Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(35): 10964-10971, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39171642

RESUMO

Two-dimensional (2D) antiferromagnetic (AFM) materials boasting a high Néel temperature (TN), high carrier mobility, and fast spin response under an external field are in great demand for efficient spintronics. Herein, we theoretically present the MoB3 monolayer as an ideal 2D platform for AFM spintronics. The AFM MoB3 monolayer features a symmetry-protected, 4-fold degenerate Dirac nodal line (DNL) at the Fermi level. It demonstrates a high magnetic anisotropy energy of 865 µeV/Mo and an ultrahigh TN of 1050 K, one of the highest recorded for 2D AFMs. Importantly, we reveal the ultrafast demagnetization of AFM MoB3 under laser irradiation, which induces a rapid transition from a DNL semimetallic state to a metallic state on the time scale of hundreds of femtoseconds. This work presents an effective method for designing advanced spintronics using 2D high-temperature DNL semimetals and opens up a new idea for ultrafast modulation of magnetization in topological semimetals.

2.
Nano Lett ; 24(21): 6278-6285, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38758393

RESUMO

Topological Dirac nodal-line semimetals host topologically nontrivial electronic structure with nodal-line crossings around the Fermi level, which could affect the photocarrier dynamics and lead to novel relaxation mechanisms. Herein, by using time- and angle-resolved photoemission spectroscopy, we reveal the previously inaccessible linear dispersions of the bulk conduction bands above the Fermi level in a Dirac nodal-line semimetal PtSn4, as well as the momentum and temporal evolution of the gapless nodal lines. A surprisingly ultrafast relaxation dynamics within a few hundred femtoseconds is revealed for photoexcited carriers in the nodal line. Theoretical calculations suggest that such ultrafast carrier relaxation is attributed to the multichannel scatterings among the complex metallic bands of PtSn4 via electron-phonon coupling. In addition, a unique dynamic relaxation mechanism contributed by the highly anisotropic Dirac nodal-line electronic structure is also identified. Our work provides a comprehensive understanding of the ultrafast carrier dynamics in a Dirac nodal-line semimetal.

3.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335171

RESUMO

The search for free-standing 2D materials has been one of the most important subjects in the field of studies on 2D materials and their applications. Recently, a free-standing monolayer of hydrogenated boron (HB) sheet has been synthesized by hydrogenation of borophene. The HB sheet is also called borophane, and its application is actively studied in many aspects. Here, we review recent studies on the electronic structures of polymorphic sheets of borophane. A hydrogenated boron sheet with a hexagonal boron frame was shown to have a semimetallic electronic structure by experimental and theoretical analyses. A tight-binding model that reproduces the electronic structure was given and it allows easy estimation of the properties of the material. Hydrogenated boron sheets with more complicated nonsymmorphic boron frames were also analyzed. Using the symmetry restrictions from the nonsymmorphic symmetry and the filling factor of hydrogenated boron sheets, the existence of a Dirac nodal line was suggested. These studies provide basic insights for research on and device applications of hydrogenated boron sheets.


Assuntos
Boro , Eletrônica , Boro/química , Humanos
4.
Nano Lett ; 20(3): 2157-2162, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083884

RESUMO

The formation of the Dirac nodal line (DNL) requires intrinsic symmetry that can protect the degeneracy of continuous Dirac points in momentum space. Here, as an alternative approach, we propose an extrinsic symmetry protected DNL. On the basis of symmetry analysis and numerical calculations, we establish a general principle to design the nonsymmorphic symmetry protected 4-fold degenerate DNL against spin-orbit coupling in the nanopatterned 2D electron gas. Furthermore, on the basis of experimental measurements, we demonstrate the approximate realization of our proposal in the Bi/Cu(111) system, in which a highly dispersive DNL is observed at the boundary of the Brillouin zone. We envision that the extrinsic symmetry engineering will greatly enhance the ability for artificially constructing the exotic topological bands in the future.

5.
ACS Nano ; 18(32): 20990-20998, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39086236

RESUMO

Two-dimensional topological insulators (2D TIs) have distinct electronic properties that make them attractive for various applications, especially in spintronics. The conductive edge states in 2D TIs are protected from disorder and perturbations and are spin-polarized, which restrict current flow to a single spin orientation. In contrast, topological nodal line semimetals (TNLSM) are distinct from TIs because of the presence of a 1D ring of degeneracy formed from two bands that cross each other along a line in the Brillouin zone. These nodal lines are protected by topology and can be destroyed only by breaking certain symmetry conditions, making them highly resilient to disorder and defects. However, 2D TNLSMs do not possess protected boundary modes, which makes their investigation challenging. There have been several theoretical predictions of 2D TNLSMs, however, experimental realizations are rare. ß-Sn, a metallic allotrope of tin with a superconducting temperature of 3.72 K, may be a candidate for a topological superconductor that can host Majorana Fermions for quantum computing. In this work, single layers of α-Sn and ß-Sn on a Cu(111) substrate are successfully prepared and studied using scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and density functional theory calculations. The lattice and electronic structure undergo a topological transition from 2D topological insulator α-Sn to 2D TNLSM ß-Sn, with two types of nodal lines coexisting in monolayer ß-Sn. Such a realization of two types of nodal lines in one 2D material has not been reported to date. Moreover, we also observed an unexpected phenomenon of freestanding-like electronic structures of ß-Sn/Cu(111), highlighting the potential of ultrathin ß-Sn films as a platform for exploring the electronic properties of 2D TNLSM and topological superconductors, such as few-layer superconducting ß-Sn in lateral contact with topological nodal line single-layer ß-Sn.

6.
J Phys Condens Matter ; 36(15)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38171319

RESUMO

Nodal-line semimetals, characterized by Dirac-like crossings along one dimensionalk-space lines, represent a unique class of topological materials. In this study, we investigate the intriguing properties of room-temperature antiferromagneticMnC4and its nodal-line features both with and without spin-orbit coupling (SOC). In the absence of SOC, we identify a doubly degenerate Dirac-nodal line, robustly protected by a combination of time-reversal, mirror, and partial-translation symmetries. Remarkably, this nodal line withstands various external perturbations, including isotropic and anisotropic strain, and torsional deformations, due to the ionic-like bonding between Mn atoms and C clusters. With the inclusion of SOC, we observe a distinctive quasi-Dirac-nodal line that emerges due to the interplay between antiferromagnetism and SOC-induced spin-rotation symmetry breaking. Finally, we observed a robust spin Hall conductivity that aligns with the energy range where the quasi-nodal line appears. This study presents a compelling example of a robust symmetry-protected Dirac-nodal line antiferromagnetic monolayer, which has potential for applications in next-generation spintronic devices.

7.
ACS Nano ; 18(12): 9011-9018, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470156

RESUMO

Topological semimetals have emerged as quantum materials including Dirac, Weyl, and nodal line semimetals, and so on. Dirac nodal line (DNL) semimetals possess topologically nontrivial bands crossing along a line or a loop and are considered precursor states for other types of semimetals. Here, we combine scanning tunneling microscopy/spectroscopy (STM/S) measurements and density functional theory (DFT) calculations to investigate a twist angle tuning of electronic structure in two-dimensional DNL semimetal Au2Ge. Theoretical calculations show that two bands of Au2Ge touch each other in Γ-M and Γ-K paths, forming a DNL. A significant transition of electronic structure occurs by tuning the twist angle from 30° to 24° between monolayer Au2Ge and Au(111), as confirmed by STS measurements and DFT calculations. The disappearing of DNL state is a direct consequence of symmetry breaking.

8.
J Phys Condens Matter ; 36(27)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597335

RESUMO

5dtransition metal oxides, such as iridates, have attracted significant interest in condensed matter physics throughout the past decade owing to their fascinating physical properties that arise from intrinsically strong spin-orbit coupling (SOC) and its interplay with other interactions of comparable energy scales. Among the rich family of iridates, iridium dioxide (IrO2), a simple binary compound long known as a promising catalyst for water splitting, has recently been demonstrated to possess novel topological states and exotic transport properties. The strong SOC and the nonsymmorphic symmetry that IrO2possesses introduce symmetry-protected Dirac nodal lines (DNLs) within its band structure as well as a large spin Hall effect in the transport. Here, we review recent advances pertaining to the study of this unique SOC oxide, with an emphasis on the understanding of the topological electronic structures, syntheses of high crystalline quality nanostructures, and experimental measurements of its fundamental transport properties. In particular, the theoretical origin of the presence of the fourfold degenerate DNLs in band structure and its implications in the angle-resolved photoemission spectroscopy measurement and in the spin Hall effect are discussed. We further introduce a variety of synthesis techniques to achieve IrO2nanostructures, such as epitaxial thin films and single crystalline nanowires, with the goal of understanding the roles that each key parameter plays in the growth process. Finally, we review the electrical, spin, and thermal transport studies. The transport properties under variable temperatures and magnetic fields reveal themselves to be uniquely sensitive and modifiable by strain, dimensionality (bulk, thin film, nanowire), quantum confinement, film texture, and disorder. The sensitivity, stemming from the competing energy scales of SOC, disorder, and other interactions, enables the creation of a variety of intriguing quantum states of matter.

9.
ACS Appl Mater Interfaces ; 12(49): 55411-55416, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232102

RESUMO

We report spin-torque ferromagnetic resonance studies of the efficiency of the damping-like (ξDL) spin-orbit torque exerted on an adjacent ferromagnet film by current flowing in epitaxial (001) and (110) IrO2 thin films. IrO2 possesses Dirac nodal lines (DNLs) in the band structure that are gapped by spin-orbit coupling, which could enable a very high spin Hall conductivity, σSH. We find that the (001) films do exhibit exceptionally high ξDL ranging from 0.45 at 293 K to 0.65 at 30 K, which sets the lower bounds of σSH to be 1.9 × 105 and 3.75 × 105 Ω-1 m-1, respectively, 10 times higher and of opposite sign than the theoretical prediction. Furthermore, ξDL and σSH are substantially reduced in anisotropically strained (110) films. We suggest that this high sensitivity to anisotropic strain is because of changes in contributions to σSH near the DNLs.

10.
Adv Mater ; 30(16): e1707055, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29517832

RESUMO

2D transition metal chalcogenides have attracted tremendous attention due to their novel properties and potential applications. Although 2D transition metal dichalcogenides are easily fabricated due to their layer-stacked bulk phase, 2D transition metal monochalcogenides are difficult to obtain. Recently, a single atomic layer transition metal monochalcogenide (CuSe) with an intrinsic pattern of nanoscale triangular holes is fabricated on Cu(111). The first-principles calculations show that free-standing monolayer CuSe with holes is not stable, while hole-free CuSe is endowed with the Dirac nodal line fermion (DNLF), protected by mirror reflection symmetry. This very rare DNLF state is evidenced by topologically nontrivial edge states situated inside the spin-orbit coupling gaps. Motivated by the promising properties of hole-free honeycomb CuSe, monolayer CuSe is fabricated on Cu(111) surfaces by molecular beam epitaxy and confirmed success with high resolution scanning tunneling microscopy. The good agreement of angle resolved photoemission spectra with the calculated band structures of CuSe/Cu(111) demonstrates that the sample is monolayer CuSe with a honeycomb lattice. These results suggest that the honeycomb monolayer transition metal monochalcogenide can be a new platform to study 2D DNLFs.

11.
Sci Bull (Beijing) ; 63(9): 535-541, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36658839

RESUMO

Dirac nodal-line semimetals with the linear bands crossing along a line or loop, represent a new topological state of matter. Here, by carrying out magnetotransport measurements and performing first-principle calculations, we demonstrate that such a state has been realized in high-quality single crystals of SrAs3. We obtain the nontrivial π Berry phase by analysing the Shubnikov-de Haas quantum oscillations. We also observe a robust negative longitudinal magnetoresistance induced by the chiral anomaly. Accompanying first-principles calculations identifies that a single hole pocket enclosing the loop nodes is responsible for these observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA