Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 40(1): 2218627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455017

RESUMO

INTRODUCTION: Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the disease while limiting side effects. To ensure homogeneous delivery, treatment planning software has been developed. This study compares simulation results with clinical data and evaluates the impact of nine treatment strategies on thermal and drug distributions. METHODS: For comparison with clinical data, three treatment strategies were simulated with different flow rates (1600-1800mL/min) and inflow temperatures (41.6-43.6 °C). Six additional treatment strategies were simulated, varying the number of inflow catheters, flow direction, and using step-up and step-down heating strategies. Thermal homogeneity and the risk of thermal injury were evaluated. RESULTS: Simulated temperature distributions, core body temperatures, and systemic chemotherapeutic concentrations compared well with literature values. Treatment strategy was found to have a strong influence on the distributions. Additional inflow catheters could improve thermal distributions, provided flow rates are kept sufficiently high (>500 mL/min) for each catheter. High flow rates (1800 mL/min) combined with high inflow temperatures (43.6 °C) could lead to thermal damage, with CEM4310 values of up to 27 min. Step-up and step-down heating strategies allow for high temperatures with reduced risk of thermal damage. CONCLUSION: The planning software provides valuable insight into the effects of different treatment strategies on peritoneal distributions. These strategies are designed to provide homogeneous treatment delivery while limiting thermal injury to normal tissue, thereby optimizing the effectiveness of HIPEC.


Assuntos
Hipertermia Induzida , Neoplasias Peritoneais , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Terapia Combinada , Hipertermia Induzida/métodos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/cirurgia , Quimioterapia do Câncer por Perfusão Regional/métodos , Procedimentos Cirúrgicos de Citorredução/métodos
2.
Adv Drug Deliv Rev ; 210: 115330, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38735627

RESUMO

Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.


Assuntos
Sondas Moleculares , Sondas Moleculares/química , Humanos , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/administração & dosagem , Animais , Imagem Molecular/métodos
3.
J Cancer ; 14(4): 544-553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057292

RESUMO

Real-time endobronchial ultrasound images are crucial for the accurate placement of the needle in peribronchial lung tumors and lymph nodes for diagnostic sampling. Beyond its role as a diagnostic tool, ultrasound-guided bronchoscopy can also aid the delivery of anti-cancer agents intratumorally, enabling diagnosis, staging, and treatment to occur within the same anesthesia, reducing the patient's burden. However, determining drug retention and distribution in situ remains challenging, albeit pivotal in assessing the success or failure of the therapeutic intervention. We hypothesized that ultrasound images acquired by the bronchoscope during the injection can provide qualitative and quantitative real-time information about drug transport. As a proof-of-concept, we retrospectively analyzed 13 videos of intratumoral cisplatin injections in advanced non-small cell lung cancers. We identified the injection and performed quantitative analysis through image processing and segmentation algorithms and mathematical models in 5 of them. We were able to infer the unlikeliness of a laminar flow through interstitial pores in favor of the emergence of tissue fractures. These data imply that the structural integrity of the tumor is a critical determinant of the ultimate distribution of an intratumorally delivered agent.

4.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626636

RESUMO

Infrared spectroscopy has drawn considerable interest in biological applications, but the measurement of live cells is impeded by the attenuation of infrared light in water. Metasurface-enhanced infrared reflection spectroscopy (MEIRS) had been shown to mitigate the problem, enhance the cellular infrared signal through surface-enhanced infrared absorption, and encode the cellular vibrational signatures in the reflectance spectrum at the same time. In this study, we used MEIRS to study the dynamic response of live cancer cells to a newly developed chemotherapeutic metal complex with distinct modes of action (MoAs): tricarbonyl rhenium isonitrile polypyridyl (TRIP). MEIRS measurements demonstrated that administering TRIP resulted in long-term (several hours) reduction in protein, lipid, and overall refractive index signals, and in short-term (tens of minutes) increase in these signals, consistent with the induction of endoplasmic reticulum stress. The unique tricarbonyl IR signature of TRIP in the bioorthogonal spectral window was monitored in real time, and was used as an infrared tag to detect the precise drug delivery time that was shown to be closely correlated with the onset of the phenotypic response. These results demonstrate that MEIRS is an effective label-free real-time cellular assay capable of detecting and interpreting the early phenotypic responses of cells to IR-tagged chemotherapeutics.


Assuntos
Complexos de Coordenação , Água , Preparações Farmacêuticas , Espectrofotometria Infravermelho/métodos , Água/química
5.
Drug Deliv ; 28(1): 145-161, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33427507

RESUMO

Hyperthermic intraperitoneal chemotherapy (HIPEC) is administered to treat residual microscopic disease after debulking cytoreductive surgery. During HIPEC, a limited number of catheters are used to administer and drain fluid containing chemotherapy (41-43 °C), yielding heterogeneities in the peritoneum. Large heterogeneities may lead to undertreated areas, increasing the risk of recurrences. Aiming at intra-abdominal homogeneity is therefore essential to fully exploit the potential of HIPEC. More insight is needed into the extent of the heterogeneities during treatments and assess their effects on the efficacy of HIPEC. To that end we developed a computational model containing embedded tumor nodules in an environment mimicking peritoneal conditions. Tumor- and treatment-specific parameters affecting drug delivery like tumor size, tumor shape, velocity, temperature and dose were assessed using three-dimensional computational fluid dynamics (CFD) to demonstrate their effect on the drug distribution and accumulation in nodules. Clonogenic assays performed on RKO colorectal cell lines yielded the temperature-dependent IC50 values of cisplatin (19.5-6.8 micromolar for 37-43 °C), used to compare drug distributions in our computational models. Our models underlined that large nodules are more difficult to treat and that temperature and velocity are the most important factors to control the drug delivery. Moderate flow velocities, between 0.01 and 1 m/s, are optimal for the delivery of cisplatin. Furthermore, higher temperatures and higher doses increased the effective penetration depth with 69% and 54%, respectively. We plan to extend the software developed for this study toward patient-specific treatment planning software, capable of mapping and assist in reducing heterogeneous flow patterns.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Hidrodinâmica , Quimioterapia Intraperitoneal Hipertérmica/métodos , Neoplasias Peritoneais/tratamento farmacológico , Temperatura , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Simulação por Computador , Humanos , Concentração Inibidora 50 , Neoplasias Peritoneais/secundário , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA