Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401319

RESUMO

The cell wall of plants and algae is an important cell structure that protects cells from changes in the external physical and chemical environment. This extracellular matrix, composed of polysaccharides and glycoproteins, must be constantly remodeled throughout the life cycle. However, compared to matrix polysaccharides, little is known about the mechanisms regulating the formation and degradation of matrix glycoproteins. We report here that a plant kinase belonging to the DUAL-SPECIFICITY TYROSINE PHOSPHORYLATION-REGULATED KINASE (DYRK) family present in all eukaryotes regulates cell wall degradation after mitosis of Chlamydomonas reinhardtii by inducing the expression of matrix metalloproteinases (MMPs). Without the plant DYRK kinase (DYRKP1), daughter cells cannot disassemble parental cell walls and remain trapped inside for more than 10 days. On the other hand, the DYRKP1 complementation line shows normal degradation of the parental cell wall. Transcriptomic and proteomic analyses indicate a marked down-regulation of MMP gene expression and accumulation, respectively, in the dyrkp1 mutants. The mutants deficient in MMPs retain palmelloid structures for a longer time than the background strain, like dyrkp1 mutants. Our findings show that DYRKP1, by ensuring timely MMP expression, enables the successful execution of the cell cycle. Altogether, this study provides insight into the life cycle regulation in plants and algae.

2.
Annu Rev Pharmacol Toxicol ; 63: 617-636, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662585

RESUMO

Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.


Assuntos
Fosfatases da Proteína Quinase Ativada por Mitógeno , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , /farmacologia
3.
Stem Cells ; 42(9): 830-847, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38975693

RESUMO

Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.


Assuntos
Diferenciação Celular , Proliferação de Células , Fosfatases de Especificidade Dupla , Proteína MyoD , Animais , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Camundongos , Proteína MyoD/metabolismo , Proteína MyoD/genética , Desenvolvimento Muscular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Regeneração
4.
Exp Cell Res ; 442(2): 114231, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222869

RESUMO

Prostate cancer (PCa) is threatening the health of millions of people, the pathological mechanism of prostate cancer has not been fully elaborated, and needs to be further explored. Here, we found that the expression of DUSP26 is dramatically suppressed, and a positive connection of its expression with PCa prognosis was also observed. In vitro, overexpression of DUSP26 significantly inhibited the proliferative, migrative, and invasive capacities of PC3 cells, DUSP26 silencing presented opposite results. Tumor formation experiments in subcutaneous nude mice demonstrated that DUSP26 overexpression could significantly suppress PC3 growth in vivo. Moreover, the mechanism of DUSP26 gene and PCa was discovered by RNA-Seq analysis. We found that DUSP26 significantly inhibited MAPK signaling pathway activation, and further experiments displayed that DUSP26 could impair TAK1, p38, and JNK phosphorylation. Interestingly, treatment with the TAK1 inhibitor (iTAK1) attenuated the effect of DUSP26 on PC3 cells. Together, these results suggested that DUSP26 may serve as a novel therapeutic target for PC3 cell type PCa, the underlying mechanism may be through TAK1-JNK/p38 signaling.

5.
Exp Cell Res ; 434(2): 113869, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38049081

RESUMO

Mycobacterium tuberculosis (Mtb) reprograms FAs metabolism of macrophages during infection and affects inflammatory reaction eventually, however, the mechanism remains poorly understood. Here we show that Mycobacterium bovis (BCG) induces DUSP5 expression through TLR2-MAPKs signaling pathway and promotes fatty acid oxidation (FAO). Silencing DUSP5 by adeno-associated virus vector (AAV) ameliorates lung injury and DUSP5 knockdown reduces the expression of IL-1ß, IL-6 and inactivated NF-κB signaling in BCG-infected macrophages. Of note, DUSP5 specific siRNA increases the content of free fatty acids (FFAs) and triglyceride (TG), but represses the expression of FAO associated enzymes such as CPT1A and PPARα, suggesting DUSP5 mediated FAO during BCG infection. Moreover, Inhibiting FAO by pharmacological manner suppresses IL-1ß, IL-6, TNF-α expression and relieves lung damage. Taken together, our data indicates DUSP5 mediates FAO reprogramming and promotes inflammatory response to BCG infection.


Assuntos
Mycobacterium bovis , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais , Fosfatases de Especificidade Dupla/genética , Ácidos Graxos
6.
J Biol Chem ; 299(4): 104605, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36918100

RESUMO

Pseudorabies virus (PRV) has become a "new life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2020. To identify novel anti-PRV agents, we screened a total of 107 ß-carboline derivatives and found 20 compounds displaying antiviral activity against PRV. Among them, 14 compounds showed better antiviral activity than acyclovir. We found that compound 45 exhibited the strongest anti-PRV activity with an IC50 value of less than 40 nM. Our in vivo studies showed that treatment with 45 significantly reduced the viral loads and protected mice challenged with PRV. To clarify the mode of action of 45, we conducted a time of addition assay, an adsorption assay, and an entry assay. Our results indicated that 45 neither had a virucidal effect nor affected viral adsorption while significantly inhibiting PRV entry. Using the FITC-dextran uptake assay, we determined that 45 inhibits macropinocytosis. The actin-dependent plasma membrane protrusion, which is important for macropinocytosis, was also suppressed by 45. Furthermore, the kinase DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) was predicted to be a potential target for 45. The binding of 45 to DYRK1A was confirmed by drug affinity responsive target stability and cellular thermal shift assay. Further analysis revealed that knockdown of DYRK1A by siRNA suppressed PRV macropinocytosis and the tumor necrosis factor alpha-TNF-induced formation of protrusions. These results suggested that 45 could restrain PRV macropinocytosis by targeting DYRK1A. Together, these findings reveal a unique mechanism through which ß-carboline derivatives restrain PRV infection, pointing to their potential value in the development of anti-PRV agents.


Assuntos
Antivirais , Carbolinas , Herpesvirus Suídeo 1 , Animais , Humanos , Camundongos , Aciclovir/farmacologia , Aciclovir/toxicidade , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbolinas/química , Carbolinas/farmacologia , Carbolinas/uso terapêutico , Técnicas de Silenciamento de Genes , Herpesvirus Suídeo 1/efeitos dos fármacos , Concentração Inibidora 50 , Pinocitose/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Pseudorraiva/tratamento farmacológico , Pseudorraiva/prevenção & controle , Pseudorraiva/virologia , Internalização do Vírus/efeitos dos fármacos , Células HeLa , Modelos Químicos , Quinases Dyrk
7.
J Biol Chem ; 299(4): 103043, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803959

RESUMO

Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow-derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1-/- bone marrow-derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.


Assuntos
Fosfatase 1 de Especificidade Dupla , Glicólise , Sepse , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Escherichia coli/metabolismo , Lactatos , Lipopolissacarídeos , Oxigênio , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sepse/genética , Fosfofrutoquinase-2/metabolismo
8.
J Biol Chem ; 299(4): 103055, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822330

RESUMO

Phosphatases of regenerating liver (PRL or PTP4A) are a family of enigmatic protein phosphatases implicated in cell growth and metabolism. Despite their relevance in metastatic cancer, much remains unknown about the PRL family. They act as pseudophosphatases to regulate the CNNM family of magnesium transporters yet also have enzymatic activity on unknown substrates. In mammals, PRLs are mostly found trapped in an intermediate state that regulates their pseudophosphatase activity. Phosphocysteine, which is formed as an intermediate in the phosphatase catalytic cycle, is inefficiently hydrolyzed leading to burst enzyme kinetics and turnover numbers of less than one per hour. In flies, PRLs have recently been shown to have neuroprotective and neurodevelopmental roles raising the question whether they act as phosphatases, pseudophosphatases, or both. Here, we characterize the evolutionary development of PRLs and ask whether their unique structural and functional properties are conserved. We purified recombinant PRL proteins from 15 phylogenetically diverse organisms and characterized their catalytic activities and ability to bind CNNM proteins. We observed PRLs from humans to amoebae form a stable phosphocysteine intermediate and exhibit burst kinetics. Isothermal titration calorimetry experiments confirmed that the PRL-CNNM interaction is broadly conserved with nanomolar affinity in vertebrates. Lastly, we determined the crystal structure of the Drosophila melanogaster PRL-CNNM complex and identified mutants that specifically impair either phosphatase activity or CNNM binding. Our results reveal the unique properties of PRLs are conserved throughout the animal kingdom and open the door to using model organisms to dissect PRL function in cell signaling.


Assuntos
Drosophila melanogaster , Proteínas Tirosina Fosfatases , Animais , Humanos , Proteínas Tirosina Fosfatases/metabolismo , Cinética , Drosophila melanogaster/metabolismo , Transdução de Sinais , Fígado/metabolismo , Mamíferos/metabolismo
9.
Funct Integr Genomics ; 24(4): 137, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138666

RESUMO

We aimed to explore the aberrant expression status of hsa-miR-141-3p and dual-specificity protein phosphatase 1 (DUSP1) and their relative mechanisms in uterine cervical carcinoma (UCC).Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was conducted to detect the expression of hsa-miR-141-3p. Immunohistochemical (IHC) staining was performed to examine the expression of DUSP1 in UCC. Gene chips and RNA-seq datasets were also obtained to assess the expression level. Integrated standardized mean difference (SMD) was calculated to evaluate the expression status of hsa-miR-141-3p in UCC tissues comprehensively. DUSP1-overexpression and hsa-miR-141-3p-inhibition HeLa cells were established, and CCK-8, transwell, wound healing, cell cycle, and apoptosis assays were implemented. The targets of hsa-miR-141-3p were obtained with online tools, and the combination of hsa-miR-141-3p and DUSP1 was validated via dual-luciferase reporter assay. Single-cell RNA-seq data were analyzed to explore hsa-miR-141-3p and DUSP1 in different cells. An integrated SMD of 1.41 (95% CI[0.45, 2.38], p = 0.0041) with 558 samples revealed the overexpression of hsa-miR-141-3p in UCC tissues. And the pooled SMD of -1.06 (95% CI[-1.45, -0.66], p < 0.0001) with 1,268 samples indicated the downregulation of DUSP1. Inhibition of hsa-miR-141-3p could upregulate DUSP1 expression and suppress invasiveness and metastasis of HeLa cells. Overexpression of DUSP1 could hamper proliferation, invasion, and migration and boost apoptosis and distribution of G1 phase. The dual-luciferase reporter assay validated the combination of hsa-miR-141-3p and DUSP1. Moreover, the targets of hsa-miR-141-3p were mainly enriched in the MAPK signaling pathway and activated in fibroblasts and endothelial cells. The current study illustrated the upregulation of hsa-miR-141-3p and the downregulation of DUSP1 in UCC tissues. Hsa-miR-141-3p could promote UCC progression by targeting DUSP1.


Assuntos
Fosfatase 1 de Especificidade Dupla , MicroRNAs , Regulação para Cima , Neoplasias do Colo do Útero , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Células HeLa , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Apoptose , Movimento Celular , Progressão da Doença
10.
Biochem Biophys Res Commun ; 734: 150447, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39083976

RESUMO

Adipose-derived stem cell (ASC)-released exosomes (ASCexos) have multiple biological activities. We examined the effect of ASCexos derived from the inguinal adipose tissue of exercise-trained rats (EX-ASCexos) on adipogenic conversion of 3T3-L1 cells and analyzed their microRNA (miRNA) expression profiles. Differentiation of 3T3-L1 cells into adipocytes was performed for 9 d with EX-ASCexos or ASCexos from sedentary control rats (SED-ASCexos), and the expression of proteins and miRNA involved in adipogenic differentiation were determined. EX-ASCexos but not SED-ASCexos attenuated 3T3-L1 adipocyte differentiation with increased phosph-Ser112PPARγ expression, the inactive form of PPARγ. These differentiated adipocytes were also accompanied by increased phosph-Thr202/Tyr204ERK and decreased dual-specificity phosphatase 3 (DUSP3) levels. The exosomal miRNAs miR-323-5p, miR-433-3p, and miR-874-3p were identified specifically in EX-ASCexos. Of these, miR-323-5p mimic replicated the EX-ASCexo-induced suppression of 3T3-L1 adipocyte differentiation and altered adipogenesis-related factor expression. In conclusion, exercise training-driven exosomal miR-323-5p suppressed 3T3-L1 adipogenesis by increasing phosph-Ser112PPARγ expression, while phosph-Thr202/Tyr204ERK accumulation inhibited DUSP3 expression.

11.
J Virol ; 97(9): e0088123, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681959

RESUMO

Epstein-Barr virus (EBV)-encoded miRNAs within the BamHI-A rightward transcript (BART) region are abundantly expressed in EBV-associated gastric cancer (EBVaGC), suggesting that they play roles in tumorigenesis. However, how these viral miRNAs contribute to the development of EBVaGC remains largely obscure. In this study, we found that EBV-encoded miR-BART11-3p targets 3' -UTR of dual-specificity phosphatase 6 (DUSP6) mRNA to upregulate ERK phosphorylation and downregulate JNK and p38 phosphorylation. By doing so, miR-BART11-3p promotes gastric cancer (GC) cell proliferation, migration, and invasion in vitro, and facilitates tumor growth in vivo. Restoration of DUSP6 expression reverses the tumor-promoting activity of miR-BART11-3p in AGS GC cells. Consistently, knockdown of DUSP6 ablates the antitumor effects of miR-BART11-3p inhibitors in EBV-positive GC cells. Furthermore, blocking ERK phosphorylation with trametinib inhibited the proliferation, migration, and invasion of miR-BART11-3p-expressing AGS cells. Administration of a miR-BART11-3p antagomir reduced the growth of EBV-positive xenograft tumors. Together, these findings reveal a novel mechanism by which EBV dysregulates MAPK pathways through an EBV-encoded microRNA to promote the development and progression of EBVaGC, which may be harnessed to develop new therapeutics to treat EBVaGC. IMPORTANCE The Epstein-Barr virus (EBV) is the first human tumor virus found to encode miRNAs, which within the BART region have been detected abundantly in EBV-associated gastric cancer (EBVaGC) and play various roles in promoting tumorigenesis. In our study, we observed that EBV-miR-BART11-3p promotes cell proliferation and induces migration and invasion in GC. Interestingly, we showed that miR-BART11-3p upregulates p-ERK and downregulates p-JNK and p-p38 by directly targeting 3'-UTR of dual-specificity phosphatase 6 (DUSP6). Restoration of DUSP6 rescues the effects generated by miR-BART11-3p in GC cells, and blocking ERK phosphorylation with Trametinib augments JNK and p38 phosphorylation and inhibits the effects of miR-BART11-3p-expressing AGS cells, suggesting that miR-BART11-3p promotes cell proliferation, migration, and invasion by modulating DUSP6-MAPK axis in EBVaGC. The findings presented in this study provide new mechanisms into the tumorigenesis in EBVaGC and new avenues for the development of therapeutic strategies to combat EBVaGC targeting miR-BART11-3p or phospho-ERK.

12.
Purinergic Signal ; 20(2): 127-144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37776398

RESUMO

The P2X7 receptor (P2X7R) stands out within the purinergic family as it has exclusive pharmacological and regulatory features, and it fulfills distinct roles depending on the type of stimulation and cellular environment. Tonic activation of P2X7R promotes cell proliferation, whereas sustained activation is associated with cell death. Yet strikingly, prolonged P2X7R activation in rat cerebellar granule neurons and astrocytes does not affect cell survival. The intracellular pathways activated by P2X7Rs involve proteins like MAPKs, ERK1/2 and p38, and interactions with growth factor receptors could explain their behavior in populations of rat cerebellar cells. In this study, we set out to characterize the intracellular mechanisms through which P2X7Rs and Trk receptors, EGFR (epidermal growth factor receptor) and BDNFR (brain-derived neurotrophic factor receptor), regulate the dual-specificity phosphatase DUSP1. In cerebellar astrocytes, the regulation of DUSP1 expression by P2X7R depends on ERK and p38 activation. EGFR stimulation can also induce DUSP1 expression, albeit less strongly than P2X7R. Conversely, EGF was virtually ineffective in regulating DUSP1 in granule neurons, a cell type in which BDNF is the main regulator of DUSP1 expression and P2X7R only induces a mild response. Indeed, the regulation of DUSP1 elicited by BDNF reflects the balance between both transcriptional and post-transcriptional mechanisms. Importantly, when the regulation of DUSP1 expression is compromised, the viability of both astrocytes and neurons is impaired, suggesting this phosphatase is essential to maintain proper cell cytoarchitecture and functioning.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptores Purinérgicos P2X7 , Animais , Ratos , Receptores ErbB/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais
13.
Exp Cell Res ; 432(2): 113793, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741490

RESUMO

Angelicin has been reported to have antitumor effects on many types of cancer. However, few studies on angelicin in oral squamous cell carcinoma (OSCC) have been performed. We performed cell cycle and apoptosis analyses to assess the effect of angelicin on OSCC cells. We conducted RNA-seq studies to reveal differentially expressed genes (DEGs). Dual-specificity phosphatase 6 (DUSP6) and c-MYC were strongly down-regulated differential genes. Silencing RNA (siRNA) was used to knockdown DUSP6. The mouse xenograft model was used to mimic OSCC. Angelicin inhibited OSCC in vitro. We found that DUSP6 interacted with c-MYC. DUSP6 knockdown group and DUSP6 knockdown + angelicin group had similar effects of OSCC cells. Angelicin could reduce tumor formation, DUSP6, and c-MYC expression in vivo. Compared with paclitaxel, the tumor inhibition effect of the two drugs was similar. However, angelicin did not cause weight loss and had lower toxicity. In sum, Angelicin has antitumor effects on OSCC in vitro and vivo by negatively regulating the DUSP6 mediated c-MYC signaling pathway.

14.
Biol Pharm Bull ; 47(9): 1487-1493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39261048

RESUMO

The signal transducer and activator of transcription 3 (STAT3) protein is a key regulator of cell differentiation, proliferation, and survival in hematopoiesis, immune responses, and other biological systems. STAT3 transcriptional activity is strictly regulated through various mechanisms, such as phosphorylation and dephosphorylation. In this study, we attempted to identify novel phosphatases which regulate STAT3 activity in response to cytokine stimulations. To this end, leukemia inhibitory factor (LIF)/STAT3 dependent phosphatase induction was evaluated in the mouse hepatoma cell line Hepa1-6. After LIF stimulation, the expression of several atypical dual specific phosphatases (aDUSPs) was upregulated in Hepa1-6 cells. Among the LIF-induced aDUSPs, we focused on DUSP15 and clarified its functions in LIF/STAT3 signaling using RNA interference. DUSP15 knockdown decreased LIF-induced Socs3 mRNA expression and STAT3 translocation. Furthermore, loss of DUSP15 reduced the phosphorylation of STAT3 at Tyr705 and Janus family tyrosine kinase 1 (Jak1) at Tyr1034/1035 in response to LIF. The interaction between Jak1 and DUSP15 was observed in LIF-stimulated Hepa1-6 cells. We also demonstrated the suppression of granulocyte colony-stimulating factor (G-CSF)-mediated gp130/STAT3-dependent cell growth of Ba/F-G133 cells via DUSP15 knockdown. Therefore, DUSP15 functions as a positive feedback regulator in the Jak1/STAT3 signaling cascade.


Assuntos
Fosfatases de Especificidade Dupla , Janus Quinase 1 , Fator Inibidor de Leucemia , Fator de Transcrição STAT3 , Animais , Camundongos , Linhagem Celular Tumoral , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Fator Inibidor de Leucemia/metabolismo , Fosforilação , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
15.
Adv Exp Med Biol ; 1460: 199-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287853

RESUMO

The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-ß activation. Activated PKC-ß induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.


Assuntos
Obesidade , Humanos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Animais , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Terapia de Alvo Molecular , Resistência à Insulina , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 359-366, 2024 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38970509

RESUMO

OBJECTIVES: Adverse cardiovascular events are the leading cause of death in peritoneal dialysis patients. Identifying indicators that can predict adverse cardiovascular events in these patients is crucial for prognosis. This study aims to assess the value of dual-specificity phosphatase 6 (DUSP6) in peripheral blood mononuclear cells as a predictor of adverse cardiovascular events after peritoneal dialysis in diabetic nephropathy patients. METHODS: A total of 124 diabetic nephropathy patients underwent peritoneal dialysis treatment at the Department of Nephrology of the First Affiliated Hospital of Hebei North University from June to September 2022 were selected as study subjects. The levels of DUSP6 in peripheral blood mononuclear cells were determined using Western blotting. Patients were categorized into high-level and low-level DUSP6 groups based on the median DUSP6 level. Differences in body mass index, serum albumin, high-sensitivity C-reactive protein, and dialysis duration were compared between the 2 groups. Pearson, Spearman, and multiple linear regression analyses were performed to examine factors related to DUSP6. Patients were followed up to monitor the occurrence of adverse cardiovascular events, and risk factors for adverse cardiovascular events after peritoneal dialysis were analyzed using Kaplan-Meier and Cox regression. RESULTS: By the end of the follow-up, 33 (26.61%) patients had experienced at least one adverse cardiovascular event. The high-level DUSP6 group had higher body mass index, longer dialysis duration, and higher high-sensitivity C-reactive protein, but lower serum albumin levels compared to the low-level DUSP6 group (all P<0.05). DUSP6 was negatively correlated with serum albumin levels (r=-0.271, P=0.002) and positively correlated with dialysis duration (rs=0.406, P<0.001) and high-sensitivity C-reactive protein (rs=0.367, P<0.001). Multiple linear regression analysis revealed that dialysis duration and high-sensitivity C-reactive protein were independently correlated with DUSP6 levels (both P<0.05). The cumulative incidence of adverse cardiovascular events was higher in the high-level DUSP6 group than in the low-level DUSP6 group (46.67% vs 7.81%, P<0.001). Cox regression analysis indicated that low serum albumin levels (HR=0.836, 95% CI 0.778 to 0.899), high high-sensitivity C-reactive protein (HR=1.409, 95% CI 1.208 to 1.644), and high DUSP6 (HR=6.631, 95% CI 2.352 to 18.693) were independent risk factors for adverse cardiovascular events in peritoneal dialysis patients. CONCLUSIONS: Dialysis duration and high-sensitivity C-reactive protein are independently associated with DUSP6 levels in peripheral blood mononuclear cells of diabetic nephropathy patients undergoing peritoneal dialysis. High DUSP6 levels indicate a higher risk of adverse cardiovascular events.


Assuntos
Doenças Cardiovasculares , Nefropatias Diabéticas , Fosfatase 6 de Especificidade Dupla , Leucócitos Mononucleares , Diálise Peritoneal , Humanos , Diálise Peritoneal/efeitos adversos , Doenças Cardiovasculares/etiologia , Nefropatias Diabéticas/sangue , Fosfatase 6 de Especificidade Dupla/genética , Feminino , Masculino , Leucócitos Mononucleares/metabolismo , Fatores de Risco , Proteína C-Reativa/metabolismo , Pessoa de Meia-Idade , Prognóstico , Albumina Sérica/metabolismo , Albumina Sérica/análise
17.
J Biol Chem ; 298(1): 101471, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890645

RESUMO

Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate-enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.


Assuntos
Fígado , Proteínas Tirosina Fosfatases , Animais , Catálise , Humanos , Fígado/enzimologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Tirosina Fosfatases/metabolismo
18.
J Biol Chem ; 298(12): 102679, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370849

RESUMO

Yeast VH1-related phosphatase (YVH1) (also known as DUSP12) is a member of the atypical dual-specificity phosphatase subfamily. Although no direct substrate has been firmly established, human YVH1 (hYVH1) has been shown to protect cells from cellular stressors, regulate the cell cycle, disassemble stress granules, and act as a 60S ribosome biogenesis factor. Despite knowledge of hYVH1 function, further research is needed to uncover mechanisms of its regulation. In this study, we investigate cellular effects of a Src-mediated phosphorylation site at Tyr179 on hYVH1. We observed that this phosphorylation event attenuates localization of hYVH1 to stress granules, enhances shuttling of hYVH1 to the nucleus, and promotes hYVH1 partitioning to the 60S ribosomal subunit. Quantitative proteomics reveal that Src coexpression with hYVH1 reduces formation of ribosomal species that represent stalled intermediates through the alteration of associating factors that mediate translational repression. Collectively, these results implicate hYVH1 as a novel Src substrate and provide the first demonstrated role of tyrosine phosphorylation regulating the activity of a YVH1 ortholog. Moreover, the ribosome proteome alterations point to a collaborative function of hYVH1 and Src in maintaining translational fitness.


Assuntos
Fosfatases de Especificidade Dupla , Subunidades Ribossômicas Maiores de Eucariotos , Proteínas de Saccharomyces cerevisiae , Humanos , Fosfatases de Especificidade Dupla/metabolismo , Fosforilação , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Cancer Sci ; 114(12): 4558-4570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776195

RESUMO

Dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a protein kinase that phosphorylates p53-Ser46 and induces apoptosis in response to DNA damage. However, the relationship between DYRK2 expression and chemosensitivity after DNA damage in colorectal cancer has not been well investigated. The aim of the present study was to examine whether DYRK2 could be a novel marker for predicting chemosensitivity after 5-fluorouracil- and oxaliplatin-induced DNA damage in colorectal cancer. Here we showed that DYRK2 knockout decreased the chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer cells, whereas the chemosensitivity remained unchanged in p53-deficient/mutated colorectal cancer cells. In addition, no significant differences in chemosensitivity to 5-fluorouracil and oxaliplatin between scramble and siDYRK2 p53(-/-) colorectal cancer cells were observed. Conversely, the combination of adenovirus-mediated overexpression of DYRK2 with 5-fluorouracil or oxaliplatin enhanced apoptosis and chemosensitivity through p53-Ser46 phosphorylation in p53 wild-type colorectal cancer cells. Furthermore, DYRK2 knockout decreased chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type xenograft mouse models. Taken together, these findings demonstrated that DYRK2 expression was associated with chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer, suggesting the importance of evaluating the p53 status and DYRK2 expression as a novel marker in therapeutic strategies for colorectal cancer.


Assuntos
Neoplasias Colorretais , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Apoptose/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Dano ao DNA
20.
Arch Biochem Biophys ; 744: 109702, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37516290

RESUMO

Mitogen activated protein kinase phosphoserine/threonine/tyrosine-binding protein (MK-STYX) is a dual specificity (DUSP) member of the protein tyrosine phosphatase family. It is a pseudophosphatase, which lacks the essential amino acids histidine and cysteine in the catalytic active signature motif (HCX5R). We previously reported that MK-STYX interacts with G3BP1 [Ras-GAP (GTPase-activating protein) SH3 (Src homology 3) domain-binding-1] and reduces stress granules, stalled mRNA. To determine how MK-STYX reduces stress granules, truncated domains, CH2 (cell division cycle 25 phosphatase homology 2) and DUSP, of MK-STYX were used. Wild-type MK-STYX and the DUSP domain significantly decreased stressed granules that were induced by sodium arsenite, in which G3BP1 (a stress granule nucleator) was used as the marker. In addition, HEK/293 and HeLa cells co-expressing G3BP1-GFP and mCherry-MK-STYX, mCherry-MK-STYX-CH2, mCherry-MK-STYX-DUSP or mCherry showed that stress granules were significantly decreased in the presence of wild-type MK-STYX and the DUSP domain of MK-STYX. Further characterization of these dynamics in HeLa cells showed that the CH2 domain increased the number of stress granules within a cell, relative to wild-type and DUSP domain of MK-STYX. To further analyze the interaction of G3BP1 and the domains of MK-STYX, coimmunoprecipitation experiments were performed. Cells co-expressing G3BP1-GFP and mCherry, mCherry-MK-STYX, mCherry-MK-STYX-CH2, or mCherry-MK-STYX-DUSP demonstrated that the DUSP domain of MK-STYX interacts with both G3BP1-GFP and endogenous G3BP1, whereas the CH2 domain of MK-STYX did not coimmunoprecipitate with G3BP1. In addition, G3BP1 tyrosine phosphorylation, which is required for stress granule formation, was decreased in the presence of wild-type MK-STYX or the DUSP domain but increased in the presence of CH2. These data highlight a model for how MK-STYX decreases G3BP1-induced stress granules. The DUSP domain of MK-STYX interacts with G3BP1 and negatively alters its tyrosine phosphorylation- decreasing stress granule formation.


Assuntos
DNA Helicases , Grânulos de Estresse , Humanos , Células HeLa , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA