Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.447
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 78(4): 765-778.e7, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32298650

RESUMO

Increasing evidence suggests that tRNA levels are dynamically and specifically regulated in response to internal and external cues to modulate the cellular translational program. However, the molecular players and the mechanisms regulating the gene-specific expression of tRNAs are still unknown. Using an inducible auxin-degron system to rapidly deplete RPB1 (the largest subunit of RNA Pol II) in living cells, we identified Pol II as a direct gene-specific regulator of tRNA transcription. Our data suggest that Pol II transcription robustly interferes with Pol III function at specific tRNA genes. This activity was further found to be essential for MAF1-mediated repression of a large set of tRNA genes during serum starvation, indicating that repression of tRNA genes by Pol II is dynamically regulated. Hence, Pol II plays a direct and central role in the gene-specific regulation of tRNA expression.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , RNA de Transferência/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Celulares de Ligação ao Retinol/metabolismo , Transcrição Gênica , Células HeLa , Humanos , Processamento de Proteína Pós-Traducional , RNA Polimerase II/genética , RNA Polimerase III/genética , RNA de Transferência/genética , Proteínas Repressoras/genética , Proteínas Celulares de Ligação ao Retinol/genética
2.
Proc Natl Acad Sci U S A ; 121(3): e2316542121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38198524

RESUMO

In developing Xenopus tadpoles, the optic tectum begins to receive patterned visual input while visuomotor circuits are still undergoing neurogenesis and circuit assembly. This visual input regulates neural progenitor cell fate decisions such that maintaining tadpoles in the dark increases proliferation, expanding the progenitor pool, while visual stimulation promotes neuronal differentiation. To identify regulators of activity-dependent neural progenitor cell fate, we profiled the transcriptomes of proliferating neural progenitor cells and newly differentiated neurons using RNA-Seq. We used advanced bioinformatic analysis of 1,130 differentially expressed transcripts to identify six differentially regulated transcriptional regulators, including Breast Cancer 1 (BRCA1) and the ETS-family transcription factor, ELK-1, which are predicted to regulate the majority of the other differentially expressed transcripts. BRCA1 is known for its role in cancers, but relatively little is known about its potential role in regulating neural progenitor cell fate. ELK-1 is a multifunctional transcription factor which regulates immediate early gene expression. We investigated the potential functions of BRCA1 and ELK-1 in activity-regulated neurogenesis in the tadpole visual system using in vivo time-lapse imaging to monitor the fate of GFP-expressing SOX2+ neural progenitor cells in the optic tectum. Our longitudinal in vivo imaging analysis showed that knockdown of either BRCA1 or ELK-1 altered the fates of neural progenitor cells and furthermore that the effects of visual experience on neurogenesis depend on BRCA1 and ELK-1 expression. These studies provide insight into the potential mechanisms by which neural activity affects neural progenitor cell fate.


Assuntos
Células-Tronco Neurais , Colículos Superiores , Animais , Genes BRCA1 , Neurônios , Proteínas Proto-Oncogênicas c-ets , Xenopus laevis/genética , Proteínas Elk-1 do Domínio ets , Proteína BRCA1
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38770720

RESUMO

The normalization of RNA sequencing data is a primary step for downstream analysis. The most popular method used for the normalization is the trimmed mean of M values (TMM) and DESeq. The TMM tries to trim away extreme log fold changes of the data to normalize the raw read counts based on the remaining non-deferentially expressed genes. However, the major problem with the TMM is that the values of trimming factor M are heuristic. This paper tries to estimate the adaptive value of M in TMM based on Jaeckel's Estimator, and each sample acts as a reference to find the scale factor of each sample. The presented approach is validated on SEQC, MAQC2, MAQC3, PICKRELL and two simulated datasets with two-group and three-group conditions by varying the percentage of differential expression and the number of replicates. The performance of the present approach is compared with various state-of-the-art methods, and it is better in terms of area under the receiver operating characteristic curve and differential expression.


Assuntos
RNA-Seq , RNA-Seq/métodos , Humanos , Algoritmos , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Curva ROC , Software
4.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935068

RESUMO

BACKGROUND: We present a novel simulation method for generating connected differential expression signatures. Traditional methods have struggled with the lack of reliable benchmarking data and biases in drug-disease pair labeling, limiting the rigorous benchmarking of connectivity-based approaches. OBJECTIVE: Our aim is to develop a simulation method based on a statistical framework that allows for adjustable levels of parametrization, especially the connectivity, to generate a pair of interconnected differential signatures. This could help to address the issue of benchmarking data availability for connectivity-based drug repurposing approaches. METHODS: We first detailed the simulation process and how it reflected real biological variability and the interconnectedness of gene expression signatures. Then, we generated several datasets to enable the evaluation of different existing algorithms that compare differential expression signatures, providing insights into their performance and limitations. RESULTS: Our findings demonstrate the ability of our simulation to produce realistic data, as evidenced by correlation analyses and the log2 fold-change distribution of deregulated genes. Benchmarking reveals that methods like extreme cosine similarity and Pearson correlation outperform others in identifying connected signatures. CONCLUSION: Overall, our method provides a reliable tool for simulating differential expression signatures. The data simulated by our tool encompass a wide spectrum of possibilities to challenge and evaluate existing methods to estimate connectivity scores. This may represent a critical gap in connectivity-based drug repurposing research because reliable benchmarking data are essential for assessing and advancing in the development of new algorithms. The simulation tool is available as a R package (General Public License (GPL) license) at https://github.com/cgonzalez-gomez/cosimu.


Assuntos
Algoritmos , Benchmarking , Simulação por Computador , Descoberta de Drogas , Descoberta de Drogas/métodos , Humanos , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Transcriptoma
5.
Mol Cell Proteomics ; 23(5): 100768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621647

RESUMO

Mass spectrometry (MS)-based single-cell proteomics (SCP) provides us the opportunity to unbiasedly explore biological variability within cells without the limitation of antibody availability. This field is rapidly developed with the main focuses on instrument advancement, sample preparation refinement, and signal boosting methods; however, the optimal data processing and analysis are rarely investigated which holds an arduous challenge because of the high proportion of missing values and batch effect. Here, we introduced a quantification quality control to intensify the identification of differentially expressed proteins (DEPs) by considering both within and across SCP data. Combining quantification quality control with isobaric matching between runs (IMBR) and PSM-level normalization, an additional 12% and 19% of proteins and peptides, with more than 90% of proteins/peptides containing valid values, were quantified. Clearly, quantification quality control was able to reduce quantification variations and q-values with the more apparent cell type separations. In addition, we found that PSM-level normalization performed similar to other protein-level normalizations but kept the original data profiles without the additional requirement of data manipulation. In proof of concept of our refined pipeline, six uniquely identified DEPs exhibiting varied fold-changes and playing critical roles for melanoma and monocyte functionalities were selected for validation using immunoblotting. Five out of six validated DEPs showed an identical trend with the SCP dataset, emphasizing the feasibility of combining the IMBR, cell quality control, and PSM-level normalization in SCP analysis, which is beneficial for future SCP studies.


Assuntos
Proteômica , Controle de Qualidade , Análise de Célula Única , Análise de Célula Única/métodos , Proteômica/métodos , Humanos , Espectrometria de Massas/métodos , Análise de Dados , Proteoma/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(21): e2209124120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192164

RESUMO

Detecting differentially expressed genes is important for characterizing subpopulations of cells. In scRNA-seq data, however, nuisance variation due to technical factors like sequencing depth and RNA capture efficiency obscures the underlying biological signal. Deep generative models have been extensively applied to scRNA-seq data, with a special focus on embedding cells into a low-dimensional latent space and correcting for batch effects. However, little attention has been paid to the problem of utilizing the uncertainty from the deep generative model for differential expression (DE). Furthermore, the existing approaches do not allow for controlling for effect size or the false discovery rate (FDR). Here, we present lvm-DE, a generic Bayesian approach for performing DE predictions from a fitted deep generative model, while controlling the FDR. We apply the lvm-DE framework to scVI and scSphere, two deep generative models. The resulting approaches outperform state-of-the-art methods at estimating the log fold change in gene expression levels as well as detecting differentially expressed genes between subpopulations of cells.


Assuntos
RNA , Análise de Célula Única , Teorema de Bayes , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
7.
Immunol Rev ; 309(1): 97-122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35818983

RESUMO

Tuberculosis (TB) in humans is caused by Mycobacterium tuberculosis (Mtb). It is estimated that 70 million children (<15 years) are currently infected with Mtb, with 1.2 million each year progressing to disease. Of these, a quarter die. The risk of progression from Mtb infection to disease and from disease to death is dependent on multiple pathogen and host factors. Age is a central component in all these transitions. The natural history of TB in children and adolescents is different to adults, leading to unique challenges in the development of diagnostics, therapeutics, and vaccines. The quantification of RNA transcripts in specific cells or in the peripheral blood, using high-throughput methods, such as microarray analysis or RNA-Sequencing, can shed light into the host immune response to Mtb during infection and disease, as well as understanding treatment response, disease severity, and vaccination, in a global hypothesis-free manner. Additionally, gene expression profiling can be used for biomarker discovery, to diagnose disease, predict future disease progression and to monitor response to treatment. Here, we review the role of transcriptomics in children and adolescents, focused mainly on work done in blood, to understand disease biology, and to discriminate disease states to assist clinical decision-making. In recent years, studies with a specific pediatric and adolescent focus have identified blood gene expression markers with diagnostic or prognostic potential that meet or exceed the current sensitivity and specificity targets for diagnostic tools. Diagnostic and prognostic gene expression signatures identified through high-throughput methods are currently being translated into diagnostic tests.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Adolescente , Adulto , Criança , Perfilação da Expressão Gênica/métodos , Humanos , RNA , Transcriptoma , Tuberculose/diagnóstico , Tuberculose/genética , Tuberculose/terapia
8.
Plant J ; 118(2): 304-323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265362

RESUMO

The model moss species Physcomitrium patens has long been used for studying divergence of land plants spanning from bryophytes to angiosperms. In addition to its phylogenetic relationships, the limited number of differential tissues, and comparable morphology to the earliest embryophytes provide a system to represent basic plant architecture. Based on plant-fungal interactions today, it is hypothesized these kingdoms have a long-standing relationship, predating plant terrestrialization. Mortierellaceae have origins diverging from other land fungi paralleling bryophyte divergence, are related to arbuscular mycorrhizal fungi but are free-living, observed to interact with plants, and can be found in moss microbiomes globally. Due to their parallel origins, we assess here how two Mortierellaceae species, Linnemannia elongata and Benniella erionia, interact with P. patens in coculture. We also assess how Mollicute-related or Burkholderia-related endobacterial symbionts (MRE or BRE) of these fungi impact plant response. Coculture interactions are investigated through high-throughput phenomics, microscopy, RNA-sequencing, differential expression profiling, gene ontology enrichment, and comparisons among 99 other P. patens transcriptomic studies. Here we present new high-throughput approaches for measuring P. patens growth, identify novel expression of over 800 genes that are not expressed on traditional agar media, identify subtle interactions between P. patens and Mortierellaceae, and observe changes to plant-fungal interactions dependent on whether MRE or BRE are present. Our study provides insights into how plants and fungal partners may have interacted based on their communications observed today as well as identifying L. elongata and B. erionia as modern fungal endophytes with P. patens.


Assuntos
Briófitas , Bryopsida , Micorrizas , Filogenia , Endófitos/metabolismo , Análise Multinível , Proteínas de Plantas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Micorrizas/metabolismo
9.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36482762

RESUMO

Multiple test corrections are a fundamental step in the analysis of differentially expressed genes, as the number of tests performed would otherwise inflate the false discovery rate (FDR). Recent methods for P-value correction involve a regression model in order to include covariates that are informative of the power of the test. Here, we present Progressive proportions plot (Prog-Plot), a visual tool to identify the functional relationship between the covariate and the proportion of P-values consistent with the null hypothesis. The relationship between the proportion of P-values and the covariate to be included is needed, but there are no available tools to verify it. The approach presented here aims at having an objective way to specify regression models instead of relying on prior knowledge.

10.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36592056

RESUMO

Circular RNAs (circRNAs) are covalently closed transcripts involved in critical regulatory axes, cancer pathways and disease mechanisms. CircRNA expression measured with RNA-seq has particular characteristics that might hamper the performance of standard biostatistical differential expression assessment methods (DEMs). We compared 38 DEM pipelines configured to fit circRNA expression data's statistical properties, including bulk RNA-seq, single-cell RNA-seq (scRNA-seq) and metagenomics DEMs. The DEMs performed poorly on data sets of typical size. Widely used DEMs, such as DESeq2, edgeR and Limma-Voom, gave scarce results, unreliable predictions or even contravened the expected behaviour with some parameter configurations. Limma-Voom achieved the most consistent performance throughout different benchmark data sets and, as well as SAMseq, reasonably balanced false discovery rate (FDR) and recall rate. Interestingly, a few scRNA-seq DEMs obtained results comparable with the best-performing bulk RNA-seq tools. Almost all DEMs' performance improved when increasing the number of replicates. CircRNA expression studies require careful design, choice of DEM and DEM configuration. This analysis can guide scientists in selecting the appropriate tools to investigate circRNA differential expression with RNA-seq experiments.


Assuntos
Benchmarking , RNA Circular , Benchmarking/métodos , Análise de Sequência de RNA/métodos , RNA-Seq , Metagenômica , RNA/genética
11.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36617463

RESUMO

DNA and RNA sequencing technologies have revolutionized biology and biomedical sciences, sequencing full genomes and transcriptomes at very high speeds and reasonably low costs. RNA sequencing (RNA-Seq) enables transcript identification and quantification, but once sequencing has concluded researchers can be easily overwhelmed with questions such as how to go from raw data to differential expression (DE), pathway analysis and interpretation. Several pipelines and procedures have been developed to this effect. Even though there is no unique way to perform RNA-Seq analysis, it usually follows these steps: 1) raw reads quality check, 2) alignment of reads to a reference genome, 3) aligned reads' summarization according to an annotation file, 4) DE analysis and 5) gene set analysis and/or functional enrichment analysis. Each step requires researchers to make decisions, and the wide variety of options and resulting large volumes of data often lead to interpretation challenges. There also seems to be insufficient guidance on how best to obtain relevant information and derive actionable knowledge from transcription experiments. In this paper, we explain RNA-Seq steps in detail and outline differences and similarities of different popular options, as well as advantages and disadvantages. We also discuss non-coding RNA analysis, multi-omics, meta-transcriptomics and the use of artificial intelligence methods complementing the arsenal of tools available to researchers. Lastly, we perform a complete analysis from raw reads to DE and functional enrichment analysis, visually illustrating how results are not absolute truths and how algorithmic decisions can greatly impact results and interpretation.


Assuntos
Inteligência Artificial , Perfilação da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Transcriptoma , Análise de Sequência de RNA/métodos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética
12.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37738402

RESUMO

Understanding the function of the human microbiome is important but the development of statistical methods specifically for the microbial gene expression (i.e. metatranscriptomics) is in its infancy. Many currently employed differential expression analysis methods have been designed for different data types and have not been evaluated in metatranscriptomics settings. To address this gap, we undertook a comprehensive evaluation and benchmarking of 10 differential analysis methods for metatranscriptomics data. We used a combination of real and simulated data to evaluate performance (i.e. type I error, false discovery rate and sensitivity) of the following methods: log-normal (LN), logistic-beta (LB), MAST, DESeq2, metagenomeSeq, ANCOM-BC, LEfSe, ALDEx2, Kruskal-Wallis and two-part Kruskal-Wallis. The simulation was informed by supragingival biofilm microbiome data from 300 preschool-age children enrolled in a study of childhood dental disease (early childhood caries, ECC), whereas validations were sought in two additional datasets from the ECC study and an inflammatory bowel disease study. The LB test showed the highest sensitivity in both small and large samples and reasonably controlled type I error. Contrarily, MAST was hampered by inflated type I error. Upon application of the LN and LB tests in the ECC study, we found that genes C8PHV7 and C8PEV7, harbored by the lactate-producing Campylobacter gracilis, had the strongest association with childhood dental disease. This comprehensive model evaluation offers practical guidance for selection of appropriate methods for rigorous analyses of differential expression in metatranscriptomics. Selection of an optimal method increases the possibility of detecting true signals while minimizing the chance of claiming false ones.


Assuntos
Benchmarking , Doenças Estomatognáticas , Criança , Humanos , Pré-Escolar , Biofilmes , Simulação por Computador , Ácido Láctico
13.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36583521

RESUMO

Bulk sequencing experiments (single- and multi-omics) are essential for exploring wide-ranging biological questions. To facilitate interactive, exploratory tasks, coupled with the sharing of easily accessible information, we present bulkAnalyseR, a package integrating state-of-the-art approaches using an expression matrix as the starting point (pre-processing functions are available as part of the package). Static summary images are replaced with interactive panels illustrating quality-checking, differential expression analysis (with noise detection) and biological interpretation (enrichment analyses, identification of expression patterns, followed by inference and comparison of regulatory interactions). bulkAnalyseR can handle different modalities, facilitating robust integration and comparison of cis-, trans- and customised regulatory networks.


Assuntos
Multiômica
14.
Bioinformatics ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153205

RESUMO

SUMMARY: Recent methodology advances in computational signal deconvolution have enabled bulk transcriptome data analysis at a finer cell-type level. Through deconvolution, identifying cell-type-specific differentially expressed (csDE) genes is drawing increasing attention in clinical applications. However, researchers still face a number of difficulties in adopting csDE detection methods in practice, especially in their experimental design. Here we present cypress, the first experimental design and statistical power analysis tool in csDE identification. This tool can reliably model purified cell-type-specific (CTS) profiles, cell-type compositions, biological and technical variations, offering a high-fidelity simulator for bulk RNA-seq convolution and deconvolution. cypress conducts simulation and evaluates the impact of multiple influencing factors, by various biostatistical metrics, to help researchers optimize experimental design and conduct power analysis. AVAILABILITY AND IMPLEMENTATION: cypress is an open-source R/Bioconductor package at https://bioconductor.org/packages/cypress/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

15.
Bioinformatics ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976653

RESUMO

MOTIVATION: Understanding the dynamics of gene expression across different cellular states is crucial for discerning the mechanisms underneath cellular differentiation. Genes that exhibit variation in mean expression as a function of Pseudotime and between branching trajectories are expected to govern cell fate decisions. We introduce scMaSigPro, a method for the identification of differential gene expression patterns along Pseudotime and branching paths simultaneously. RESULTS: We assessed the performance of scMaSigPro using synthetic and public datasets. Our evaluation shows that scMaSigPro outperforms existing methods in controlling the False Positive Rate and is computationally efficient. AVAILABILITY AND IMPLEMENTATION: scMaSigPro is available as a free R package (version 4.0 or higher) under the GPL(≥2) license on GitHub at 'github.com/BioBam/scMaSigPro' and archived with version 0.03 on Zenodo at 'zenodo.org/records/12568922'.

16.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39051661

RESUMO

The subgenual anterior cingulate cortex (sgACC) is a critical site for understanding the neural correlates of affect and emotion. While the activity of the sgACC is functionally homogenous, it is comprised of multiple Brodmann Areas (BAs) that possess different cytoarchitectures. In some sgACC BAs, Layer 5 is sublaminated into L5a and L5b which has implications for its projection targets. To understand how the transcriptional profile differs between the BAs, layers, and sublayers of human sgACC, we collected layer strips using laser capture microdissection followed by RNA sequencing. We found no significant differences in transcript expression in these specific cortical layers between BAs within the sgACC. In contrast, we identified striking differences between Layers 3 and 5a or 5b that were concordant across sgACC BAs. We found that sublayers 5a and 5b were transcriptionally similar. Pathway analyses of L3 and L5 revealed overlapping biological processes related to synaptic function. However, L3 was enriched for pathways related to cell-to-cell junction and dendritic spines whereas L5 was enriched for pathways related to brain development and presynaptic function, indicating potential functional differences across layers. Our study provides important insight into normative transcriptional features of the sgACC.


Assuntos
Giro do Cíngulo , Transcriptoma , Humanos , Giro do Cíngulo/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Microdissecção e Captura a Laser
17.
Mol Cell Proteomics ; 22(8): 100592, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328065

RESUMO

The need for a clinically accessible method with the ability to match protein activity within heterogeneous tissues is currently unmet by existing technologies. Our proteomics sample preparation platform, named microPOTS (Microdroplet Processing in One pot for Trace Samples), can be used to measure relative protein abundance in micron-scale samples alongside the spatial location of each measurement, thereby tying biologically interesting proteins and pathways to distinct regions. However, given the smaller pixel/voxel number and amount of tissue measured, standard mass spectrometric analysis pipelines have proven inadequate. Here we describe how existing computational approaches can be adapted to focus on the specific biological questions asked in spatial proteomics experiments. We apply this approach to present an unbiased characterization of the human islet microenvironment comprising the entire complex array of cell types involved while maintaining spatial information and the degree of the islet's sphere of influence. We identify specific functional activity unique to the pancreatic islet cells and demonstrate how far their signature can be detected in the adjacent tissue. Our results show that we can distinguish pancreatic islet cells from the neighboring exocrine tissue environment, recapitulate known biological functions of islet cells, and identify a spatial gradient in the expression of RNA processing proteins within the islet microenvironment.


Assuntos
Ilhotas Pancreáticas , Proteoma , Humanos , Proteoma/metabolismo , Ilhotas Pancreáticas/metabolismo , Espectrometria de Massas
18.
Mol Cell Proteomics ; 22(7): 100583, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236439

RESUMO

Single-cell proteomics as an emerging field has exhibited potential in revealing cellular heterogeneity at the functional level. However, accurate interpretation of single-cell proteomics data suffers from challenges such as measurement noise, internal heterogeneity, and the limited sample size of label-free quantitative mass spectrometry. Herein, the author describes peptide-level differential expression analysis for single-cell proteomic (pepDESC), a method for detecting differentially expressed proteins using peptide-level information designed for label-free quantitative mass spectrometry-based single-cell proteomics. While, in this study, the author focuses on the heterogeneity among the limited number of samples, pepDESC is also applicable to regular-size proteomics data. By balancing proteome coverage and quantification accuracy using peptide quantification, pepDESC is demonstrated to be effective in real-world single-cell and spike-in benchmark datasets. By applying pepDESC to published single-mouse macrophage data, the author found a large fraction of differentially expressed proteins among three types of cells, which remarkably revealed distinct dynamics of different cellular functions responding to lipopolysaccharide stimulation.


Assuntos
Peptídeos , Proteômica , Animais , Camundongos , Proteômica/métodos , Peptídeos/análise , Espectrometria de Massas/métodos , Proteoma/metabolismo
19.
BMC Biol ; 22(1): 110, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735918

RESUMO

BACKGROUND: Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS: Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS: This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.


Assuntos
Produtos Agrícolas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Óleos de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Óleos de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Genomics ; 116(3): 110847, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38685287

RESUMO

BACKGROUND: Bufo gargarizans Cantor, a widely distributed amphibian species in Asia, produces and releases toxins through its retroauricular and granular glands. Although various tissues have been sequenced, the molecular mechanisms underlying the toxin production remain unclear. To elucidate these mechanisms, abdominal skin (non-toxic secretory glands) and retroauricular gland (toxic secreting glands) samples were collected at different time points (3, 6, 12, 24, and 36 months) for RNA sequencing (RNA-seq) and analysis. RESULTS: In comparison to the S group during the same period, a total of 3053, 3026, 1516, 1028, and 2061 differentially expressed genes (DEGs) were identified across five developmental stages. Gene Ontology (GO) analysis revealed that DEGs were primarily enriched in biological processes including cellular processes, single-organism processes, metabolic processes, and biological regulation. In terms of cellular components, the DEGs were predominantly localized in the cell and cell parts, whereas molecular function indicated significant enrichment in binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the metabolism and synthesis of various substances, such as lipid metabolism, cofactor and vitamin metabolism, tryptophan metabolism, steroid biosynthesis, and primary bile acid biosynthesis, were accompanied by the development of toads. Additionally, using trend analysis, we discovered candidate genes that were upregulated in the retroauricular glands during development, and the abundance of these genes in the abdominal skin was extremely low. Finally, we identified 26 genes that are likely to be involved in toxin production and that are likely to be involved in toxin anabolism. CONCLUSION: Overall, these results provide new insights into the genes involved in toxin production in B. gargarizans, which will improve our understanding of the molecular mechanisms underlying toxigenic gene expression.


Assuntos
Bufonidae , Animais , Bufonidae/genética , Bufonidae/metabolismo , Bufonidae/crescimento & desenvolvimento , Transcriptoma , RNA-Seq , Análise de Sequência de RNA , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA