Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 189, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305872

RESUMO

Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.


Assuntos
Hordeum , Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Petróleo/microbiologia , Campos de Petróleo e Gás , Hordeum/metabolismo , Poluentes do Solo/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Bacillus subtilis/metabolismo , Carbono/metabolismo , Solo , Biodegradação Ambiental , Microbiologia do Solo , Hidrocarbonetos/metabolismo
2.
Appl Environ Microbiol ; 88(20): e0133722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190258

RESUMO

Two-component systems (TCSs) act as common regulatory systems allowing bacteria to detect and respond to multiple environmental stimuli, including cell envelope stress. The MtrAB TCS of Actinobacteria is critical for cell wall homeostasis, cell proliferation, osmoprotection, and antibiotic resistance, and thus is found to be highly conserved across this phylum. However, how precisely the MtrAB TCS regulates cellular homeostasis in response to environmental stress remains unclear. Here, we show that the MtrAB TCS plays an important role in the tolerance to different types of cell envelope stresses, including environmental stresses (i.e., oxidative stress, lysozyme, SDS, osmotic pressure, and alkaline pH stresses) and envelope-targeting antibiotics (i.e., isoniazid, ethambutol, glycopeptide, and ß-lactam antibiotics) in Dietzia sp. DQ12-45-1b. An mtrAB mutant strain exhibited slower growth compared to the wild-type strain and was characterized by abnormal cell shapes when exposed to various environmental stresses. Moreover, deletion of mtrAB resulted in decreased resistance to isoniazid, ethambutol, and ß-lactam antibiotics. Further, Cleavage under targets and tagmentation sequencing (CUT&Tag-seq) and electrophoretic mobility shift assays (EMSAs) revealed that MtrA binds the promoters of genes involved in peptidoglycan biosynthesis (ldtB, ldtA, murJ), hydrolysis (GJR88_03483, GJR88_4713), and cell division (ftsE). Together, our findings demonstrated that the MtrAB TCS is essential for the survival of Dietzia sp. DQ12-45-1b under various cell envelope stresses, primarily by controlling multiple downstream cellular pathways. Our work suggests that TCSs act as global sensors and regulators in maintaining cellular homeostasis, such as during episodes of various environmental stresses. The present study should shed light on the understanding of mechanisms for bacterial adaptivity to extreme environments. IMPORTANCE The multilayered cell envelope is the first line of bacterial defense against various extreme environments. Bacteria utilize a large number of sensing and regulatory systems to maintain cell envelope homeostasis under multiple stress conditions. The two-component system (TCS) is the main sensing and responding apparatus for environmental adaptation. The MtrAB TCS highly conserved in Actinobacteria is critical for cell wall homeostasis, cell proliferation, osmoprotection, and antibiotic resistance. However, how MtrAB works with regard to signals impacting changes to the cell envelope is not fully understood. Here, we found that in the Actinobacterium Dietzia sp. DQ12-45-1b, a TCS named MtrAB is pivotal for ensuring normal cell growth as well as maintaining proper cell morphology in response to various cell envelope stresses, namely, by regulating the expression of cell envelope-related genes. Our findings should greatly advance our understanding of the adaptive mechanisms responsible for maintaining cell integrity in times of sustained environmental shocks.


Assuntos
Actinobacteria , Actinomycetales , Muramidase/metabolismo , Peptidoglicano/metabolismo , Etambutol/metabolismo , Isoniazida/metabolismo , Actinomycetales/genética , Parede Celular/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , beta-Lactamas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
J Appl Microbiol ; 130(5): 1730-1744, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33078530

RESUMO

AIM: Nano-biotechnologically synthesizing silver nanoparticles via canthaxanthin pigment extracted from Dietzia maris AURCCBT01 and assessing their cytotoxic therapeutic potential against human keratinocyte cell line (HaCaT) were the key objectives of this study. METHODS AND RESULTS: The pigment extracted from D. maris AURCCBT01 was identified as canthaxanthin using UV-VIS spectroscopy, FTIR, NMR (1 H NMR and 13 C NMR) and MS. Canthaxanthin, treated with silver nitrate solution, produced canthaxanthin-mediated silver nanoparticles and they were characterized by UV-VIS spectroscopy, FTIR, XRD, FESEM-EDX and TEM-SAED techniques. UV-VIS spectroscopy pointed out an absorption band at 420 nm, relating to the surface plasmon resonance of silver nanoparticles. FTIR findings suggested that the diverse functional groups of canthaxanthin bio-molecules played a significant task in capping the silver nanoparticles. XRD analysis exhibited 40·20 nm for the crystal size of nanoparticles. FESEM and TEM exhibited that the biosynthesized silver nanoparticles were spherical in shape with crystalline nature and the particle size was 40-50 nm. Moreover, the cytotoxicity assessment of the synthesized nanoparticles in HaCaT revealed significant cytotoxicity in the cultured cells with an IC50 value of 43 µg ml-1 . CONCLUSION: Stable silver nanoparticles synthesized using canthaxanthin from D. maris AURCCBT01 were found effective for application in wound healing activity. SIGNIFICANCE AND IMPACT OF THE STUDY: Biosynthesized silver nanoparticles via canthaxanthin bacterial pigment exhibited their cytotoxicity effect in HaCaT and testified their eventual therapeutic potential in the wound healing activity with no side effects in a cost effective and eco-friendly process.


Assuntos
Actinobacteria/metabolismo , Cantaxantina/isolamento & purificação , Queratinócitos/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Prata , Linhagem Celular , Química Verde , Células HaCaT , Humanos , Concentração Inibidora 50 , Nanotecnologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização
4.
Arch Microbiol ; 202(7): 1701-1708, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32296869

RESUMO

Responses to sunlight exposure of the oil-degrading Dietzia cinnamea P4 strain were evaluated by transcriptional levels of SOS genes, photoreactivation and genes involved in tolerance to high levels of reactive oxygen species. The P4 strain was exposed for 1 and 2 h and the magnitude of level changes in the mRNA was evaluated by qPCR. The results described the activation of the SOS system, with the decline of the repressor lexA gene levels and the concomitant increase of recA and uvrAD genes levels. The genes that participate in the photoreactivation process were also responsive to sunlight. The phrB gene encoding deoxyribodipyrimidine photo-lyase had its expression increased after 1-h exposure, while the phytAB genes showed a progressive increase over the studied period. The protective genes against reactive oxygen species, catalases, superoxides, peroxidases, and thioredoxins, had their expression rates detected under the conditions validated in this study. These results show a fast and coordinated response of genes from different DNA repair and tolerance mechanisms employed by strain P4, suggesting a complex concerted protective action against environmental stressors.


Assuntos
Actinobacteria/genética , Actinobacteria/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz Solar , Adaptação Fisiológica , Proteínas de Bactérias/genética , Reparo do DNA/genética , Hidrolases/genética , Oxirredutases/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
World J Microbiol Biotechnol ; 35(4): 53, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30900038

RESUMO

The oxidative stress response of the highly resistant actinomycete Dietzia cinnamea P4 after treatment with hydrogen peroxide (H2O2) was assessed in order to depict the possible mechanisms underlying its intrinsic high resistance to DNA damaging agents. We used transcriptional profiling to monitor the magnitude and kinetics of changes in the mRNA levels after exposure to different concentrations of H2O2 at 10 min and 1 h following the addition of the stressor. Catalase and superoxide dismutase genes were induced in different ways, according to the condition applied. Moreover, alkyl hydroperoxide reductase ahpCF, thiol peroxidase, thioredoxin and glutathione genes were upregulated in the presence of H2O2. Expression of peroxidase genes was not detected during the experiment. Overall results point to an actinomycete strain endowed with a set of enzymatic defenses against oxidative stress and with the main genes belonging to a functional SOS system (lexA, recA, uvrD), including suppression of lexA repressor, concomitantly to recA and uvrD gene upregulation upon H2O2 challenge.


Assuntos
Actinomycetales/efeitos dos fármacos , Actinomycetales/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Estresse Oxidativo , Resposta SOS em Genética/fisiologia , Actinomycetales/enzimologia , Actinomycetales/genética , Proteínas de Bactérias/genética , Catalase/classificação , Catalase/genética , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Glutationa/genética , Cinética , Peroxidases/genética , Peroxirredoxinas/genética , Filogenia , RNA Mensageiro/metabolismo , Recombinases Rec A/genética , Resposta SOS em Genética/genética , Análise de Sequência , Serina Endopeptidases/genética , Superóxido Dismutase/genética , Tiorredoxinas/genética , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
6.
Appl Microbiol Biotechnol ; 102(8): 3765-3777, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29502180

RESUMO

The six- and seven-subunit Na+/H+ antiporters (Mrp) are widely distributed in bacteria. They are reported to be integral for pH homeostasis in alkaliphilic bacteria when adapting to high pH environments. In this study, operons encoding for the six-subunit Na+/H+ antiporters were found in the genomes of all studied Dietzia strains, which have different alkaline-resistant abilities. Disruption of the operon in the strain Dietzia sp. DQ12-45-1b which leads to declined growth in presence of hypersaline and alkaline conditions suggested that the six-subunit Na+/H+ antiporter played an important role in hypersaline and alkaline resistance. Although the complexes DqMrp from DQ12-45-1b (strain with high alkaline resistance) and DaMrp from D. alimentaria 72T (strain with low alkaline resistance) displayed Na+(Li+)/H+ antiport activities, they functioned optimally at different pH levels (9.0 for DQ12-45-1b and 8.0 for 72T). While both antiporters functioned properly to protect Escherichia coli cells from salt shock, only the DqMrp-containing strain survived the high alkaline shock. Furthermore, real-time PCR results showed that the expression of mrpA and mrpD induced only immediately after DQ12-45-1b cells were subjected to the alkaline shock. These results suggested that the expression of DqMrp might be induced by a pH gradient across the cell membrane, and DqMrp mainly functioned at an early stage to respond to the alkaline shock.


Assuntos
Actinobacteria/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Actinobacteria/genética , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Óperon/genética , Trocadores de Sódio-Hidrogênio/genética , Estresse Fisiológico/genética
7.
J Clin Microbiol ; 55(7): 2255-2260, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28490491

RESUMO

Rhodococcus equi causes pyogranulomatous pneumonia in domesticated animals and immunocompromised humans. Dietzia spp. are environmental bacteria that have rarely been associated with human infections. R. equi and Dietzia spp. are closely related actinomycetes. Phenotypic discrimination between R. equi and Dietzia on the basis of their Gram stain morphology and colony appearance is problematic. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a fast, reliable, and cost-effective method for identification of a wide variety of microorganisms. We have evaluated the performance of Bruker Biotyper versus that of Vitek MS for identification of a collection of 154 isolates identified at the source as R. equi that includes isolates belonging to the genus Dietzia PCR amplification of the choE gene, encoding a cholesterol oxidase, and 16S rRNA sequencing were considered the reference methods for R. equi identification. Biotyper identified 131 (85.1%) of the 154 isolates at the species level, and this figure increased to 152 (98.7%) when the species cutoff was reduced from a score of ≥2.000 to ≥1.750. Vitek MS correctly identified at the species level 130 (84.4%) isolates as long as bacteria were extracted with ethanol but only 35 (22.7%) isolates when samples were prepared by direct extraction from colonies. The two systems allowed differentiation between R. equi and Dietzia spp., but identification of all Dietzia sp. isolates at the species level needed sequencing of the 16S rRNA gene.


Assuntos
Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Técnicas Bacteriológicas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Actinobacteria/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA
8.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087527

RESUMO

The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes heavily depends on their ability to survive the calcium-dominated, hyperalkaline conditions resulting from the dissolution of the cementitious materials. The results from this study show that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to 13.0. The flocs were dominated by Alishewanella and Dietzia spp., producing a mannose-rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca2+ sequestration. EPS provided a ∼10-µm thick layer around the cells within the center of the flocs, which were capable of growth at pH values of 11.0 and 11.5, maintaining internal pH values of 10.4 and 10.7, respectively. Microorganisms survived at a pH of 12.0, where an internal floc pH of 11.6 was observed, as was a reduced associated biomass. We observed limited floc survival (<2 weeks) at a pH of 13.0. This study demonstrates that flocs maintain lower internal pHs in response to the hyperalkaline conditions expected to occur within a cementitious geological disposal facility for radioactive wastes and indicates that floc communities within such a facility can survive at pHs up to 12.0.IMPORTANCE The role of extracellular polymeric substances (EPS) in the survival of microorganisms in hyperalkaline conditions is poorly understood. Here, we present the taxonomy, morphology, and chemical characteristics of an EPS-based microbial floc, formed by a consortium isolated from an anthropogenic hyperalkaline site. Short-term (<2 weeks) survival of the flocs at a pH of 13 was observed, with indefinite survival observed at a pH of 12.0. Measurements from micro-pH electrodes (10-µm-diameter tip) demonstrated that flocs maintain lower internal pHs in response to hyperalkaline conditions (pH 11.0, 11.5, and 12.0), demonstrating that floc formation and EPS production are survival strategies under hyperalkaline conditions. The results indicate how microbial communities may survive and propagate within the hyperalkaline environment that is expected to prevail in a cementitious geological disposal facility for radioactive wastes; the results are also relevant to the wider extremophile community.


Assuntos
Actinobacteria/metabolismo , Alteromonadaceae/metabolismo , Biofilmes/crescimento & desenvolvimento , Resíduos Radioativos , Esgotos/química , Actinobacteria/isolamento & purificação , Alteromonadaceae/isolamento & purificação , Concentração de Íons de Hidrogênio , Polímeros/metabolismo , Eliminação de Resíduos Líquidos
9.
Appl Environ Microbiol ; 83(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821550

RESUMO

n-Alkanes are ubiquitous in nature and are widely used by microorganisms as carbon sources. Alkane hydroxylation by alkane monooxygenases is a critical step in the aerobic biodegradation of n-alkanes, which plays important roles in natural alkane attenuation and is used in industrial and environmental applications. The alkane oxidation operon, alkW1-alkX, in the alkane-degrading strain Dietzia sp. strain DQ12-45-1b is negatively autoregulated by the TetR family repressor AlkX via a product positive feedback mechanism. To predict the gene regulation mechanism, we determined the 3.1-Å crystal structure of an AlkX homodimer in a non-DNA-bound state. The structure showed traceable long electron density deep inside a hydrophobic cavity of each monomer along the long axis of the helix bundle, and further gas chromatography-mass spectrometry analysis of AlkX revealed that it contained the Escherichia coli-derived long-chain fatty acid molecules as a ligand. Moreover, an unusual structural feature of AlkX is an extra helix, α6', forming a lid-like structure with α6 covering the inducer-binding pocket and occupying the space between the two symmetrical DNA-binding motifs in one dimer, indicating a distinct conformational transition mode in modulating DNA binding. Sequence alignment of AlkX homologs from Dietzia strains showed that the residues involved in DNA and inducer binding are highly conserved, suggesting that the regulation mechanisms of n-alkane hydroxylation are possibly a common characteristic of Dietzia strains.IMPORTANCE With n-alkanes being ubiquitous in nature, many bacteria from terrestrial and aquatic environments have evolved n-alkane oxidation functions. Alkane hydroxylation by alkane monooxygenases is a critical step in the aerobic biodegradation of n-alkanes, which plays important roles in natural alkane attenuation and petroleum-contaminating environment bioremediation. The gene regulation of the most common alkane hydroxylase, AlkB, has been studied widely in Gram-negative bacteria but has been less explored in Gram-positive bacteria. Our previous study showed that the TetR family regulator (TFR) AlkX negatively autoregulated the alkane oxidation operon, alkW1-alkX, in the Gram-positive strain Dietzia sp. strain DQ12-45-1b. Although TFRs are one of the most common transcriptional regulator families in bacteria, the TFR involved in n-alkane metabolism has been reported only recently. In this study, we determined the crystal structure of AlkX, which implies a distinct DNA/ligand binding mode. Our results shed light upon the regulation mechanism of the common alkane degradation process in nature.


Assuntos
Actinomycetales/metabolismo , Alcanos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/química , Actinomycetales/química , Actinomycetales/genética , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Biodegradação Ambiental , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/genética
10.
Int J Phytoremediation ; 19(3): 290-299, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-27592870

RESUMO

In search of multitrait plant growth-promoting (PGP) inoculants, we introduced two cadmium-resistant bacterial strains, C4 (PG), C5 (WB), and their consortium C6 (PG × WB) isolated from metal-contaminated industrial waste-fed canal near West Bengal. The test isolates were biochemically characterized and screened in vitro for siderophore production. The infrared spectra revealed the hydroxamate nature of the siderophore produced. Further in green house, siderophore-based seed inoculation with selected PGP isolates exhibited stimulatory effects on seed germination (up to 85.4%), chlorophyll index (22.9 spad unit), shoot and root length (70% and 62.7%), tiller numbers (38.82%), spikelet numbers (52.2%), straw yield (62.2%), grain yield (76.1%), total dry matter of root and shoot (55.56% and 64.4%, respectively), and grain yields (76.1%) of tested wheat cultivars. The 16S rRNA sequencing identified strain PG and WB as Dietzia maris and Lysinibacillus sp. strains. Furthermore, inoculation of C6 (consortium) in both cultivar UP-2565 and KS-227 showed maximum Cd sorption capacity in roots (38.3% and 67.1%) and shoots (68.4% and 67.5%), respectively. Both the strains and their consortium showed a great potential to increase the growth and yield of wheat cultivars, which can also be utilized for rhizoremediation process.


Assuntos
Actinomycetales/metabolismo , Bacillaceae/metabolismo , Cádmio/metabolismo , Sideróforos/metabolismo , Poluentes do Solo/metabolismo , Triticum/metabolismo , Actinomycetales/genética , Bacillaceae/genética , Biodegradação Ambiental , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de RNA , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
11.
J Basic Microbiol ; 56(5): 566-75, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26615815

RESUMO

The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time.


Assuntos
Actinomycetales/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo , Tensoativos/metabolismo , Actinomycetales/isolamento & purificação , DNA Bacteriano/genética , Glicerol/metabolismo , Hidrocarbonetos/metabolismo , RNA Ribossômico 16S/genética , Soro do Leite/metabolismo
12.
Bioorg Med Chem Lett ; 25(18): 3953-5, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26220156

RESUMO

Dietziamides A and B, two novel tetramic acid dimers, were isolated from the rare actinomycetes Dietzia timorensis MZ-3 in the course of our HPLC-diode array screening of our collection of terrestrial actinomycetes. The spectroscopic analysis revealed the chemical structures of the first secondary metabolites characterized in the genus Dietzia. Dietziamides A and B showed moderate DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activities.


Assuntos
Actinomycetales/química , Antioxidantes/química , Lactamas/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Dimerização , Lactamas/isolamento & purificação , Lactamas/metabolismo , Estrutura Molecular
13.
Ecotoxicol Environ Saf ; 114: 52-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25600715

RESUMO

The present study deals with the decolorization and detoxification of Congo red (CR) by a novel marine bacterium Dietzia sp. (DTS26) isolated from Divar Island, Goa, India. The maximum decolorization of 94.5% (100 mg L(-1)) was observed under static condition within 30 h at pH 8 and temperature 32±2°C. Bacterially treated samples could enhance the light intensity by 38% and the primary production levels 5 times higher than the untreated. The strain was also able to reduce COD by 86.4% within 30 h at 100 mg L(-1) of CR dye. The degraded metabolites of CR dye were analyzed by FTIR, HPLC, GC-MS and the end product closely matches with 4-amino-3-naphthol-1-sulfonate which is comparatively less toxic than CR. Bioassay experiments conducted in treated samples for Artemia franciscana showed better survival rates (after 72 h) at higher concentration of CR (500 mg L(-1)). This work suggests the potential application of DTS26 in bioremediation of dye wastes and its safe disposal into coastal environment.


Assuntos
Actinomycetales/crescimento & desenvolvimento , Corantes/isolamento & purificação , Vermelho Congo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Animais , Artemia/efeitos dos fármacos , Biodegradação Ambiental , Corantes/toxicidade , Vermelho Congo/toxicidade , Sedimentos Geológicos/microbiologia , Índia , Água do Mar/microbiologia , Análise de Sobrevida , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
14.
J Food Sci Technol ; 51(9): 2134-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190874

RESUMO

The strain bacterium Dietzia natronolimnaea has propounded as a source for biological production of canthaxanthin. Because of sensitivity of this pigment, examine on its stability is important. In this study, stability of encapsulated canthaxanthin from D. natronolimnaea HS-1 using soluble soybean polysaccharide (SSPS), gum acacia (GA), and maltodextrin (MD) as wall materials was investigated at 4, 25, and 45 °C in light and dark conditions during 4 months of storage. It was shown that the type of walls influenced the size of emulsion droplets; spray dried particles, microencapsulation efficiency (ME), and retention of canthaxanthin in microcapsules. SSPS and MD produced the smallest and the biggest emulsion droplets and spray dried particles, respectively. Microcapsules made with SSPS resulted in better ME and higher stability for canthaxanthin. Samples were degraded in all conditions, especially in light and 45 °C. Degradation of microencapsulated canthaxanthin with SSPS and GA proceeded more slowly than did with MD. Regardless of the type of wall materials, total canthaxanthin contents of the microencapsulated products decreased by an increase in time or temperature. Also, samples exposed to light indicated less stability at 4 and 25 °C when compared to the storage at dark conditions. According to the results of this study, SSPS can be considered as potential wall material for the encapsulation of carotenoids.

15.
Microbiol Resour Announc ; 13(3): e0106523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38299820

RESUMO

We report the draft genome sequence of Dietzia sp. strain CH92, isolated from a high temperature oil well in Baolige oilfield, China. The estimated genome is 3.73 Mb, with 3,479 protein-coding sequences.

16.
Microbiol Resour Announc ; 13(10): e0025724, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254331

RESUMO

Here, we report the genome sequence of Dietzia cinnamea 55, isolated from the Negev Desert, Israel. D. cinnamea 55 was found to promote the growth of several cereal crops (corn, wheat, and pearl millet) in greenhouse and field studies.

17.
Adv Biomed Res ; 12: 183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694256

RESUMO

Background: The current study is an attempt to register the alterations in the immunological and histological parameters in mice arising from the administration of Dietza maris (D. maris) in order to confirm its protective properties. Materials and Methods: Mice underwent 7 days of treatment with three doses of D. maris. Then, animals were scrutinized in terms of body weight, relative weight of organs, delayed type of hypersensitivity (DTH) response, and hemagglutination titer (HT). The determination of villus height, villus width, crypt depth, villus/crypt ratio (V/C), Goblet cells, and intestinal epithelial lymphocyte (IEL) density in villi was carried out. Results: A boosted DTH response was observed as a result of bacteria at medium dose. A variation was noted between the hemagglutinin titer of the control group and that of the high-dose group. Crypt depth, villus width, and villus height manifested alterations. High-dose-treated mice demonstrated proliferation of Goblet cells in the villi, whereas both in medium- and high-dose-treated mice, a distribution of IELs in the villus epithelium was noted. Overall, D. maris showed a stimulatory effect on immune functions in mice. Thus, thanks to improved cellular and humoral immunity and the increased quality of intestine function, we believe that D. maris promises novel therapeutic applications in the future. Conclusion: The attained findings lend credence to immuno-stimulatory effects arising from the capacity of D. maris to function as immunological adjuvants and to enhance humoral and cellular immunity as well as the intestinal structure and function.

18.
Microorganisms ; 11(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38004720

RESUMO

Acute pancreatitis (AP) is accompanied by gut microbiota dysbiosis. However, the composition of the pancreatic and ileal microbiota associated with AP is still unknown. This study aims to examine the alterations in the microbial composition of the pancreas and ileum in the context of experimental acute pancreatitis, as well as explore the potential interplay between these two regions. Methods: Caerulein (CAE), caerulein+lipopolysaccharide (CAE+LPS), and L-arginine (ARG) were used to induce AP in mice. The pancreas and ileum were collected for histological study and bacterial 16S rRNA gene sequencing. The results showed microbial structural segregation between the AP and control groups and between ARG and the two CAE groups (CAE, CAE+LPS) in the pancreas and ileum. Taxonomic analysis at the genus level and linear discriminant analysis effect size (LEfSe) at the operational taxonomic units (OTUs) level illustrated that AP mice exhibited a marked increase in the relative abundance of Muribaculaceae and a decrease in that of Dietzia both in the pancreas and ileum, and a reduction in Bifidobacterium only in the ileum; in addition, Roseburia was enriched in the two CAE groups in the pancreas and/or ileum, while Escherichia-Shigella expanded in the pancreas of the ARG group. Spearman correlation analysis between pancreatic and ileal microbiota revealed that the abundance of Muribaculaceae and Dietzia in the pancreas was related to that in the ileum. These findings demonstrated that caerulein and L-arginine differentially disturbed the pancreatic and ileal microbiota when inducing AP. Furthermore, these findings provide preliminary support for an association between the microbiota of the pancreas and ileum, which could be caused by AP-induced microbial translocation.

19.
Res Microbiol ; 174(3): 103998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36375718

RESUMO

Dietzia strains are widely distributed in the environment, presenting an opportunistic role, and some species have undetermined taxonomic characteristics. Here, we propose the existence of errors in the classification of species in this genus using comparative genomics. We performed ANI, dDDH, pangenome and genomic plasticity analyses better to elucidate the phylogenomic relationships between Dietzia strains. For this, we used 55 genomes of Dietzia downloaded from public databases that were combined with a newly sequenced. Sequence analysis of a phylogenetic tree based on genome similarity comparisons and dDDH, ANI analyses supported grouping different Dietzia species into four distinct groups. The pangenome analysis corroborated the classification of these groups, supporting the idea that some species of Dietzia could be reassigned in a possible classification into three distinct species, each containing less variability than that found within the global pangenome of all strains. Additionally, analysis of genomic plasticity based on groups containing Dietzia strains found differences in the presence and absence of symbiotic Islands and pathogenic islands related to their isolation site. We propose that the comparison of pangenome subsets together with phylogenomic approaches can be used as an alternative for the classification and differentiation of new species of the genus Dietzia.


Assuntos
Actinomycetales , Genômica , Análise de Sequência de DNA , Filogenia , Genoma Bacteriano/genética , Sequência de Bases , Actinomycetales/genética
20.
Front Microbiol ; 14: 1270916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901814

RESUMO

Introduction: Soil ecosystems are threatened by crude oil contamination, requiring effective microbial remediation. However, our understanding of the key microbial taxa within the community, their interactions impacting crude oil degradation, and the stability of microbial functionality in oil degradation remain limited. Methods: To better understand these key points, we enriched a crude oil-degrading bacterial consortium generation 1 (G1) from contaminated soil and conducted three successive transfer passages (G2, G3, and G4). Integrated Co-occurrence Networks method was used to analyze microbial species correlation with crude oil components across G1-G4. Results and discussion: In this study, G1 achieved a total petroleum hydrocarbon (TPH) degradation rate of 32.29% within 10 days. Through three successive transfer passages, G2-G4 consortia were established, resulting in a gradual decrease in TPH degradation to 23.14% at the same time. Specifically, saturated hydrocarbon degradation rates ranged from 18.32% to 14.17% among G1-G4, and only G1 exhibited significant aromatic hydrocarbon degradation (15.59%). Functional annotation based on PICRUSt2 and FAPROTAX showed that functional potential of hydrocarbons degradation diminished across generations. These results demonstrated the functional instability of the bacterial consortium in crude oil degradation. The relative abundance of the Dietzia genus showed the highest positive correlation with the degradation efficiency of TPH and saturated hydrocarbons (19.48, 18.38, p < 0.05, respectively), Bacillus genus demonstrated the highest positive correlation (21.94, p < 0.05) with the efficiency of aromatic hydrocarbon degradation. The key scores of Dietzia genus decreased in successive generations. A significant positive correlation (16.56, p < 0.05) was observed between the Bacillus and Mycetocola genera exclusively in the G1 generation. The decline in crude oil degradation function during transfers was closely related to changes in the relative abundance of key genera such as Dietzia and Bacillus as well as their interactions with other genera including Mycetocola genus. Our study identified key bacterial genera involved in crude oil remediation microbiome construction, providing a theoretical basis for the next step in the construction of the oil pollution remediation microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA