Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 478(12): 2609-2620, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36894690

RESUMO

Aeromonas hydrophila is a fish pathogen which is widely associated with diseases related to freshwater fishes. Vibrio parahemolyticus is a major globally emerging marine pathogen. Seven novel compounds were extracted from the ethyl acetate extract of Bacillus licheniformis, a novel marine bacterium isolated from marine actinomycetes. The compounds were identified using Gas Chromatography-Mass Spectroscopy (GC-MS). Only one bioactive compound having potent antibacterial activity was virtually screened to understand its drug-like property according to Lipinski's rule. The core proteins, 3L6E and 3RYL from the pathogens, A. hydrophila and V. parahemolyticus were targeted for drug discovery. In the present in-silico approach, Phenol,2,4-Bis(1,1-Dimethylethyl) a potent bioactive compound present in Bacillus licheniformis was used to prevent the infection due to the two pathogens. Further, using this bioactive compound, molecular docking was done to block their specific target proteins. This bioactive compound satisfied all the five rules of Lipinski. Molecular docking result revealed the best binding efficacy of Phenol,2,4-Bis(1,1-Dimethylethyl) against 3L6E and 3RYL with - 4.24 kcal/mol and - 4.82 kcal/mol, respectively. Molecular dynamics (MD) simulations were also executed to determine the binding modes as well as the stability of the protein-ligand docking complexes in the dynamic structure. The in vitro toxicity analysis of this potent bioactive compound against Artemia salina was carried out, revealing the non-toxic nature of B. licheniformis ethyl acetate extract. Thus, the bioactive compound of B. licheniformis was found to be a potent antibacterial agent against A. hydrophila and V. parahemolyticus.


Assuntos
Bacillus licheniformis , Infecções Bacterianas , Animais , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Peixes , Fenóis
2.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321959

RESUMO

Medicinal plants play an important role as antimicrobials by inhibiting various key targets of diverse microorganisms. A major antimicrobial component of plants is its essential oil, which are increasingly being studied for their antimicrobial properties as well as for their potential role in the inhibition of biofilm formation. In the present study, essential oil from Kaempferia galanga L was isolated resulting in the identification of eleven compounds. Of these, two of the compounds, γ-elemene and caryophyllene were found to dock with the target proteins, CrtM and SarA of Staphylococcus aureus, which are essential for the formation of biofilm. γ-elemene demonstrated the best binding affinity with CrtM with binding energy of -8.1 kcal/mol whereas caryophyllene and its derivative isocaryophyllene showed the best binding with SarA with binding energy -6.1 kcal/mol. ADMET study of the compounds also revealed that the compounds are non-toxic and can be used as probable compounds for inhibition of biofilms. Molecular dynamic simulation studies revealed high affinity of binding and stability of the molecules with their targets. PCA analysis helped in identifying the principal motions occurring within a trajectory that are essential in inducing conformational changes.Communicated by Ramaswamy H. Sarma.

3.
Heliyon ; 7(8): e07803, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423145

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) is responsible for the global COVID-19 pandemic and millions of deaths worldwide. In December 2020, a new alpha strain of SARS-CoV2 was identified in the United Kingdom. It was referred to as VUI 202012/01 (Alpha strain modelled under investigation, 2020, month 12, number 01). The interaction between spike protein and ACE2 receptor is a prerequisite for entering virion into the host cell. The present study is focussed on the spike protein of the SARS-COV 2, involving the comparison of binding affinity of new alpha strain modelled spike with previous strain spike (PDB ID:7DDN) using in silico molecular docking, dynamics and simulation studies. The molecular docking studies of the alpha strain modelled spike protein confirmed its higher affinity for the ACE2 receptor than the spike protein of the dominant strain. Similar computational approaches have also been used to investigate the potency of FDA approved drugs from the ZINC Database against the spike protein of new alpha strain modelled and old ones. The drug molecules which showed strong affinity for both the spike proteins are then subjected to ADME analysis. The overall binding energy of Conivaptan (-107.503 kJ/mol) and Trosec (-94.029 kJ/mol) is indicative of their strong binding affinities, well supported by interactions with critical residues.

4.
Infect Genet Evol ; 84: 104371, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32485331

RESUMO

HCV is a viral infection posing a severe global threat when left untreated progress to end-stage liver disease, including cirrhosis and HCC. The NS5B polymerase of HCV is the most potent target that harbors four allosteric binding sites that could interfere with the HCV infection. We present the discovery of a novel synthetic compound that harbors the potential of NS5B polymerase inhibition. All eight compounds belonging to the benzothiazine family of heterocycles displayed no cellular cytotoxicity in HepG2 cells at nontoxic dose concentration (200 µM). Subsequently, among eight compounds of the series, merely compound 5b exhibited significant inhibition of the expression of the HCV NS5B gene as compared to DMSO control in semi-quantitative PCR. Based on our western blot result, 5b at the range of 50, 100 and 200 µM induced 20, 40, and 70% inhibition of NS5B protein respectively. To estimate the binding potential, 5b was docked at respective allosteric sites followed by molecular dynamics (MD) simulations for a period of 20 ns. In addition, binding free energy calculation by MM-GB/PBSA method revealed a conserved interaction profile of residues lining the allosteric sites in agreement with the reported NS5B co-crystallized inhibitors. The presented results provide important information about a novel compound 5b which may facilitate the the discovery of novel inhibitors that tends to target multiple sites on NS5B polymerase.


Assuntos
Antivirais/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Sítio Alostérico , Antivirais/síntese química , Antivirais/química , Antivirais/farmacocinética , Benzotiazóis/química , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
5.
J Mol Model ; 24(12): 340, 2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30448921

RESUMO

The NAD+-dependent deacetylase SIRT1 plays important roles in several physiological processes such as transcription, genome stability, stress responses, and aging. Due to its diverse role in metabolisms, SIRT1 has emerged as a potential therapeutic target in many human disorders such as type II diabetes, cardiovascular and neurodegenerative diseases, and cancer. Recent studies have reported that modulation of SIRT1 activity by phenolic activators like resveratrol and some 1,4-dihydropyridines (1,4-DHPs) can inhibit tumor growth by promoting apoptosis in cancer cells. However, the mechanism of SIRT1 activation is still not clear. In this report, we have tried to elucidate the mechanism of SIRT1 activation from studies on its interaction with a synthetic 1,4-DHP derivative (DHP-8; 3,5-diethoxy carbonyl-4-(4-nitrophenyl)-2,6-dimethyl-1,4-dihydropyridine) using molecular modeling, docking, simulation, and free energy analyses. Owing to the absence of full-length human SIRT1 structure, multi-template based modeling approach was opted followed by docking of DHP-8 at its allosteric site. In presence of DHP-8, the overall conformation of SIRT1 was found to be more stable (especially at its substrate binding sites) with a large structural variation at its N-terminal domain while bound to substrate p53 or p53-W. Determination of the MM/PBSA free energy indicated that the binding of DHP-8 to SIRT1 significantly increased the binding affinity of SIRT1 to its substrate p53-W as well as to NAD+. Overall, this study depicts the atomistic detailed mechanism for the direct activation of SIRT1 by a 1,4-DHP. This would serve to develop new SIRT1 activators for future therapeutic perspectives.


Assuntos
Di-Hidropiridinas/química , Simulação de Acoplamento Molecular , Sirtuína 1/química , Termodinâmica , Sítios de Ligação , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Humanos , Estrutura Molecular , NAD/química , NAD/metabolismo , Ligação Proteica , Domínios Proteicos , Sirtuína 1/metabolismo , Especificidade por Substrato
6.
Int J Biol Macromol ; 105(Pt 1): 183-189, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28688947

RESUMO

Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, overexpressed in cancer cells under hypoxia condition. In cancerous cells, CAIX plays an important role to combat the deleterious effects of a high rate of glycolytic metabolism. In order to favor tumor survival, CAIX maintains intracellular pH neutral or slightly alkaline and extracellular acidic pH. The equilibrium unfolding and conformational stability of CAIX were measured in the presence of increasing urea concentrations to understand it's structural features under stressed conditions. Two different spectroscopic techniques were used to follow urea-induced denaturation and observed that urea induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of both optical properties suggesting that denaturation of CAIX is a two-state process, i.e., native state ↔ denatured state. Each denaturation curve was analyzed to estimate thermodynamic parameters, ΔGD0,value of Gibbs free energy change (ΔGD) associated with the urea-induced denaturation, Cm (midpoint of denaturation) and m (=δΔGD/δ[urea]). We further performed molecular dynamics simulation of CAIX for 50ns to see the dynamics of protein structure in the presence of different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.


Assuntos
Anidrase Carbônica IX/química , Simulação de Dinâmica Molecular , Desnaturação Proteica/efeitos dos fármacos , Ureia/farmacologia , Relação Dose-Resposta a Droga , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica , Termodinâmica , Água/química
7.
3 Biotech ; 6(1): 105, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330175

RESUMO

Acute lymphocytic leukemia (ALL) is an outrageous disease worldwide. L-Asparagine (L-Asn) and L-glutamine (L-Gln) deamination plays crucial role in ALL treatment. Role of Erwinaze® (L-asparaginase from Erwinia chrysanthemi) in regulation of L-Asn and L-Gln has been confirmed by the experimental studies. Therapeutic research against ALL remained elusive with the lack of structural information on Erwinaze® enzyme. In this present study, homology model of the Erwinaze® was developed using MODELLER and the same was validated by various quality indexing tools. For the apo state enzyme and ligand bound state complexes molecular dynamics (MD) simulation was performed. The trajectory analysis showed the confirmational changes of structures in the dynamic system. Ligand binding mechanisms were studied using different docking tools to interpret the various ligand-receptor interactions and binding free energies. MD simulation of docked complex with L-Gln ligand substrate showed the defined structural folding with stable conformation over the L-Asn complex in dynamic environment. This research reports give much more information on structural and functional aspects of Erwinaze® with its ligands which may be useful in designing of effective therapeutics for ALL.

8.
J Biomol Struct Dyn ; 33(7): 1493-502, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25175605

RESUMO

Yeast iso-1-cytochrome c (y-cyt-c) has five extra residues at N-terminus in comparison to the horse cytochrome c. These residues are numbered as -5 to -1. Here, these extra residues are sequentially removed from y-cyt-c to establish their role in folding and stability of the protein. We performed urea-induced denaturation of wild-type (WT) y-cyt-c and its deletants. Denaturation was followed by observing change in Δε405 (probe for measuring change in the heme environment within the protein), [θ]405 (probe for measuring the change in Phe82 and Met80 axial bonding), [θ]222 (probe for measuring change in secondary structure) and [θ]416 (probe for measuring change in the heme-methionine environment). The urea-induced reversible denaturation curves were used to estimate Δ[Formula: see text], the value of Gibbs free energy change (ΔGD) in the absence of urea; Cm, the midpoint of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Our in vitro results clearly show that except Δ(-5/-4) all deletants are less stable than WT protein. Coincidence of normalized transition curves of all physical properties suggests that unfolding/refolding of WT protein and its deletants is a two-state process. To confirm our in vitro observations, we performed 40 ns MD simulation of both WT y-cyt-c and its deletants. MD simulation results clearly show that extra N-terminal residues play a role in stability but not in folding of the protein.


Assuntos
Citocromos c/química , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Desnaturação Proteica , Temperatura , Ureia/química , Animais , Técnicas In Vitro , Simulação de Dinâmica Molecular , Proteínas Mutantes , Desnaturação Proteica/efeitos dos fármacos , Termodinâmica , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA