CoA ligase encoded by B0198 and B0199. The operon is completed by B0200 encoding a thiolase catalyzing the cleavage of acetyl-CoA at the end of the ß-oxidation cycle. C. necator ΔB0198-B0200 strain showed improved growth on adipic acid. Potential substitutes are B1239 for B0198-B0199 and A0170 as well as A1445 for B0200. A deletion mutant without all three thiolases showed diminished growth. The deletion of detected acyl-CoA dehydrogenase encoded by B2555 has an altered phenotype grown with sebacic acid but not adipic acid. With hexanoic acid, acyl-CoA dehydrogenase encoded by B0087 was detected on two-dimensional (2D) gels. Both enzymes are active with adipoyl-CoA and hexanoyl-CoA as substrates, but specific activity indicates a higher activity of B2555 with adipoyl-CoA. 2D gels, growth experiments, and enzyme assays suggest the specific expression of B2555 for the degradation of dicarboxylic acids. In C. necator H16, the degradation of carboxylic acids potentially changes with an increasing chain length. Two operons involved in growth with long-chain fatty acids seem to be replaced during growth on medium-chain carboxylic acids. Only two deletion mutants showed diminished growth. Replacement of deleted genes with one of the numerous homologous is likely. IMPORTANCE The biotechnologically interesting bacterium Cupriavidus necator H16 has been thoroughly investigated. Fifteen years ago, it was sequenced entirely and annotated (A. Pohlmann, W. F. Fricke, F. Reinecke, B. Kusian, et al., Nat Biotechnol 24:1257-1262, 2006, https://doi.org/10.1038/nbt1244). Nevertheless, the degradation of monocarboxylic fatty acids and dicarboxylic acids has not been elucidated completely. C. necator is used to produce value-added products from affordable substrates. One of our investigations' primary targets is the biotechnological production of organic acids with different and specific chain lengths. The versatile metabolism of carboxylic acids recommends C. necator H16 as a candidate for producing value-added organic products. Therefore, the metabolism of these compounds is of interest, and, for different applications in industry, understanding such central metabolic pathways is crucial.


Assuntos
Cupriavidus necator , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cupriavidus necator/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Graxos/metabolismo
7.
Crit Rev Biotechnol ; 42(1): 1-22, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34000935

RESUMO

The global market for high-value fatty acids production, mainly omega-3/6, hydroxy fatty-acids, waxes and their derivatives, has seen strong development in the last decade. The reason for this growth was the increasing utilization of these lipids as significant ingredients for cosmetics, food and the oleochemical industries. The large demand for these compounds resulted in a greater scientific interest in research focused on alternative sources of oil production - among which microorganisms attracted the most attention. Microbial oil production offers the possibility to engineer the pathways and store lipids enriched with the desired fatty acids. Moreover, costly chemical steps are avoided and direct commercial use of these fatty acids is available. Among all microorganisms, the oleaginous yeasts have become the most promising hosts for lipid production - their efficient lipogenesis, ability to use various (often highly affordable) carbon sources, feasible large-scale cultivations and wide range of available genetic engineering tools turns them into powerful micro-factories. This review is an in-depth description of the recent developments in the engineering of the lipid biosynthetic pathway with oleaginous yeasts. The different classes of valuable lipid compounds with their derivatives are described and their importance for human health and industry is presented. The emphasis is also placed on the optimization of culture conditions in order to improve the yield and titer of these valuable compounds. Furthermore, the important economic aspects of the current microbial oil production are discussed.


Assuntos
Biocombustíveis , Leveduras , Carbono , Ácidos Graxos , Humanos , Lipídeos
8.
Adv Appl Microbiol ; 119: 35-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35933117

RESUMO

Bio-based plastics production offers an alternative to the environmental problems posed by a significant reliance on fossil fuels. While dicarboxylic acids were essential bioplastic monomers, producing them on a large scale proved problematic. Recently, metabolic engineering has opened up interesting possibilities for producing dicarboxylic acids sustainably and efficiently. In this chapter, studies on the development of several dicarboxylic acid bioplastic monomers were presented. Furthermore, for different dicarboxylic acids, a variety of metabolic engineering strategies were highlighted, including improving the utilization rate of substrates, strengthening the catalytic efficiency of key enzymes, blocking branching pathways to balance metabolic flux, and improving cell physiological performance to promote biosynthesis. Finally, the remaining obstacles and solutions for building advanced dicarboxylic acid microbial systems were discussed.


Assuntos
Ácidos Dicarboxílicos , Engenharia Metabólica , Ácidos Dicarboxílicos/metabolismo , Plásticos
9.
Microb Cell Fact ; 21(1): 102, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643577

RESUMO

BACKGROUND: The microbial production of succinic acid (SA) from renewable carbon sources via the reverse TCA (rTCA) pathway is a process potentially accompanied by net-fixation of carbon dioxide (CO2). Among reduced carbon sources, glycerol is particularly attractive since it allows a nearly twofold higher CO2-fixation yield compared to sugars. Recently, we described an engineered Saccharomyces cerevisiae strain which allowed SA production in synthetic glycerol medium with a maximum yield of 0.23 Cmol Cmol-1. The results of that previous study suggested that the glyoxylate cycle considerably contributed to SA accumulation in the respective strain. The current study aimed at improving the flux into the rTCA pathway accompanied by a higher CO2-fixation and SA yield. RESULTS: By changing the design of the expression cassettes for the rTCA pathway, overexpressing PYC2, and adding CaCO3 to the batch fermentations, an SA yield on glycerol of 0.63 Cmol Cmol-1 was achieved (i.e. 47.1% of the theoretical maximum). The modifications in this 2nd-generation SA producer improved the maximum biomass-specific glycerol consumption rate by a factor of nearly four compared to the isogenic baseline strain solely equipped with the dihydroxyacetone (DHA) pathway for glycerol catabolism. The data also suggest that the glyoxylate cycle did not contribute to the SA production in the new strain. Cultivation conditions which directly or indirectly increased the concentration of bicarbonate, led to an accumulation of malate in addition to the predominant product SA (ca. 0.1 Cmol Cmol-1 at the time point when SA yield was highest). Off-gas analysis in controlled bioreactors with CO2-enriched gas-phase indicated that CO2 was fixed during the SA production phase. CONCLUSIONS: The data strongly suggest that a major part of dicarboxylic acids in our 2nd-generation SA-producer was formed via the rTCA pathway enabling a net fixation of CO2. The greatly increased capacity of the rTCA pathway obviously allowed successful competition with other pathways for the common precursor pyruvate. The overexpression of PYC2 and the increased availability of bicarbonate, the co-substrate for the PYC reaction, further strengthened this capacity. The achievements are encouraging to invest in future efforts establishing a process for SA production from (crude) glycerol and CO2.


Assuntos
Saccharomyces cerevisiae , Ácido Succínico , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Meios de Cultura/metabolismo , Glicerol/metabolismo , Glioxilatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo
10.
Appl Microbiol Biotechnol ; 106(19-20): 6713-6731, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36104545

RESUMO

The methylotrophic bacterium Methylorubrum extorquens AM1 has the potential to become a platform organism for methanol-driven biotechnology. Its ethylmalonyl-CoA pathway (EMCP) is essential during growth on C1 compounds and harbors several CoA-activated dicarboxylic acids. Those acids could serve as precursor molecules for various polymers. In the past, two dicarboxylic acid products, namely mesaconic acid and 2-methylsuccinic acid, were successfully produced with heterologous thioesterase YciA from Escherichia coli, but the yield was reduced by product reuptake. In our study, we conducted extensive research on the uptake mechanism of those dicarboxylic acid products. By using 2,2-difluorosuccinic acid as a selection agent, we isolated a dicarboxylic acid import mutant. Analysis of the genome of this strain revealed a deletion in gene dctA2, which probably encodes an acid transporter. By testing additional single, double, and triple deletions, we were able to rule out the involvement of the two other DctA transporter homologs and the ketoglutarate transporter KgtP. Uptake of 2-methylsuccinic acid was significantly reduced in dctA2 mutants, while the uptake of mesaconic acid was completely prevented. Moreover, we demonstrated M. extorquens-based synthesis of citramalic acid and a further 1.4-fold increase in product yield using a transport-deficient strain. This work represents an important step towards the development of robust M. extorquens AM1 production strains for dicarboxylic acids. KEY POINTS: • 2,2-Difluorosuccinic acid is used to select for dicarboxylic acid uptake mutations. • Deletion of dctA2 leads to reduction of dicarboxylic acid uptake. • Transporter-deficient strains show improved production of citramalic acid.


Assuntos
Metanol , Methylobacterium extorquens , Ácidos Dicarboxílicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fumaratos , Malatos , Maleatos , Metanol/metabolismo , Methylobacterium extorquens/genética , Polímeros/metabolismo , Succinatos
11.
Proc Natl Acad Sci U S A ; 116(39): 19415-19420, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31467169

RESUMO

Biobased C4-dicarboxylic acids are attractive sustainable precursors for polymers and other materials. Commercial scale production of these acids at high titers requires efficient secretion by cell factories. In this study, we characterized 7 dicarboxylic acid transporters in Xenopus oocytes and in Saccharomyces cerevisiae engineered for dicarboxylic acid production. Among the tested transporters, the Mae1(p) from Schizosaccharomyces pombe had the highest activity toward succinic, malic, and fumaric acids and resulted in 3-, 8-, and 5-fold titer increases, respectively, in S. cerevisiae, while not affecting growth, which was in contrast to the tested transporters from the tellurite-resistance/dicarboxylate transporter (TDT) family or the Na+ coupled divalent anion-sodium symporter family. Similar to SpMae1(p), its homolog in Aspergillus carbonarius, AcDct(p), increased the malate titer 12-fold without affecting the growth. Phylogenetic and protein motif analyses mapped SpMae1(p) and AcDct(p) into the voltage-dependent slow-anion channel transporter (SLAC1) clade of transporters, which also include plant Slac1(p) transporters involved in stomata closure. The conserved phenylalanine residue F329 closing the transport pore of SpMae1(p) is essential for the transporter activity. The voltage-dependent SLAC1 transporters do not use proton or Na+ motive force and are, thus, less energetically expensive than the majority of other dicarboxylic acid transporters. Such transporters present a tremendous advantage for organic acid production via fermentation allowing a higher overall product yield.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aminoácidos , Animais , Aspergillus/classificação , Aspergillus/genética , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Mutação , Oócitos/metabolismo , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/genética , Filogenia , Conformação Proteica , Saccharomyces cerevisiae/classificação , Schizosaccharomyces/classificação , Schizosaccharomyces/genética , Xenopus/genética , Xenopus/metabolismo
12.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014446

RESUMO

Methylmalonic acid (MMA) is a very short dicarboxylic acid (methylpropanedioic acid; CH3CH(COOH)2; pKa1, 3.07; pKa2, 5.76) associated with vitamin B12 deficiency and many other patho-physiological conditions. In this work, we investigated several carboxylic groups-specific derivatization reactions and tested their utility for the quantitative analysis of MMA in human urine and plasma by gas chromatography-mass spectrometry (GC-MS). The most useful derivatization procedure was the reaction of unlabeled MMA (d0-MMA) and trideutero-methyl malonic acid (d3-MMA) with 2,3,4,5,6-pentafluorobenzyl bromide (PFB-Br) in acetone. By heating at 80 °C for 60 min, we observed the formation of the dipentafluorobenzyl (PFB) ester of MMA (CH3CH(COOPFB)2). In the presence of N,N-diisopropylamine, heating at 80 °C for 60 min resulted in the formation of a tripentafluorobenzyl derivative of MMA, i.e., CH3CPFB(COOPFB)2). The retention time was 5.6 min for CH3CH(COOPFB)2 and 7.3 min for CH3CPFB(COOPFB)2). The most intense ions in the negative-ion chemical ionization (NICI) GC-MS spectra of CH3CH(COOPFB)2 were mass-to-charge (m/z) 233 for d0-MMA and m/z 236 for d3-MMA. The most intense ions in the NICI GC-MS spectra of CH3CPFB(COOPFB)2 were mass-to-charge (m/z) 349 for d0-MMA and m/z 352 for d3-MMA. These results indicate that the H at C atom at position 2 is C-H acidic and is alkylated by PFB-Br only in the presence of the base N,N-diisopropylamine. Method validation and quantitative analyses in human urine and plasma were performed by selected ion monitoring (SIM) of m/z 349 for d0-MMA and m/z 352 for the internal standard d3-MMA in the NICI mode. We used the method to measure the urinary excretion rates of MMA in healthy black (n = 39) and white (n = 41) boys of the Arterial Stiffness in Offspring Study (ASOS). The creatinine-corrected excretion rates of MMA were 1.50 [0.85-2.52] µmol/mmol in the black boys and 1.34 [1.02-2.18] µmol/mmol in the white boys (P = 0.85; Mann-Whitney). The derivatization procedure is highly specific and sensitive for MMA and allows its accurate and precise measurement in 10-µl of human urine by GC-MS.


Assuntos
Fluorbenzenos , Ácido Metilmalônico , Fluorbenzenos/química , Fluorocarbonos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Isótopos , Masculino
13.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209179

RESUMO

In an era where it becomes less and less accepted to just send waste to landfills and release wastewater into the environment without treatment, numerous initiatives are pursued to facilitate chemical production from waste. This includes microbial conversions of waste in digesters, and with this type of approach, a variety of chemicals can be produced. Typical for digestion systems is that the products are present only in (very) dilute amounts. For such productions to be technically and economically interesting to pursue, it is of key importance that effective product recovery strategies are being developed. In this review, we focus on the recovery of biologically produced carboxylic acids, including volatile fatty acids (VFAs), medium-chain carboxylic acids (MCCAs), long-chain dicarboxylic acids (LCDAs) being directly produced by microorganisms, and indirectly produced unsaturated short-chain acids (USCA), as well as polymers. Key recovery techniques for carboxylic acids in solution include liquid-liquid extraction, adsorption, and membrane separations. The route toward USCA is discussed, including their production by thermal treatment of intracellular polyhydroxyalkanoates (PHA) polymers and the downstream separations. Polymers included in this review are extracellular polymeric substances (EPS). Strategies for fractionation of the different fractions of EPS are discussed, aiming at the valorization of both polysaccharides and proteins. It is concluded that several separation strategies have the potential to further develop the wastewater valorization chains.

14.
Mol Pharm ; 18(4): 1758-1767, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33656348

RESUMO

In this study, various structurally similar aliphatic dicarboxylic acids, namely, succinic acid, glutaric acid, adipic acid, and pimelic acid, were employed as coformers to obtain phase pure cocrystals with berberine chloride (BCl) by a slow solvent evaporation method. The structures of the four novel salt-cocrystals of BCl were determined by single crystal X-ray diffraction analysis and their solid-state properties were characterized. Compared with BCl·2H2O, all the cocrystals showed a higher melting point, improved powder dissolution and intrinsic dissolution rate (IDR), and lower hygroscopicity. It is noteworthy that the melting points and IDRs of these cocrystals exhibit an odd-even alternation with the carbon chain length of the acids.


Assuntos
Berberina/farmacocinética , Ácidos Dicarboxílicos/química , Excipientes/química , Administração Oral , Berberina/administração & dosagem , Berberina/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Química Farmacêutica , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ligação de Hidrogênio , Difração de Pó , Solubilidade
15.
J Inherit Metab Dis ; 44(6): 1419-1433, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34564857

RESUMO

Peroxisomes metabolize a specific subset of fatty acids, which include dicarboxylic fatty acids (DCAs) generated by ω-oxidation. Data obtained in vitro suggest that the peroxisomal transporter ABCD3 (also known as PMP70) mediates the transport of DCAs into the peroxisome, but in vivo evidence to support this role is lacking. In this work, we studied an Abcd3 KO mouse model generated by CRISPR-Cas9 technology using targeted and untargeted metabolomics, histology, immunoblotting, and stable isotope tracing technology. We show that ABCD3 functions in hepatic DCA metabolism and uncover a novel role for this peroxisomal transporter in lipid homeostasis. The Abcd3 KO mouse presents with increased hepatic long-chain DCAs, increased urine medium-chain DCAs, lipodystrophy, enhanced hepatic cholesterol synthesis and decreased hepatic de novo lipogenesis. Moreover, our study suggests that DCAs are metabolized by mitochondrial fatty acid ß-oxidation when ABCD3 is not functional, reflecting the importance of the metabolic compartmentalization and communication between peroxisomes and mitochondria. In summary, this study provides data on the role of the peroxisomal transporter ABCD3 in hepatic lipid homeostasis and DCA metabolism, and the consequences of peroxisomal dysfunction for the liver.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Metabolismo dos Lipídeos , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Peroxissomos/metabolismo
16.
Orig Life Evol Biosph ; 51(2): 87-116, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34251577

RESUMO

It has been proposed that clays could have served as key factors in promoting the increase in complexity of organic matter in primitive terrestrial and extraterrestrial environments. The aim of this work is to study the adsorption-desorption of two dicarboxylic acids, fumaric and succinic acids, onto clay minerals (sodium and iron montmorillonite). These two acids may have played a role in prebiotic chemistry, and in extant biochemistry, they constitute an important redox couple (e.g. in Krebs cycle) in extant biochemistry. Smectite clays might have played a key role in the origins of life. The effect of pH on sorption has been tested; the analysis was performed by UV-vis and FTIR-ATR spectroscopy, X-ray diffraction and X-ray fluorescence. The results show that chemisorption is the main responsible of the adsorption processes among the dicarboxylic acids and clays. The role of the ion, present in the clay, is fundamental in the adsorption processes of dicarboxylic acids. These ions (sodium and iron) were selected due to their relevance on the geochemical environments that possibly existed into the primitive Earth. Different mechanisms are proposed to explain the sorption of dicarboxylic acids in the clay. In this work, we propose the formation of complexes among metal cations in the clays and dicarboxylic acids. The organic complexes were probably formed in the prebiotic environments enabling chemical processes, prior to the appearance of life. Thus, the data presented here are relevant to the origin of life studies.


Assuntos
Bentonita , Succinatos , Adsorção , Silicatos de Alumínio , Cátions
17.
J Labelled Comp Radiopharm ; 64(1): 14-29, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33063895

RESUMO

13 C-labeled dicarboxylic acids HO213 C-(CH2 )n -13 CO2 H (n = 10, 12, 14, 16, 18, 20, 22, 24, 26, 28) have been synthesized as internal standards for LC-MS and GC-MS analysis of cutin and suberin monomer degradation by soil-based microorganisms. Different synthetic strategies had to be applied depending on the chain length of the respective synthetic target and because of economic considerations. 13 C-labels were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding dicarboxylic acids. All new compounds are characterized by GC/MS, IR, and NMR methods as well as by elemental analysis.


Assuntos
Lipídeos , Lipídeos de Membrana , Dióxido de Carbono , Ácidos Dicarboxílicos , Espectrometria de Massas
18.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466823

RESUMO

Carboxylation of bis(pyrazol-1-yl)alkanes by oxalyl chloride was studied. It was found that 4,4'-dicarboxylic derivatives of substrates with electron-donating methyl groups and short linkers (from one to three methylene groups) can be prepared using this method. Longer linkers lead to significantly lower product yields, which is probably due to instability of the intermediate acid chlorides that are initially formed in the reaction with oxalyl chloride. Thus, bis(pyrazol-1-yl)methane gave only monocarboxylic derivative even with a large excess of oxalyl chloride and prolonged reaction duration. An alternative approach involves the reaction of ethyl 4-pyrazolecarboxylates with dibromoalkanes in a superbasic medium (potassium hydroxide-dimethyl sulfoxide) and is suitable for the preparation of bis(4-carboxypyrazol-1-yl)alkanes with both short and long linkers independent of substitution in positions 3 and 5 of pyrazole rings. The obtained dicarboxylic acids are interesting as potential building blocks for metal-organic frameworks.


Assuntos
Alcanos/síntese química , Ácidos Dicarboxílicos/química , Pirazóis/química , Cristalografia por Raios X , Conformação Molecular
19.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361756

RESUMO

Lignin is the second most abundant component, next to cellulose, in lignocellulosic biomass. Large amounts of this polymer are produced annually in the pulp and paper industries as a coproduct from the cooking process-most of it burned as fuel for energy. Strategies regarding lignin valorization have attracted significant attention over the recent decades due to lignin's aromatic structure. Oxidative depolymerization allows converting lignin into added-value compounds, as phenolic monomers and/or dicarboxylic acids, which could be an excellent alternative to aromatic petrochemicals. However, the major challenge is to enhance the reactivity and selectivity of the lignin structure towards depolymerization and prevent condensation reactions. This review includes a comprehensive overview of the main contributions of lignin valorization through oxidative depolymerization to produce added-value compounds (vanillin and syringaldehyde) that have been developed over the recent decades in the LSRE group. An evaluation of the valuable products obtained from oxidation in an alkaline medium with oxygen of lignins and liquors from different sources and delignification processes is also provided. A review of C4 dicarboxylic acids obtained from lignin oxidation is also included, emphasizing catalytic conversion by O2 or H2O2 oxidation.

20.
Biotechnol Bioeng ; 117(9): 2648-2657, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32436987

RESUMO

Medium-chain α,ω-dicarboxylic acids produced from renewable long-chain fatty acids are valuable as precursors in the chemical industry. However, they are difficult to produce biologically at high concentrations. Although improved biocatalyst systems consisting of engineering of Baeyer-Villiger monooxygenases are used in the production of ω-hydroxycarboxylic acids from long-chain fatty acids, the engineering of biocatalysts involved in the production of α,ω-dicarboxylic acids from ω-hydroxycarboxylic acids has been rarely attempted. Here, we used highly active bacterial enzymes, Micrococcus luteus alcohol dehydrogenase and Archangium violaceum aldehyde dehydrogenase, for the efficient production of α,ω-dicarboxylic acids from ω-hydroxycarboxylic acids and constructed a biocatalyst with cofactor regeneration system by introducing NAD(P)H flavin oxidoreductase as the NAD(P)H oxidase. The inhibition of the biocatalyst by hydrophobic substrates was attenuated by engineering a biocatalyst system with an adsorbent resin, which allowed us to obtain 196 mM decanedioic, 145 mM undecanedioic, and 114 mM dodecanedioic acid from 200 mM of C10, C11, and C12 hydroxyl saturated carboxylic acids, respectively, and 141 mM undecanedioic acid from 150 mM C11 unsaturated carboxylic acids, with molar conversions of 98%, 97%, 95%, and 94%, respectively. The concentration of undecanedioic acid obtained was approximately 40-fold higher than that in the previously highest results. Our results from this study can be applied for the industrial production of medium-chain α,ω-dicarboxylic acids from renewable long-chain fatty acids.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Ácidos Carboxílicos/metabolismo , Coenzimas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA