Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 171: 108138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401451

RESUMO

Cardiac arrhythmias such as atrial fibrillation (AF) are recognised to be associated with re-entry or rotors. A rotor is a wave of excitation in the cardiac tissue that wraps around its refractory tail, causing faster-than-normal periodic excitation. The detection of rotor centres is of crucial importance in guiding ablation strategies for the treatment of arrhythmia. The most popular technique for detecting rotor centres is Phase Mapping (PM), which detects phase singularities derived from the phase of a signal. This method has been proven to be prone to errors, especially in regimes of fibrotic tissue and temporal noise. Recently, a novel technique called Directed Graph Mapping (DGM) was developed to detect rotational activity such as rotors by creating a network of excitation. This research aims to compare the performance of advanced PM techniques versus DGM for the detection of rotors using 64 simulated 2D meandering rotors in the presence of various levels of fibrotic tissue and temporal noise. Four strategies were employed to compare the performances of PM and DGM. These included a visual analysis, a comparison of F2-scores and distance distributions, and calculating p-values using the mid-p McNemar test. Results indicate that in the case of low meandering, fibrosis and noise, PM and DGM yield excellent results and are comparable. However, in the case of high meandering, fibrosis and noise, PM is undeniably prone to errors, mainly in the form of an excess of false positives, resulting in low precision. In contrast, DGM is more robust against these factors as F2-scores remain high, yielding F2≥0.931 as opposed to the best PM F2≥0.635 across all 64 simulations.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Coração , Fibrose , Fatores de Tempo , Ablação por Cateter/métodos
2.
JACC Clin Electrophysiol ; 9(7 Pt 1): 907-922, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36752465

RESUMO

BACKGROUND: Understanding underlying mechanism(s) and identifying critical circuit components are fundamental to successful ventricular tachycardia (VT) ablation. Directed graph mapping (DGM) offers a novel technique to identify the mechanism and critical components of a VT circuit. OBJECTIVES: This study sought to evaluate the accuracy of DGM in VT ablation compared with traditional mapping techniques and a commercially available automated conduction velocity mapping (ACVM) tool. METHODS: Patients with structural heart disease who had undergone a VT ablation with entrainment-proven critical isthmus and a high-density electroanatomical activation map were included. Traditional mapping (TM) consisted of a combination of local activation time and entrainment mapping and was considered the gold standard for determining the VT mechanism, circuit, and isthmus location. The same local activation time values were then processed using DGM and a commercially available ACVM (Coherent Mapping, Biosense Webster) tool. The aim of this study was to compare TM vs DGM and ACVM in their ability to identify the VT mechanism, characterize the VT circuit, and locate the critical isthmus. RESULTS: Thirty-five cases were identified. TM classified the VT mechanism as focal in 7 patients and re-entrant in 28 patients. TM classified 11 VTs as single-loop re-entry, 15 as dual-loop re-entry, 1 as complex, and 1 case was indeterminant. The overall agreement between DGM and TM for determining VT mechanism and circuit type was strong (kappa value = 0.79; P < 0.01), as was the agreement between ACVM and TM (kappa value = 0.66; P < 0.01). Both DGM and ACVM identified the putative VT isthmus in 25 (89%) of the re-entrant cases. Focal activation was correctly identified by both techniques in all cases. CONCLUSIONS: DGM is a rapid automated algorithm that has a strong level of agreement with TM for manually re-annotated VT maps.


Assuntos
Ablação por Cateter , Cardiopatias , Taquicardia Ventricular , Humanos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/cirurgia , Cardiopatias/cirurgia
3.
Front Physiol ; 14: 1201260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565147

RESUMO

Torsade de Pointes is a polymorphic ventricular tachycardia which is as yet incompletely understood. While the onset of a TdP episode is generally accepted to be caused by triggered activity, the mechanisms for the perpetuation is still under debate. In this study, we analysed data from 54 TdP episodes divided over 5 dogs (4 female, 1 male) with chronic atrioventricular block. Previous research on this dataset showed both reentry and triggered activity to perpetuate the arrhythmia. 13 of those TdP episodes showed reentry as part of the driving mechanism of perpetuating the episode. The remaining 41 episodes were purely ectopic. Reentry was the main mechanism in long-lasting episodes (>14 beats), while focal sources were responsible for maintaining shorter episodes. Building on these results, we re-analysed the data using directed graph mapping This program uses principles from network theory and a combination of positional data and local activation times to identify reentry loops and focal sources within the data. The results of this study are twofold. First, concerning reentry loops, we found that on average non-terminating (NT) episodes (≥10 s) show significantly more simultaneous reentry loops than self-terminating (ST) TdP (<10 s). Non-terminating episodes have on average 2.72 ± 1.48 simultaneous loops, compared to an average of 1.33 ± 0.66 for self-terminating episodes. In addition, each NT episode showed a presence of (bi-)ventricular loops between 10.10% and 69.62% of their total reentry duration. Compared to the ST episodes, only 1 in 4 episodes (25%) showed (bi-)ventricular reentry, lasting only 7.12% of its total reentry duration. This suggests that while focal beats trigger TdP, macro-reentry and multiple simultaneous localized reentries are the major drivers of long-lasting episodes. Second, using heatmaps, we found focal sources to occur in preferred locations, instead of being distributed randomly. This may have implications on treatment if such focal origins can be disabled reliably.

4.
JACC Clin Electrophysiol ; 7(7): 936-949, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33812833

RESUMO

OBJECTIVES: Directed graph-mapping (DGM) is a novel operator-independent automatic tool that can be applied to the identification of the atrial tachycardia (AT) mechanism. In the present study, for the first time, DGM was applied in complex AT cases, and diagnostic accuracy was evaluated. BACKGROUND: Catheter ablation of ATs still represents a challenge, as the identification of the correct mechanism can be difficult. New algorithms for high-density activation mapping (HDAM) render an easier acquisition of more detailed maps; however, understanding of the mechanism and, thus, identification of the ablation targets, especially in complex cases, remains strongly operator-dependent. METHODS: HDAMs acquired with the latest algorithm (COHERENT version 7, Biosense Webster, Irvine, California) were interpreted offline by 4 expert electrophysiologists, and the acquired electrode recordings with corresponding local activation times (LATs) were analyzed by DGM (also offline). Entrainment maneuvers (EM) were performed to understand the correct mechanism, which was then confirmed by successful ablation (13 cases were centrifugal, 10 cases were localized re-entry, 22 cases were macro-re-entry, and 6 were double-loops). In total, 51 ATs were retrospectively analyzed. We compared the diagnoses made by DGM were compared with those of the experts and with additional EM results. RESULTS: In total, 51 ATs were retrospectively analyzed. Experts diagnosed the correct AT mechanism and location in 33 cases versus DGM in 38 cases. Diagnostic accuracy varied according to different AT mechanisms. The 13 centrifugal activation patterns were always correctly identified by both methods; 2 of 10 localized reentries were identified by the experts, whereas DGM diagnosed 7 of 10. For the macro-re-entries, 12 of 22 were correctly identified using HDAM versus 13 of 22 for DGM. Finally, 6 of 6 double-loops were correctly identified by the experts, versus 5 of 6 for DGM. CONCLUSIONS: Even in complex cases, DGM provides an automatic, fast, and operator-independent tool to identify the AT mechanism and location and could be a valuable addition to current mapping technologies.


Assuntos
Ablação por Cateter , Taquicardia Supraventricular , Algoritmos , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Humanos , Estudos Retrospectivos , Taquicardia Supraventricular/diagnóstico , Taquicardia Supraventricular/cirurgia
5.
Comput Biol Med ; 133: 104381, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33901713

RESUMO

Atrial fibrillation (AF) is the most frequently encountered arrhythmia in clinical practise. One of the major problems in the management of AF is the difficulty in identifying the arrhythmia sources from clinical recordings. That difficulty occurs because it is currently impossible to verify algorithms which determine these sources in clinical data, as high resolution true excitation patterns cannot be recorded in patients. Therefore, alternative approaches, like computer modelling are of great interest. In a recent published study such an approach was applied for the verification of one of the most commonly used algorithms, phase mapping (PM). A meandering rotor was simulated in the right atrium and a basket catheter was placed at 3 different locations: at the Superior Vena Cava (SVC), the Crista Terminalis (CT) and at the Coronary Sinus (CS). It was shown that although PM can identify the true source, it also finds several false sources due to the far-field effects and interpolation errors in all three positions. In addition, the detection efficiency strongly depended on the basket location. Recently, a novel tool was developed to analyse any arrhythmia called Directed Graph Mapping (DGM). DGM is based on network theory and creates a directed graph of the excitation pattern, from which the location and the source of the arrhythmia can be detected. Therefore, the objective of the current study was to compare the efficiency of DGM with PM on the basket dataset of this meandering rotor. The DGM-tool was applied for a wide variety of conduction velocities (minimal and maximal), which are input parameters of DGM. Overall we found that DGM was able to distinguish between the true rotor and false rotors for both the SVC and CT basket positions. For example, for the SVC position with a CVmin=0.01cmms, DGM detected the true core with a prevalence of 82% versus 94% for PM. Three false rotors where detected for 39.16% (DGM) versus 100% (PM); 22.64% (DGM) versus 100% (PM); and 0% (DGM) versus 57% (PM). Increasing CVmin to 0.02cmms had a stronger effect on the false rotors than on the true rotor. This led to a detection rate of 56.6% for the true rotor, while all the other false rotors disappeared. A similar trend was observed for the CT position. For the CS position, DGM already had a low performance for the true rotor for CVmin=0.01cmms (14.7%). For CVmin=0.02cmms the false and the true rotors could therefore not be distinguished. We can conclude that DGM can overcome some of the limitations of PM by varying one of its input parameters (CVmin). The true rotor is less dependent on this parameter than the false rotors, which disappear at a CVmin=0.02cmms. In order to increase to detection rate of the true rotor, one can decrease CVmin and discard the new rotors which also appear at lower values of CVmin.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Catéteres , Átrios do Coração , Sistema de Condução Cardíaco/cirurgia , Humanos , Veia Cava Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA