Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(7): 2274-2288, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387081

RESUMO

Clinical conversations surrounding the continuation or limitation of life-sustaining therapies (LLST) are both challenging and tragically necessary for patients with disorders of consciousness (DoC) following severe brain injury. Divergent cultural, philosophical and religious perspectives contribute to vast heterogeneity in clinical approaches to LLST-as reflected in regional differences and inter-clinician variability. Here we provide an ethical analysis of factors that inform LLST decisions among patients with DoC. We begin by introducing the clinical and ethical challenge and clarifying the distinction between withdrawing and withholding life-sustaining therapy. We then describe relevant factors that influence LLST decision-making including diagnostic and prognostic uncertainty, perception of pain, defining a 'good' outcome, and the role of clinicians. In concluding sections, we explore global variation in LLST practices as they pertain to patients with DoC and examine the impact of cultural and religious perspectives on approaches to LLST. Understanding and respecting the cultural and religious perspectives of patients and surrogates is essential to protecting patient autonomy and advancing goal-concordant care during critical moments of medical decision-making involving patients with DoC.


Assuntos
Transtornos da Consciência , Cuidados para Prolongar a Vida , Suspensão de Tratamento , Humanos , Transtornos da Consciência/terapia , Cuidados para Prolongar a Vida/ética , Suspensão de Tratamento/ética , Tomada de Decisão Clínica/ética
2.
Brain ; 147(4): 1321-1330, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38412555

RESUMO

The pathophysiological underpinnings of critically disrupted brain connectomes resulting in coma are poorly understood. Inflammation is potentially an important but still undervalued factor. Here, we present a first-in-human prospective study using the 18-kDa translocator protein (TSPO) radioligand 18F-DPA714 for PET imaging to allow in vivo neuroimmune activation quantification in patients with coma (n = 17) following either anoxia or traumatic brain injuries in comparison with age- and sex-matched controls. Our findings yielded novel evidence of an early inflammatory component predominantly located within key cortical and subcortical brain structures that are putatively implicated in consciousness emergence and maintenance after severe brain injury (i.e. mesocircuit and frontoparietal networks). We observed that traumatic and anoxic patients with coma have distinct neuroimmune activation profiles, both in terms of intensity and spatial distribution. Finally, we demonstrated that both the total amount and specific distribution of PET-measurable neuroinflammation within the brain mesocircuit were associated with the patient's recovery potential. We suggest that our results can be developed for use both as a new neuroprognostication tool and as a promising biometric to guide future clinical trials targeting glial activity very early after severe brain injury.


Assuntos
Lesões Encefálicas , Coma Pós-Traumatismo da Cabeça , Humanos , Coma/complicações , Coma Pós-Traumatismo da Cabeça/complicações , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Lesões Encefálicas/complicações , Hipóxia/complicações , Receptores de GABA/metabolismo
3.
Neuroimage ; 297: 120753, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053636

RESUMO

For patients with disorders of consciousness (DoC), accurate assessment of residual consciousness levels and cognitive abilities is critical for developing appropriate rehabilitation interventions. In this study, we investigated the potential of electrooculography (EOG) in assessing language processing abilities and consciousness levels. Patients' EOG data and related electrophysiological data were analysed before and after explicit language learning. The results showed distinct differences in vocabulary learning patterns among patients with varying levels of consciousness. While minimally conscious patients showed significant neural tracking of artificial words and notable learning effects similar to those observed in healthy controls, whereas patients with unresponsive wakefulness syndrome did not show such effects. Correlation analysis further indicated that EOG detected vocabulary learning effects with comparable validity to electroencephalography, reinforcing the credibility of EOG indicator as a diagnostic tool. Critically, EOG also revealed significant correlations between individual patients' linguistic learning performance and their Oromotor/verbal function as assessed through behavioural scales. In conclusion, this study explored the differences in language processing abilities among patients with varying consciousness levels. By demonstrating the utility of EOG in evaluating consciousness and detecting vocabulary learning effects, as well as its potential to guide personalised rehabilitation, our findings indicate that EOG indicators show promise as a rapid, accurate and effective additional tool for diagnosing and managing patients with DoC.


Assuntos
Transtornos da Consciência , Eletroculografia , Humanos , Masculino , Feminino , Adulto , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/diagnóstico , Pessoa de Meia-Idade , Adulto Jovem , Aprendizagem/fisiologia , Eletroencefalografia/métodos , Idoso
4.
Neuroimage ; 290: 120580, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508294

RESUMO

Diagnosis of disorders of consciousness (DOC) remains a formidable challenge. Deep learning methods have been widely applied in general neurological and psychiatry disorders, while limited in DOC domain. Considering the successful use of resting-state functional MRI (rs-fMRI) for evaluating patients with DOC, this study seeks to explore the conjunction of deep learning techniques and rs-fMRI in precisely detecting awareness in DOC. We initiated our research with a benchmark dataset comprising 140 participants, including 76 unresponsive wakefulness syndrome (UWS), 25 minimally conscious state (MCS), and 39 Controls, from three independent sites. We developed a cascade 3D EfficientNet-B3-based deep learning framework tailored for discriminating MCS from UWS patients, referred to as "DeepDOC", and compared its performance against five state-of-the-art machine learning models. We also included an independent dataset consists of 11 DOC patients to test whether our model could identify patients with cognitive motor dissociation (CMD), in which DOC patients were behaviorally diagnosed unconscious but could be detected conscious by brain computer interface (BCI) method. Our results demonstrate that DeepDOC outperforms the five machine learning models, achieving an area under curve (AUC) value of 0.927 and accuracy of 0.861 for distinguishing MCS from UWS patients. More importantly, DeepDOC excels in CMD identification, achieving an AUC of 1 and accuracy of 0.909. Using gradient-weighted class activation mapping algorithm, we found that the posterior cortex, encompassing the visual cortex, posterior middle temporal gyrus, posterior cingulate cortex, precuneus, and cerebellum, as making a more substantial contribution to classification compared to other brain regions. This research offers a convenient and accurate method for detecting covert awareness in patients with MCS and CMD using rs-fMRI data.


Assuntos
Transtornos da Consciência , Aprendizado Profundo , Humanos , Encéfalo/diagnóstico por imagem , Estado Vegetativo Persistente , Inconsciência , Estado de Consciência
5.
Eur J Neurosci ; 59(5): 874-933, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38140883

RESUMO

The limits of the standard, behaviour-based clinical assessment of patients with disorders of consciousness (DoC) prompted the employment of functional neuroimaging, neurometabolic, neurophysiological and neurostimulation techniques, to detect brain-based covert markers of awareness. However, uni-modal approaches, consisting in employing just one of those techniques, are usually not sufficient to provide an exhaustive exploration of the neural underpinnings of residual awareness. This systematic review aimed at collecting the evidence from studies employing a multimodal approach, that is, combining more instruments to complement DoC diagnosis, prognosis and better investigating their neural correlates. Following the PRISMA guidelines, records from PubMed, EMBASE and Scopus were screened to select peer-review original articles in which a multi-modal approach was used for the assessment of adult patients with a diagnosis of DoC. Ninety-two observational studies and 32 case reports or case series met the inclusion criteria. Results highlighted a diagnostic and prognostic advantage of multi-modal approaches that involve electroencephalography-based (EEG-based) measurements together with neuroimaging or neurometabolic data or with neurostimulation. Multimodal assessment deepened the knowledge on the neural networks underlying consciousness, by showing correlations between the integrity of the default mode network and the different clinical diagnosis of DoC. However, except for studies using transcranial magnetic stimulation combined with electroencephalography, the integration of more than one technique in most of the cases occurs without an a priori-designed multi-modal diagnostic approach. Our review supports the feasibility and underlines the advantages of a multimodal approach for the diagnosis, prognosis and for the investigation of neural correlates of DoCs.


Assuntos
Transtornos da Consciência , Humanos , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/diagnóstico por imagem , Prognóstico , Eletroencefalografia/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Imagem Multimodal/métodos , Neuroimagem/métodos
6.
Eur J Neurosci ; 60(3): 4201-4216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797841

RESUMO

Unconsciousness in severe acquired brain injury (sABI) patients occurs with different cognitive and neural profiles. Perturbational approaches, which enable the estimation of proxies for brain reorganization, have added a new avenue for investigating the non-behavioural diagnosis of consciousness. In this prospective observational study, we conducted a comparative analysis of the topological patterns of heartbeat-evoked potentials (HEP) between patients experiencing a prolonged disorder of consciousness (pDoC) and patients emerging from a minimally consciousness state (eMCS). A total of 219 sABI patients were enrolled, each undergoing a synchronous EEG-ECG resting-state recording, together with a standardized consciousness diagnosis. A number of graph metrics were computed before/after the HEP (Before/After) using the R-peak on the ECG signal. The peak value of the global field power of the HEP was found to be significantly higher in eMCS patients with no difference in latency. Power spectrum was not able to discriminate consciousness neither Before nor After. Node assortativity and global efficiency were found to vary with different trends at unconsciousness. Lastly, the Perturbational Complexity Index of the HEP was found to be significantly higher in eMCS patients compared with pDoC. Given that cortical elaboration of peripheral inputs may serve as a non-behavioural determinant of consciousness, we have devised a low-cost and translatable technique capable of estimating causal proxies of brain functionality with an endogenous, non-invasive stimulus. Thus, we present an effective means to enhance consciousness assessment by incorporating the interaction between the autonomic nervous system (ANS) and central nervous system (CNS) into the loop.


Assuntos
Lesões Encefálicas , Eletroencefalografia , Potenciais Evocados , Frequência Cardíaca , Inconsciência , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Frequência Cardíaca/fisiologia , Eletroencefalografia/métodos , Inconsciência/fisiopatologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/diagnóstico , Potenciais Evocados/fisiologia , Eletrocardiografia/métodos , Estudos Prospectivos , Idoso , Estado Vegetativo Persistente/fisiopatologia , Estado Vegetativo Persistente/diagnóstico , Adulto Jovem
7.
Brain ; 146(1): 50-64, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36097353

RESUMO

Functional MRI (fMRI) and EEG may reveal residual consciousness in patients with disorders of consciousness (DoC), as reflected by a rapidly expanding literature on chronic DoC. However, acute DoC is rarely investigated, although identifying residual consciousness is key to clinical decision-making in the intensive care unit (ICU). Therefore, the objective of the prospective, observational, tertiary centre cohort, diagnostic phase IIb study 'Consciousness in neurocritical care cohort study using EEG and fMRI' (CONNECT-ME, NCT02644265) was to assess the accuracy of fMRI and EEG to identify residual consciousness in acute DoC in the ICU. Between April 2016 and November 2020, 87 acute DoC patients with traumatic or non-traumatic brain injury were examined with repeated clinical assessments, fMRI and EEG. Resting-state EEG and EEG with external stimulations were evaluated by visual analysis, spectral band analysis and a Support Vector Machine (SVM) consciousness classifier. In addition, within- and between-network resting-state connectivity for canonical resting-state fMRI networks was assessed. Next, we used EEG and fMRI data at study enrolment in two different machine-learning algorithms (Random Forest and SVM with a linear kernel) to distinguish patients in a minimally conscious state or better (≥MCS) from those in coma or unresponsive wakefulness state (≤UWS) at time of study enrolment and at ICU discharge (or before death). Prediction performances were assessed with area under the curve (AUC). Of 87 DoC patients (mean age, 50.0 ± 18 years, 43% female), 51 (59%) were ≤UWS and 36 (41%) were ≥ MCS at study enrolment. Thirty-one (36%) patients died in the ICU, including 28 who had life-sustaining therapy withdrawn. EEG and fMRI predicted consciousness levels at study enrolment and ICU discharge, with maximum AUCs of 0.79 (95% CI 0.77-0.80) and 0.71 (95% CI 0.77-0.80), respectively. Models based on combined EEG and fMRI features predicted consciousness levels at study enrolment and ICU discharge with maximum AUCs of 0.78 (95% CI 0.71-0.86) and 0.83 (95% CI 0.75-0.89), respectively, with improved positive predictive value and sensitivity. Overall, both machine-learning algorithms (SVM and Random Forest) performed equally well. In conclusion, we suggest that acute DoC prediction models in the ICU be based on a combination of fMRI and EEG features, regardless of the machine-learning algorithm used.


Assuntos
Lesões Encefálicas , Estado de Consciência , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Coortes , Transtornos da Consciência/diagnóstico , Estado Vegetativo Persistente/diagnóstico , Estudos Prospectivos
8.
Brain Topogr ; 37(3): 377-387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36735192

RESUMO

Disorders of Consciousness are divided into two major categories such as vegetative and minimally conscious states. Objective measures that allow correct identification of patients with vegetative and minimally conscious state are needed. EEG microstate analysis is a promising approach that we believe has the potential to be effective in examining the resting state activities of the brain in different stages of consciousness by allowing the proper identification of vegetative and minimally conscious patients. As a result, we try to identify clinical evaluation scales and microstate characteristics with resting state EEGs from individuals with disorders of consciousness. Our prospective observational study included 28 individuals with a disorder of consciousness. Control group included 18 healthy subjects with proper EEG data. We made clinical evaluations using patient behavior scales. We also analyzed the EEGs using microstate analysis. In our study, microstate D coverage differed substantially between vegetative and minimally conscious state patients. Also, there was a strong connection between microstate D characteristics and clinical scale scores. Consequently, we have demonstrated that the most accurate parameter for representing consciousness level is microstate D. Microstate analysis appears to be a strong option for future use in the diagnosis, follow-up, and treatment response of patients with Disorders of Consciousness.


Assuntos
Estado de Consciência , Estado Vegetativo Persistente , Humanos , Estado de Consciência/fisiologia , Transtornos da Consciência/diagnóstico , Relevância Clínica , Eletroencefalografia
9.
Brain Topogr ; 37(1): 138-151, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158511

RESUMO

The prolonged disorders of consciousness (PDOC) pose a challenge for an accurate clinical diagnosis, mainly due to patients' scarce or ambiguous behavioral responsiveness. Measurement of brain activity can support better diagnosis, independent of motor restrictions. Methods based on spectral analysis of resting-state EEG appear as a promising path, revealing specific changes within the internal brain dynamics in PDOC patients. In this study we used a robust method of resting-state EEG power spectrum parameter extraction to identify distinct spectral properties for different types of PDOC. Sixty patients and 37 healthy volunteers participated in this study. Patient group consisted of 22 unresponsive wakefulness patients, 25 minimally conscious patients and 13 patients emerging from the minimally conscious state. Ten minutes of resting EEG was acquired during wakefulness and transformed into individual power spectra. For each patient, using the spectral decomposition algorithm, we extracted maximum peak frequency within 1-14 Hz range in the centro-parietal region, and the antero-posterior (AP) gradient of the maximal frequency peak. All patients were behaviorally diagnosed using coma recovery scale-revised (CRS-R). The maximal peak frequency in the 1-14 Hz range successfully predicted both neurobehavioral capacity of patients as indicated by CRS-R total score and PDOC diagnosis. Additionally, in patients in whom only one peak within the 1-14 Hz range was observed, the AP gradient significantly contributed to the accuracy of prediction. We have identified three distinct spectral profiles of patients, likely representing separate neurophysiological modes of thalamocortical functioning. Etiology did not have significant influence on the obtained results.


Assuntos
Transtornos da Consciência , Vigília , Humanos , Transtornos da Consciência/diagnóstico , Eletroencefalografia/métodos , Estado de Consciência , Encéfalo , Estado Vegetativo Persistente
10.
Cereb Cortex ; 33(6): 2507-2516, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35670595

RESUMO

When listening to speech, cortical activity can track mentally constructed linguistic units such as words, phrases, and sentences. Recent studies have also shown that the neural responses to mentally constructed linguistic units can predict the outcome of patients with disorders of consciousness (DoC). In healthy individuals, cortical tracking of linguistic units can be driven by both long-term linguistic knowledge and online learning of the transitional probability between syllables. Here, we investigated whether statistical learning could occur in patients in the minimally conscious state (MCS) and patients emerged from the MCS (EMCS) using electroencephalography (EEG). In Experiment 1, we presented to participants an isochronous sequence of syllables, which were composed of either 4 real disyllabic words or 4 reversed disyllabic words. An inter-trial phase coherence analysis revealed that the patient groups showed similar word tracking responses to real and reversed words. In Experiment 2, we presented trisyllabic artificial words that were defined by the transitional probability between words, and a significant word-rate EEG response was observed for MCS patients. These results suggested that statistical learning can occur with a minimal conscious level. The residual statistical learning ability in MCS patients could potentially be harnessed to induce neural plasticity.


Assuntos
Aprendizagem , Estado Vegetativo Persistente , Humanos , Aprendizagem/fisiologia , Eletroencefalografia/métodos , Idioma , Percepção Auditiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA