RESUMO
Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions. These transitions can be thought of as paths through a conformational landscape. Crystallographic drug fragment screens are high-throughput perturbation experiments, in which thousands of crystals of a drug target are soaked with small-molecule drug precursors (fragments) and examined for fragment binding, mapping potential drug binding sites on the target protein. Here, we describe an open-source Python package, COLAV (COnformational LAndscape Visualization), to infer conformational landscapes from such large-scale crystallographic perturbation studies. We apply COLAV to drug fragment screens of two medically important systems: protein tyrosine phosphatase 1B (PTP-1B), which regulates insulin signaling, and the SARS CoV-2 Main Protease (MPro). With enough fragment-bound structures, we find that such drug screens also enable detailed mapping of proteins' conformational landscapes.
RESUMO
The H-bond donating ability for 127 compounds including drug fragments and isosteres have been quantified using a simple and rapid method with 31P NMR spectroscopy. Functional groups important to medicinal chemistry were evaluated including carboxylic acids, alcohols, phenols, thioic acids and nitrogen group H-bond donors. 31P NMR shifts for binding to a phosphine oxide probe have a higher correlation with equilibrium constants for H-bonding (log KHA) than acidity (pKa), indicating that these binding experiments are representative of H-bonding ability and not proton transfer. Additionally, 31P NMR binding data for carboxylic acid isosteres correlates with physicochemical properties such as lipophilicity, membrane permeability and plasma protein binding. This method has been used to evaluate the H-bond donating ability of small molecule drug compounds such as NSAIDs and antimicrobials.