Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 42(4): 1275-1282, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26681815

RESUMO

Dust devils and nonrotating dusty plumes are effective uplift mechanisms for fine particles, but their contribution to the global dust budget is uncertain. By applying known bulk thermodynamic criteria to European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, we provide the first global hourly climatology of potential dust devil and dusty plume (PDDP) occurrence. In agreement with observations, activity is highest from late morning into the afternoon. Combining PDDP frequencies with dust source maps and typical emission values gives the best estimate of global contributions of 3.4% (uncertainty 0.9-31%), 1 order of magnitude lower than the only estimate previously published. Total global hours of dust uplift by dry convection are ∼0.002% of the dust-lifting winds resolved by ECMWF, consistent with dry convection making a small contribution to global uplift. Reducing uncertainty requires better knowledge of factors controlling PDDP occurrence, source regions, and dust fluxes induced by dry convection. KEY POINTS: Global potential dust devil occurrence quantified from meteorological analyses Climatology shows realistic diurnal cycle and geographical distribution Best estimate of global contribution of 3.4% is 10 times smaller than the previous estimate.

2.
Space Sci Rev ; 217(1): 20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33583960

RESUMO

Nine simulations are used to predict the meteorology and aeolian activity of the Mars 2020 landing site region. Predicted seasonal variations of pressure and surface and atmospheric temperature generally agree. Minimum and maximum pressure is predicted at Ls ∼ 145 ∘ and 250 ∘ , respectively. Maximum and minimum surface and atmospheric temperature are predicted at Ls ∼ 180 ∘ and 270 ∘ , respectively; i.e., are warmest at northern fall equinox not summer solstice. Daily pressure cycles vary more between simulations, possibly due to differences in atmospheric dust distributions. Jezero crater sits inside and close to the NW rim of the huge Isidis basin, whose daytime upslope (∼east-southeasterly) and nighttime downslope (∼northwesterly) winds are predicted to dominate except around summer solstice, when the global circulation produces more southerly wind directions. Wind predictions vary hugely, with annual maximum speeds varying from 11 to 19 ms - 1 and daily mean wind speeds peaking in the first half of summer for most simulations but in the second half of the year for two. Most simulations predict net annual sand transport toward the WNW, which is generally consistent with aeolian observations, and peak sand fluxes in the first half of summer, with the weakest fluxes around winter solstice due to opposition between the global circulation and daytime upslope winds. However, one simulation predicts transport toward the NW, while another predicts fluxes peaking later and transport toward the WSW. Vortex activity is predicted to peak in summer and dip around winter solstice, and to be greater than at InSight and much greater than in Gale crater. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-020-00788-2.

3.
Life Sci Space Res (Amst) ; 22: 125-136, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31421844

RESUMO

Nitrates and perchlorates are present both on Earth and Mars. In the Martian environment perchlorates dominate over nitrates whereas on Earth is contrariwise. This implies that the mechanisms responsible for their formation are different for both planets. The chemical elements required for their formation are nitrogen and chlorine, which are present in the atmosphere and surface, respectively. Dust in the Martian atmosphere causes atmospheric perturbations that lead to the development of dust-devils and sandstorms. Dust devils contain both chemical elements simultaneously, and normally generate high electric fields that can trigger the formation of electric discharges. Here we present laboratory experiments of this phenomenon using laser ablation of a sodium chloride (NaCl) plate in two different simulated atmospheres: (1) 96% CO2, 2% N2 and 2% Ar; and (2) 66% CO2, 33% N2 and 1% Ar. The dust that condensed and accumulated on the walls of the reactor was analyzed by different analytical techniques that included Fourier transform infrared spectroscopy, visible spectroscopy using azo dyes, thermogravimetry/simultaneous thermal analyses coupled to mass spectrometry, powder X-ray diffraction, and ion chromatography. The main components of the ablated dust corresponded to NaCl ≥ 91.5%, sodium nitrate (NaNO3 = 1.6-6.0%), and sodium perchlorate (NaClO4 âˆ¼ 0.2-0.3%). It is interesting to note that these salts formed in a dry process that is relevant to Mars today. A thermochemical model was used to understand the chemical steps that led to the formation of these salts in the gas phase. The NaNO3NaClO4 (wt/wt) ratio of this process was estimated to vary from 5.0 to 30.0; this ratio is too high compared to that found on Mars (NO3-ClO4- (wt/wt)) from 0.004 to 0.13). This implies that gaseous NaCl was not efficiently oxidized to perchlorate by the electric discharge process. We propose instead that gaseous metal chlorides (e.g., MgCl2, NaCl, CaCl2, KCl) were supplied to the atmosphere by the volatilization of chloride minerals present in the dust by electric discharges generated in dust devils and were subsequently oxidized to perchlorate by photochemical processes. Further work is required to assess the relative contribution of this possible source.


Assuntos
Atmosfera/química , Marte , Nitratos/química , Percloratos/química , Poeira , Meio Ambiente Extraterreno , Simulação de Ambiente Espacial , Eletricidade Estática
4.
Astrobiology ; 18(10): 1305-1317, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28422534

RESUMO

During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 µm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected.


Assuntos
Poeira/análise , Tamanho da Partícula , Argila/química , Geografia , Imageamento Tridimensional , Marrocos
5.
Trends Ecol Evol ; 35(4): 305-307, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952836

Assuntos
Incêndios , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA