Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064674

RESUMO

The de novo synthesis of deoxythymidine triphosphate uses several pathways: gram-negative bacteria use deoxycytidine triphosphate deaminase to convert deoxycytidine triphosphate into deoxyuridine triphosphate, whereas eukaryotes and gram-positive bacteria instead use deoxycytidine monophosphate deaminase to transform deoxycytidine monophosphate to deoxyuridine monophosphate. It is then unusual that in addition to deoxycytidine monophosphate deaminases, the eukaryote Dictyostelium discoideum has 2 deoxycytidine triphosphate deaminases (Dcd1Dicty and Dcd2Dicty). Expression of either DcdDicty can fully rescue the slow growth of an Escherichia coli dcd knockout. Both DcdDicty mitigate the hydroxyurea sensitivity of a Schizosaccharomyces pombe deoxycytidine monophosphate deaminase knockout. Phylogenies show that Dcd1Dicty homologs may have entered the common ancestor of the eukaryotic groups of Amoebozoa, Obazoa, Metamonada, and Discoba through an ancient horizontal gene transfer from a prokaryote or an ancient endosymbiotic gene transfer from a mitochondrion, followed by horizontal gene transfer from Amoebozoa to several other unrelated groups of eukaryotes. In contrast, the Dcd2Dicty homologs were a separate horizontal gene transfer from a prokaryote or a virus into either Amoebozoa or Rhizaria, followed by a horizontal gene transfer between them. ThyXDicty, the D. discoideum thymidylate synthase, another enzyme of the deoxythymidine triphosphate biosynthesis pathway, was suggested previously to be acquired from the ancestral mitochondria or by horizontal gene transfer from alpha-proteobacteria. ThyXDicty can fully rescue the E. coli thymidylate synthase knockout, and we establish that it was obtained by the common ancestor of social amoebae not from mitochondria but from a bacterium. We propose horizontal gene transfer and endosymbiotic gene transfer contributed to the enzyme diversity of the deoxythymidine triphosphate synthesis pathway in most social amoebae, many Amoebozoa, and other eukaryotes.


Assuntos
Amoeba , Dictyostelium , DCMP Desaminase/genética , DCMP Desaminase/metabolismo , Transferência Genética Horizontal , Escherichia coli/genética , Escherichia coli/metabolismo , Amoeba/metabolismo , Timidilato Sintase/genética , Desoxicitidina Monofosfato
2.
BMC Evol Biol ; 19(1): 78, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871462

RESUMO

BACKGROUND: Dictyostelid cellular slime molds (dictyostelids) are microscopic throughout their entire life cycle. The vegetative phase consists of single-celled amoeboid forms which live in the soil/leaf litter microhabitat of fields and forests along with animal dung, where they feed upon bacteria and other microbes, grow, and multiply until the available food supply is exhausted. When this happens, the amoeboid forms aggregate together in large numbers to form multi-celled pseudoplasmodia, which then give rise to fruiting bodies (sorocarps) that consist of supportive stalks and unwalled sori containing propagative spores. RESULTS: Dictyostelium purpureum var. pseudosessile, a new variant of dictyostelid, is described herein, based on morphological features and molecular data. This new variant was isolated from soil samples collected in two tropical areas of China. The complete spore-to-spore life cycle of this species, which required 50 h, including spore germination, myxamoebae, cell aggregation, pseudoplasmodium, and sorocarp formation, was documented. Descriptions and illustrations are provided for this species based on our collections. Data from ontogeny, morphology and phylogeny analyses (SSU) of D. purpureum var. pseudosessile confirm that it is a Group 4 species according to the newly proposed classification of dictyostelids. CONCLUSIONS: Our results suggest that the violet sori, widens at the midpoint of sorophore and simple recurved sorophore bases represent the prominent features for the new variant D. purpureum var. pseudosessile. The latter is a Group 4 species now known from two tropical areas of China where dictyostelids remains understudied.


Assuntos
Dictyostelium/classificação , Clima Tropical , Animais , China , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Filogenia , RNA Ribossômico/genética , Subunidades Ribossômicas Menores/genética
3.
BMC Evol Biol ; 18(1): 198, 2018 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-30577752

RESUMO

BACKGROUND: Dictyostelid cellular slime molds (dictyostelids) are common inhabitants of the soil and leaf litter layer of fields and forests, along with animal dung, where they feed mostly on bacteria. However, reports on the species diversity of dictyostelids in South Asia, particularly Thailand, are limited. The research reported in this paper was carried out to increase our knowledge of the species diversity of this group of organisms in northern Thailand. RESULTS: Forty soil samples were collected at four localities in northern Thailand to assess the species richness of dictyostelids. These samples yielded five dictyostelid isolates that were not morphologically consistent with any described species. Based on molecular signatures, all five of these isolates were assigned to the family Cavenderiaceae, genus Cavenderia. All five share a number of morphological similarities with other known species from this family. The new taxa differ from previously described species primarily in the size and complexity of their fruiting bodies (sorocarps). This paper describes these new species (Cavenderia aureostabilis, C. bhumiboliana, C. protodigitata, C. pseudoaureostipes, and C. subdiscoidea) based on a combination of morphological characteristics and their phylogenetic positions. CONCLUSIONS: At least 15 taxa of dictyostelids were obtained from the four localities in northern Thailand, which indicates the high level of species diversity in this region. Five species were found to be new to science. These belong to the family Cavenderiaceae, genus Cavenderia, and were described based on both morphology and phylogeny.


Assuntos
Amoeba/classificação , Dictyosteliida/classificação , Animais , Filogenia , Especificidade da Espécie , Tailândia
4.
Mycologia ; 108(1): 80-109, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26490703

RESUMO

Two series of samples collected for isolation of dictyostelid cellular slime molds (dictyostelids) in Madagascar yielded a relatively large number of isolates of Polysphondylium. Most of these turned out to be species new to science that show varying degrees of clustering from unclustered to coremiform as well as an ability to migrate. Migratory ability (phototaxis) is a common feature of species assigned to Group 2 of the Polysphondylia and is common in the new species from Madagascar. Another common feature, clustering, appears to be a strategy for keeping fruiting bodies erect for a longer time in a climate that is relatively dry, whereas migratory ability may function seasonally when there is more rainfall. Thirteen species are described herein. Each of these is characterized by a particular set of distinguishing features, and collectively they expand our concept of the genus Polysphondylium.


Assuntos
Dictyosteliida/classificação , Sequência de Bases , DNA de Protozoário/química , DNA de Protozoário/genética , Dictyosteliida/citologia , Dictyosteliida/genética , Geografia , Madagáscar , Dados de Sequência Molecular , Filogenia , Esporos de Protozoários
5.
Mycologia ; 105(3): 610-35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23396155

RESUMO

Ten small dictyostelids isolated from samples collected from the surface humus layer of seasonal rainforests of Belize and Guatemala were studied morphologically, and nine were found to represent distinct species, all with an average height of < 2 mm (0.5-3.5 mm). Although their fruiting bodies (sorocarps) closely resemble one another, the nine species differ in their patterns of aggregation, stream pattern, branching development, formation of microcysts, spore shape, presence or absence of spore granules and their distribution, as well as in the shapes and behavior of their sorogens and myxamoebae. These stable morphological features were sufficient to recognize nine new species of small dictyostelids, one with two varieties. SSU rDNA sequences were generated for all these new isolates, and phylogenetic analyses of these sequences show these new isolates belong to Dictyostelid group 3. As a result of this and other recent studies, the concept of what constitutes a species in the dictyostelids has become much more restricted and well defined, in as much as some of the morphological and behavioral patterns now being observed were overlooked in the past. The extent, flow direction and conformation of streaming within the group varies from simple aggregation mounds with no streams to short streams, to somewhat longer streams and finally to well developed streams. Each of these is characterized by a particular set of distinguishing features.


Assuntos
Dictyosteliida/classificação , Árvores/microbiologia , Belize , América Central , DNA Ribossômico/genética , Dictyosteliida/genética , Dictyosteliida/ultraestrutura , Ecossistema , Guatemala , Filogenia , Estações do Ano , Análise de Sequência de DNA/métodos , Solo , Microbiologia do Solo
6.
Microbiol Spectr ; 11(6): e0173223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962389

RESUMO

IMPORTANCE: Soil protists are an essential yet seriously understudied component of the soil microbiome. In this study, 11 new records of dictyostelids belonging to 2 orders, 3 families, and 4 genera were identified from 99 soil samples collected from different elevations and habitats in central Gansu and the southeastern and southcentral portions of Guizhou Province, China. We found that dictyostelid communities were significantly different between Gansu and Guizhou Provinces, apparently in response to different environmental factors. Moreover, dictyostelids were found to have the highest species diversity in mixed forests. Soil pH, temperature, and elevation were determined to be the primary factors that affect the distribution and occurrence of dictyostelids in Guizhou and Gansu Provinces. This work supplements the survey data available for dictyostelids elsewhere in China. These new findings have significant implications for our understanding of the diversity of soil microorganisms.


Assuntos
Dictyosteliida , Humanos , Solo , Fazendas , China , Florestas , Microbiologia do Solo
7.
Open Res Eur ; 2: 134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645274

RESUMO

G-protein coupled receptors (GPCRs) are seven-transmembrane proteins and constitute the largest group of receptors within eukaryotes. The presence of a large set of GPCRs in the unicellular Amoebozoa was surprising and is indicative of the largely undiscovered environmental sensing capabilities in this group. Evolutionary transitions from unicellular to multicellular lifestyles, like we see in social amoebas, have occurred several times independently in the Amoebozoa, and GPCRs may have been co-opted for new functions in cell-cell communication. Methods We have analysed a set of GPCRs from fully sequenced Amoebozoan genomes by Bayesian inference, compared their phylogenetic distribution and domain composition, and analysed their temporal and spatial expression patterns in five species of dictyostelids. Results We found evidence that most GPCRs are conserved deeply in the Amoebozoa and are probably performing roles in general cell functions and complex environmental sensing. All families of GPCRs (apart from the family 4 fungal pheromone receptors) are present in dictyostelids with family 5 being the largest and family 2 the one with the fewest members. For the first time, we identify the presence of family 1 rhodopsin-like GPCRs in dictyostelids. Some GPCRs have been amplified in the dictyostelids and in specific lineages thereof and through changes in expression patterns may have been repurposed for signalling in multicellular development. Discussion Our phylogenetic analysis suggests that GPCR families 1, 2 and 6 already diverged early in the Amoebozoa, whereas families 3 and 5 expanded later within the dictyostelids. The family 6 cAMP receptors that have experimentally supported roles in multicellular development in dictyostelids ( carA-carD; tasA/B) originated at the root of all dictyostelids and only have weakly associated homologs in Physarum polycephalum. Our analysis identified candidate GPCRs which have evolved in the dictyostelids and could have been co-opted for multicellular development.

8.
Microbiol Spectr ; 10(5): e0240222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190423

RESUMO

Dictyostelid cellular slime molds (dictyostelids) are protists that are common inhabitants of most soils, where they feed upon bacteria. Changbai Mountain is the highest mountain in northeast China. Soil samples collected on Changbai Mountain yielded 11 isolates representing six species of dictyostelid samples. Two of these species (Dictyostelium robusticaule and Heterostelium recretum) were found to be new to science, based on morphology, SSU rDNA sequences, and an ATPase subunit 1 gene (atp1) phylogeny. The present study also demonstrated that the increased accuracy and lower costs associated with the use of atp1 sequences make them a complement of SSU rDNA sequences for identifying dictyostelids. Changbai Mountain is characterized by a higher diversity of dictyostelids than indicated by the few previous reports. Moreover, the data for Changbai Mountain, compared with comparable data for Taiwan, suggest that differences in diversity at the family level are possibly related to latitude. Mixed broadleaf-conifer forests produced more isolates and species than broadleaf forests at the same elevation and also had the highest species richness, which indicates an effect of vegetation on dictyostelids. However, the pattern of slightly decreasing diversity with increasing elevation in dictyostelids was also apparent. IMPORTANCE Dictyostelium robusticaule and Heterostelium recretum are two new species of dictyostelids reported in this study. The potential use of atp1 sequences is a complement of SSU rDNA sequences for the identifying dictyostelids. A pattern of slightly decreasing diversity with increasing elevation in dictyostelids was observed, with the conditions that exist at lower elevations apparently more suitable for dictyostelids, whereas differences of diversity observed at the family level are possibly related to latitude.


Assuntos
Dictyosteliida , Solo , Adenosina Trifosfatases , China , Dictyosteliida/genética , Dictyostelium/genética , DNA Ribossômico/genética , Florestas , Solo/parasitologia
9.
Front Microbiol ; 12: 708685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512585

RESUMO

Dictyostelid social amoebae are a highly diverse group of eukaryotic soil microbes that are valuable resources for biological research. Genetic diversity study of these organisms solely relies on molecular phylogenetics of the SSU rDNA gene, which is not ideal for large-scale genetic diversity study. Here, we designed a set of PCR-single-strand conformation polymorphism (SSCP) primers and optimized the SSCP fingerprint method for the screening of dictyostelids. The optimized SSCP condition required gel purification of the SSCP amplicons followed by electrophoresis using a 9% polyacrylamide gel under 4°C. We also tested the optimized SSCP procedure with 73 Thai isolates of dictyostelid that had the SSU rDNA gene sequences published. The SSCP fingerprint patterns were related to the genus-level taxonomy of dictyostelids, but the fingerprint dendrogram did not reflect the deep phylogeny. This method is rapid, cost-effective, and suitable for large-scale sample screening as compared with the phylogenetic analysis of the SSU rDNA gene sequences.

10.
Mitochondrial DNA B Resour ; 6(11): 3174-3176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746396

RESUMO

Dictyostelium intermedium is a member of dictyostelids, the unicellular eukaryotes with a unique life cycle, including a social cycle. Despite the high diversity of dictyostelids, only five species' complete mitochondrial genome sequences were reported. This study aimed to add the D. intermedium mitochondrial genome sequence to the list. The size of this genome is 58,627 bp, with 73.99% A/T, containing 62 genes located on one strand: 41 protein-coding genes, three ribosomal RNA genes, and 18 transfer RNA genes. The 41 protein-coding genes comprised 18 oxidative phosphorylation-related, 16 ribosomal, and seven hypothetical protein-coding genes. The cox1/2 and rnl gene contained introns, similar to other species of Dictyostelium. The phylogenetic tree built based on 34 protein sequences supported the monophyletic clade of Dictyostelium and the dictyostelids' ancestor's position between the two dictyostelids orders: Dictyosteliales and Acytosteliales.

11.
Evodevo ; 11: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062243

RESUMO

Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, respectively, that after nutrient depletion aggregate and develop into structures called fruiting bodies. The developmental processes and resulting morphological outcomes resemble one another to a remarkable extent despite their independent origins, the evolutionary distance between them and the lack of traceable homology in molecular mechanisms. We hypothesize that the morphological parallelism between the two lineages arises as the consequence of the interplay within multicellular aggregates between generic processes, physical and physicochemical processes operating similarly in living and non-living matter at the mesoscale (~10-3-10-1 m) and agent-like behaviors, unique to living systems and characteristic of the constituent cells, considered as autonomous entities acting according to internal rules in a shared environment. Here, we analyze the contributions of generic and agent-like determinants in myxobacteria and dictyostelid development and their roles in the generation of their common traits. Consequent to aggregation, collective cell-cell contacts mediate the emergence of liquid-like properties, making nascent multicellular masses subject to novel patterning and morphogenetic processes. In both lineages, this leads to behaviors such as streaming, rippling, and rounding-up, as seen in non-living fluids. Later the aggregates solidify, leading them to exhibit additional generic properties and motifs. Computational models suggest that the morphological phenotypes of the multicellular masses deviate from the predictions of generic physics due to the contribution of agent-like behaviors of cells such as directed migration, quiescence, and oscillatory signal transduction mediated by responses to external cues. These employ signaling mechanisms that reflect the evolutionary histories of the respective organisms. We propose that the similar developmental trajectories of myxobacteria and dictyostelids are more due to shared generic physical processes in coordination with analogous agent-type behaviors than to convergent evolution under parallel selection regimes. Insights from the biology of these aggregative forms may enable a unified understanding of developmental evolution, including that of animals and plants.

12.
Eur J Protistol ; 68: 99-107, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30802772

RESUMO

Dictyostelium discoideum is a specialized amoebozoan protist that can feed on, carry and disperse bacteria. However, the symbiont bacterial diversity in other species of dictyostelids and the diversity associated with essential life cycle stages are still unknown until now. Here, another species of dictyostelids, Heterostelium colligatum, a new record for tropical China, was isolated from the soil collected in Xishuangbanna Tropical Botanical Garden, Yunnan Province, China. We describe the complete life cycle of this species and illustrate details of spore-to-spore development. The symbiont bacterial diversity and relative abundance associated with life cycle stages of H. colligatum, including the aggregation, pseudoplasmodium, and sorocarp stages, were investigated by high throughput metagenomic techniques. H. colligatum appears to be capable of carrying different types of bacteria during its life history in addition to those used as a food resource. The dominant groups of those three stages in its life cycle were the Proteobacteria, Actinobacteria and Firmicutes. The relative abundance of the dominant phyla and shared OTUs were different for the aggregation, pseudoplasmodium, and sorocarp stages. A comparison of the symbiont bacterial assemblages associated with D. discoideum and H. colligatum indicated that different dictyostelid species carried different species of symbiont associated bacteria.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/microbiologia , Estágios do Ciclo de Vida/fisiologia , Simbiose/fisiologia , Bactérias/classificação
13.
Biol Rev Camb Philos Soc ; 94(5): 1591-1604, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30989827

RESUMO

Dictyostelium discoideum and the other dictyostelid slime moulds ('social amoebae') are popular model organisms best known for their demonstration of sorocarpic development. In this process, many cells aggregate to form a multicellular unit that ultimately becomes a fruiting body bearing asexual spores. Several other unrelated microorganisms undergo comparable processes, and in some it is evident that their multicellular development evolved from the differentiation process of encystation. While it has been argued that the dictyostelid fruiting body had similar origins, it has also been proposed that dictyostelid sorocarpy evolved from the unicellular fruiting process found in other amoebozoan slime moulds. This paper reviews the developmental biology of the dictyostelids and other relevant organisms and reassesses the two hypotheses on the evolutionary origins of dictyostelid development. Recent advances in phylogeny, genetics, and genomics and transcriptomics indicate that further research is necessary to determine whether or not the fruiting bodies of the dictyostelids and their closest relatives, the myxomycetes and protosporangids, are homologous.


Assuntos
Evolução Biológica , Dictyostelium/fisiologia , Carpóforos/fisiologia , Dictyostelium/classificação , Dictyostelium/genética , Carpóforos/genética , Filogenia , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia
14.
Protist ; 169(1): 64-78, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29427837

RESUMO

Dictyostelia is a monophyletic group of transiently multicellular (sorocarpic) amoebae, whose study is currently limited to laboratory culture. This tends to favour faster growing species with robust sorocarps, while species with smaller more delicate sorocarps constitute most of the group's taxonomic breadth. The number of known species is also small (∼150) given Dictyostelia's molecular depth and apparent antiquity (>600 myr). Nonetheless, dictyostelid sequences are rarely recovered in culture independent sampling (ciPCR) surveys. We developed ciPCR primers to specifically target dictyostelid small subunit (SSU or 18S) rDNA and tested them on total DNAs extracted from a wide range of soils from five continents. The resulting clone libraries show mostly dictyostelid sequences (∼90%), and phylogenetic analyses of these sequences indicate novel lineages in all four dictyostelid families and most genera. This is especially true for the species-rich Heterostelium and Dictyosteliaceae but also the less species-rich Raperosteliaceae. However, the most novel deep branches are found in two very species-poor taxa, including the deepest branch yet seen in the highly divergent Cavenderiaceae. These results confirm a deep hidden diversity of Dictyostelia, potentially including novel morphologies and developmental schemes. The primers and protocols presented here should also enable more comprehensive studies of dictyostelid ecology.


Assuntos
Biodiversidade , Dictyostelium/genética , Primers do DNA/genética , DNA de Protozoário/genética , DNA Ribossômico/genética , Dictyostelium/classificação , Dictyostelium/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase
15.
Protist ; 169(1): 1-28, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29367151

RESUMO

Traditional morphology-based taxonomy of dictyostelids is rejected by molecular phylogeny. A new classification is presented based on monophyletic entities with consistent and strong molecular phylogenetic support and that are, as far as possible, morphologically recognizable. All newly named clades are diagnosed with small subunit ribosomal RNA (18S rRNA) sequence signatures plus morphological synapomorphies where possible. The two major molecular clades are given the rank of order, as Acytosteliales ord. nov. and Dictyosteliales. The two major clades within each of these orders are recognized and given the rank of family as, respectively, Acytosteliaceae and Cavenderiaceae fam. nov. in Acytosteliales, and Dictyosteliaceae and Raperosteliaceae fam. nov. in Dictyosteliales. Twelve genera are recognized: Cavenderia gen. nov. in Cavenderiaceae, Acytostelium, Rostrostelium gen. nov. and Heterostelium gen. nov. in Acytosteliaceae, Tieghemostelium gen. nov., Hagiwaraea gen. nov., Raperostelium gen. nov. and Speleostelium gen. nov. in Raperosteliaceae, and Dictyostelium and Polysphondylium in Dictyosteliaceae. The "polycephalum" complex is treated as Coremiostelium gen. nov. (not assigned to family) and the "polycarpum" complex as Synstelium gen. nov. (not assigned to order and family). Coenonia, which may not be a dictyostelid, is treated as a genus incertae sedis. Eighty-eight new combinations are made at species and variety level, and Dictyostelium ammophilum is validated.


Assuntos
Dictyosteliida/classificação , DNA de Protozoário/genética , DNA Ribossômico/genética , Dictyosteliida/genética , Dictyosteliida/crescimento & desenvolvimento , Dictyosteliida/isolamento & purificação , Filogenia , RNA Ribossômico 18S/genética
16.
Springerplus ; 5(1): 1465, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652040

RESUMO

The transportation of solutes across the inner membrane of the mitochondria is catalyzed by a nuclear-coded family of transport proteins called mitochondrial carriers (MCs). Sequences from dictyostelid genome projects have facilitated analysis of the evolution of the dictyostelid mitochondrial carrier family (MCF). The average evolutionary distances between various regions in the MCF shows that the transmembrane region (TR) and conical pit region (CPR) are the only two conserved structural regions. A phylogenetic tree built using the concatenated orthologous TR and CPR sequences of 7 MCs showed that dictyostelids are similar to metazoans in this way. A close evolutionary relationship was observed between dictyostelids and metazoans in 4 MCs known to be related to ADP/ATP transport (MAA). This was further evidenced by the fact that dictyostelids have undergone gene expansion similar to that of metazoans during the evolution of MAA. Sequence logo analysis of CPR in MAA showed that dictyostelids have motifs similar to those of Metazoa. Combined with the conserved substrate binding site of 7 MCs in eukaryotes, it is postulated that dictyostelids are closely related to Metazoa with respect to the evolution of MAA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA