Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 189: 113472, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693202

RESUMO

Chinese hamster ovary (CHO) cells are the host cell of choice for manufacturing biologic drugs, like monoclonal antibody, in the biopharmaceutical industry. Retrovirus-like particles (RVLPs) are made during the manufacturing process with CHO cells and it is incumbent upon the manufacturer to perform risk assessment based on levels of RVLP in unprocessed bulk. Quantification of RVLP using electron microscopy (EM) is the standard method. However, reverse transcription based real-time PCR (RT qPCR) is an alternative method available. This method involves RNase digestion of cell culture fluid to remove free RNA, followed by extraction of total nucleic acid and digestion with DNase to remove extracted DNA molecules, and then finally reverse transcription and PCR. Here we report a method where the nucleic acids extraction step is eliminated prior to qPCR. In this method the cell-free culture supernatant sample is digested with thermolabile DNase and RNase at the same time in a 96-well PCR plate; subsequently the enzymes are heat-denatured; then RT qPCR reagents are added to the wells in the PCR plate along with standards and controls in other wells of the same plate; finally the plate is subjected to RT qPCR for analysis of RVLP RNA in the samples. This direct RT qPCR method for RVLP is sensitive to 10 particles of RVLP with good precision and accuracy and has a wide linear range of quantification. The method has been successfully tested with different production batches, shown to be consistent, and correlates well with the extraction-based method. However, the results are about 1-log higher compared to EM method. This method simplifies the RVLP quantification protocol, reduces time of analysis and leads to increased assay sensitivity and development of automated high-throughput methods. Additionally, the method can be an added tool for viral clearance studies, by testing process-intermediate samples like Protein A column and ion-exchange column eluates, for increased confidence in purification of biologics manufactured in CHO cell culture.


Assuntos
Produtos Biológicos , Retroviridae , Animais , Células CHO , Cricetinae , Cricetulus , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA