Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pharmacol Res ; 189: 106693, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773710

RESUMO

Uterine leiomyosarcoma (ULMS) is a malignant stromal tumor arising from the myometrium with a poor prognosis and very limited response to current chemotherapy. This study aimed to identify novel targets for ULMS through a three-step screening process using a chemical library consisting of 1271 Food and Drug Administration-approved drugs. First, we evaluated their inhibitory effects on ULMS cells and identified four candidates: proscillaridin A, lanatoside C, floxuridine, and digoxin. Then, we subcutaneously or orthotopically transplanted SK-UT-1 cells into mice to establish mouse models. In vivo analyses showed that proscillaridin A and lanatoside C exerted a superior antitumor effect. The results of mRNA sequencing showed that uncoupling protein 2 (UCP2) was suppressed in the sirtuin signaling pathway, increasing reactive oxygen species (ROS) and inducing cell death. Moreover, the downregulation of UCP2 induced ROS and suppressed ULMS cell growth. Furthermore, analyses using clinical samples showed that UCP2 expression was significantly upregulated in ULMS tissues than in myoma tissues both at the RNA and protein levels. These findings suggested that UCP2 is a potential therapeutic target and can contribute to the development of novel therapeutic strategies in patients with ULMS.


Assuntos
Leiomiossarcoma , Proscilaridina , Neoplasias Uterinas , Humanos , Feminino , Animais , Camundongos , Leiomiossarcoma/tratamento farmacológico , Proteína Desacopladora 2 , Proscilaridina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Uterinas/tratamento farmacológico
2.
Pharmacol Res ; 184: 106442, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096424

RESUMO

Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.


Assuntos
Venenos de Anfíbios , Antineoplásicos , Bufanolídeos , Glicosídeos Cardíacos , Neoplasias , Venenos de Anfíbios/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Glicosídeos Cardíacos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Pharmacol Res ; 142: 176-191, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30818043

RESUMO

As an important component of complementary and alternative medicines, traditional Chinese medicines (TCM) are gaining more and more attentions around the world because of the powerful therapeutic effects and less side effects. However, there are still some doubts about TCM because of the questionable TCM theories and unclear biological active compounds. In recent years, gut microbiota has emerged as an important frontier to understand the development and progress of diseases. Together with this trend, an increasing number of studies have indicated that drug molecules can interact with gut microbiota after oral administration. In this context, more and more studies pertaining to TCM have paid attention to gut microbiota and have yield rich information for understanding TCM. After oral administration, TCM can interact with gut microbiota: (1) TCM can modulate the composition of gut microbiota; (2) TCM can modulate the metabolism of gut microbiota; (3) gut microbiota can transform TCM compounds. During the interactions, two types of metabolites can be produced: gut microbiota metabolites (of food and host origin) and gut microbiota transformed TCM compounds. In this review, we summarized the interactions between TCM and gut microbiota, and the pharmacological effects and features of metabolites produced during interactions between TCM and gut microbiota. Then, focusing on gut microbiota and metabolites, we summarized the aspects in which gut microbiota has facilitated our understanding of TCM. At the end of this review, the outlooks for further research of TCM and gut microbiota were also discussed.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Medicina Tradicional Chinesa , Animais , Humanos
4.
Pharmacol Res ; 147: 104367, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31344423

RESUMO

The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Fitoterapia , Animais , Biotransformação , Dieta , Humanos , Compostos Fitoquímicos/farmacocinética
5.
J Ethnopharmacol ; 256: 112799, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32243989

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sulfur-fumigation has been developed to prevent insects and molds during post-harvest handling of Panax ginseng C.A. Mey (ginseng) in the near decades. Our previous study indicated sulfur-fumigation could transform ginsenosides, the active components of ginseng, into sulfur-containing derivatives (SFCDs), the artifacts with unknown toxicity. However, whether the biotransformation could be occurred and absorption characteristics between ginsenosides and SFCDs are still needed to further investigate. AIM OF THE STUDY: To evaluate the effect of sulfur-fumigation process on ginseng through comparing the metabolic profile and absorption characteristics between ginsenoside Rg1, Re and their SFCDs. MATERIALS AND METHODS: Intestinal microflora and liver S9 fraction were utilized to compare the metabolic profile, and single-pass intestinal perfusion and Caco-2 cell models were applied to compare the absorption characteristics, between Rg1, Re and their SFCDs. RESULTS: Rg1 and Re were metabolized to 7 none sulfur-containing metabolites, while their SFCDs were metabolized to 18 sulfur-containing metabolites. The intestinal absorption and transport of Rg1 and Re were much greater than their SFCDs. Besides, the uptakes of Rg1 and Re were transport-dependent, but their SFCDs were non-transport-dependent. CONCLUSION: Ginsenosides and their SFCDs could not be bio-transformed with each other and their absorption characteristics were quite different, which suggested that sulfur-fumigation is not a feasible post-harvest process of ginseng.


Assuntos
Absorção Intestinal/efeitos dos fármacos , Panax/química , Enxofre/farmacologia , Animais , Biotransformação/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Fumigação/métodos , Ginsenosídeos/farmacologia , Humanos , Intestinos/efeitos dos fármacos , Masculino , Metaboloma/efeitos dos fármacos , Raízes de Plantas/química , Ratos , Ratos Sprague-Dawley
6.
Biomed Pharmacother ; 129: 110422, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563990

RESUMO

Nerium oleander L., commonly known as oleander, is a toxic shrub and also a medicinal plant. All parts of oleander are rich in cardiac glycosides that inhibits Na+/K+-ATPase and induce inotropic effect on the cardiomyocytes. Several pre-clinical and clinical reports indicate acute toxicity due to intentional, accidental and suicidal oleander consumption. Contrarily, oleander is used for the treatment of diverse ailments in traditional medicinal practices around the globe and several evidence-based pre-clinical studies indicated metabolic and immunological health benefits of polyphenol-rich oleander extracts. Thus, the current review aims to address this pharmaco-toxicological conundrum of oleander by addressing the possible role of gut microflora in the differential oleander toxicity. Additionally, a comprehensive account of ethnopharmacological usage, metabolic and immunological health benefits has been documented that supplement the conflicting arguments of pharmaco-toxicological properties of oleander. Finally, by addressing the gap of knowledge of ethnomedicinal, pharmacological and toxicological reports of oleander, the current review is expected to pave the way to address the differential pharmaco-toxicological effects of oleander.


Assuntos
Bactérias/metabolismo , Intestinos/microbiologia , Nerium , Extratos Vegetais/farmacologia , Animais , Biotransformação , Etnofarmacologia , Microbioma Gastrointestinal , Humanos , Nerium/química , Nerium/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Extratos Vegetais/toxicidade , Plantas Medicinais , Medição de Risco
7.
Adv Drug Deliv Rev ; 116: 45-62, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637455

RESUMO

Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Membrana Transportadoras , Compostos Fitoquímicos/farmacologia , Animais , Dieta , Interações Medicamentosas , Humanos
8.
Int J Pharm ; 514(2): 364-373, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27291974

RESUMO

A comprehensive 8-drug metabolic cocktail was designed to simultaneously target 6 Cytochrome P450 enzymes and 2 membrane transporters. This study aimed to assess the pre-absorption risk of this new metabolic cocktail which contained metoprolol, caffeine, midazolam, pravastatin, flurbiprofen, omeprazole, digoxin and montelukast. This paper describes a systematic approach to understand whether the co-administration of the 8 selected drug products, i.e., the physical mixing of these products in the human gastro-intestinal environment, will create any issue that may interfere with the individual drug dissolution which in turns modify the total amount or timing of their availability for absorption. The evaluation consisted of two steps. An initial evaluation was based on theoretical understanding of the physicochemical properties of the drugs and the gastro intestinal environment, followed by in vitro dissolution tests. The results indicated that the designer 8-drug cocktail has acceptable pre-absorption compatibility when dosed simultaneously, and recommended the progression of the cocktail into clinical validation study.


Assuntos
Combinação de Medicamentos , Interações Medicamentosas , Fenômenos Químicos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio
9.
Eur J Pharm Sci ; 86: 96-102, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-26948853

RESUMO

Total human clearance is a key determinant for the pharmacokinetic behavior of drug candidates. Our group recently introduced the Extended Clearance Model (ECM) as an accurate in vitro-in vivo extrapolation (IVIVE) method for the prediction of hepatic clearance. Yet, knowledge about relative elimination pathway contributions is needed in order to predict the total human clearance of drug candidates. In the present work, a training set of 18 drug compounds was used to describe the affiliations between in vitro sinusoidal uptake clearance and the fractional contributions of hepatic (metabolic and biliary) or renal clearance to overall in vivo elimination. By means of these quantitative relationships and using a validation set of 10 diverse drug molecules covering different (sub)classes of the Extended Clearance Concept Classification System (ECCCS), the relative contributions of elimination pathways were calculated and demonstrated to well correlate with human reference data. Likewise, ECM- and pathway-based predictions of total clearances from both data sets demonstrated a strong correlation with the observed clinical values with 26 out of 28 compounds within a three-fold deviation. Hence, total human clearance and relative contributions of elimination pathways were successfully predicted by the presented method using solely hepatocyte and microsome in vitro data.


Assuntos
Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Humanos , Rim/metabolismo , Taxa de Depuração Metabólica
10.
Eur J Pharmacol ; 744: 18-27, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25264938

RESUMO

Digitalis-like compounds (DLCs), such as digoxin and digitoxin that are derived from digitalis species, are currently used to treat heart failure and atrial fibrillation, but have a narrow therapeutic index. Drug-drug interactions at the transporter level are frequent causes of DLCs toxicity. P-glycoprotein (P-gp, ABCB1) is the primary transporter of digoxin and its inhibitors influence pharmacokinetics and disposition of digoxin in the human body; however, the involvement of P-gp in the disposition of other DLCs is currently unknown. In present study, the transport of fourteen DLCs by human P-gp was studied using membrane vesicles originating from human embryonic kidney (HEK293) cells overexpressing P-gp. DLCs were quantified by liquid chromatography-mass spectrometry (LC-MS). The Lily of the Valley toxin, convallatoxin, was identified as a P-gp substrate (Km: 1.1±0.2 mM) in the vesicular assay. Transport of convallatoxin by P-gp was confirmed in rat in vivo, in which co-administration with the P-gp inhibitor elacridar, resulted in increased concentrations in brain and kidney cortex. To address the interaction of convallatoxin with P-gp on a molecular level, the effect of nine alanine mutations was compared with the substrate N-methyl quinidine (NMQ). Phe343 appeared to be more important for transport of NMQ than convallatoxin, while Val982 was particularly relevant for convallatoxin transport. We identified convallatoxin as a new P-gp substrate and recognized Val982 as an important amino acid involved in its transport. These results contribute to a better understanding of the interaction of DLCs with P-gp.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Estrofantinas/metabolismo , Animais , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Linhagem Celular , Digoxina/metabolismo , Células HEK293 , Humanos , Córtex Renal/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA