Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Mol Cell ; 74(6): 1264-1277.e7, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31130363

RESUMO

E2F1, E2F2, and E2F3A, the three activators of the E2F family of transcription factors, are key regulators of the G1/S transition, promoting transcription of hundreds of genes critical for cell-cycle progression. We found that during late S and in G2, the degradation of all three activator E2Fs is controlled by cyclin F, the substrate receptor of 1 of 69 human SCF ubiquitin ligase complexes. E2F1, E2F2, and E2F3A interact with the cyclin box of cyclin F via their conserved N-terminal cyclin binding motifs. In the short term, E2F mutants unable to bind cyclin F remain stable throughout the cell cycle, induce unscheduled transcription in G2 and mitosis, and promote faster entry into the next S phase. However, in the long term, they impair cell fitness. We propose that by restricting E2F activity to the S phase, cyclin F controls one of the main and most critical transcriptional engines of the cell cycle.


Assuntos
Ciclo Celular/genética , Ciclinas/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F3/genética , Proteínas Ligases SKP Culina F-Box/genética , Transcrição Gênica , Linhagem Celular Tumoral , Ciclinas/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Aptidão Genética , Células HEK293 , Células HeLa , Humanos , Mutação , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteólise , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Ubiquitinação
2.
J Virol ; 98(6): e0042324, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38771044

RESUMO

Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE: Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.


Assuntos
Ciclo Celular , Fator de Transcrição E2F2 , Regulação Viral da Expressão Gênica , Herpesvirus Bovino 1 , Proteínas Imediatamente Precoces , Regiões Promotoras Genéticas , Receptores de Glucocorticoides , Ativação Transcricional , Animais , Bovinos , Camundongos , Sítios de Ligação , Linhagem Celular , Dexametasona/farmacologia , Fator de Transcrição E2F2/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/genética , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/genética , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/fisiologia , Proteínas Imediatamente Precoces/genética , Neurônios/virologia , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta/genética , Fator de Transcrição Sp1/metabolismo , Transativadores/metabolismo , Gânglio Trigeminal/citologia , Gânglio Trigeminal/virologia , Ativação Viral , Latência Viral
3.
J Cell Mol Med ; 28(8): e18217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520208

RESUMO

CircRNAs represent a new class of non-coding RNAs which show aberrant expression in diverse cancers, such as gastric cancer (GC). circSTRBP, for instance, is suggested to be overexpressed in GC cells and tissues. However, the biological role of circSTRBP in the progression of GC and the potential mechanisms have not been investigated. circSTRBP levels within GC cells and tissues were measured by RT-qPCR. The stability of circSTRBP was assessed by actinomycin D and Ribonuclease R treatment. Cell proliferation, migration, invasion and in vitro angiogenic abilities after circSTRBP knockdown were analysed through CCK-8 assay, transwell culture system and the tube formation assay. The interaction of circSTRBP with the predicted target microRNA (miRNA) was examined by RNA immunoprecipitation and luciferase reporter assays. Xenograft tumour model was established to evaluate the role of exosomal circSTRBP in the tumour formation of GC cells. circSTRBP was upregulated in GC cells and tissues, and there was an increased level of circSTRBP in GC-derived exosomes. circSTRBP in the exosomes enhanced GC cell growth and migration in vitro, which modulates E2F Transcription Factor 2 (E2F2) expression through targeting miR-1294 and miR-593-3p. Additionally, exosomal circSTRBP promoted the tumour growth of GC cells in the xenograft model. Exosomal circSTRBP is implicated in the progression of GC by modulating the activity of miR-1294/miR-593-3p/E2F2 axis.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Animais , Neoplasias Gástricas/genética , Transformação Celular Neoplásica , MicroRNAs/genética , Bioensaio , Proliferação de Células/genética , Modelos Animais de Doenças , Linhagem Celular Tumoral , Fator de Transcrição E2F2
4.
BMC Cancer ; 24(1): 214, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360622

RESUMO

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is one of the most common types of cancer in the upper respiratory tract. It is well-known that it has a high mortality rate and poor prognosis in advanced stages. There are well-known risk factors for LSCC, though new specific and prognostic blood-based markers for LSCC development and prognosis are essential. The current study aimed to evaluate the impact of four different single nucleotide polymorphisms (SNPs), E2F1 (rs3213183 and rs3213180) and E2F2 (rs2075993 and rs3820028), on LSCC development, morphological features, and patient 5-year survival rate. METHODS: A total of 200 LSCC patients and 200 controls were included in this study; both groups were matched by age and sex. In the present study, we analyzed four single nucleotide polymorphisms (SNPs) in the genes E2F1 (rs3213183 and rs3213180) and E2F2 (rs2075993 and rs3820028) and evaluated their associations with the risk of LSCC development, its clinical and morphological manifestation, and patients 5-year survival rate. Genotyping was carried out using RT-PCR. RESULTS: None of the analyzed SNPs showed a direct association with LSCC development. E2F2 rs2075993 G allele carriers (OR = 4.589, 95% CI 1.050-20.051, p = 0.043) and rs3820028 A allele carriers (OR = 4.750, 95% CI 1.088-20.736, p = 0.038) had a statistically significantly higher risk for poor differentiated or undifferentiated LSCC than non-carriers. E2F1 rs3213180 GC heterozygotes were found to have a 3.7-fold increased risk for lymph node involvement (OR = 3.710, 95% CI 1.452-9.479, p = 0.006). There was no statistically significant association between investigated SNPs and patient 5-year survival rate. CONCLUSIONS: The present study indicates that E2F2 rs2075993 and rs3820028 impact LSCC differentiation, whereas E2F1 rs3213180 - on lymph node involvement.


Assuntos
Fator de Transcrição E2F1 , Fator de Transcrição E2F2 , Neoplasias Laríngeas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/genética , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , Polimorfismo de Nucleotídeo Único , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
5.
Environ Toxicol ; 39(5): 2980-2992, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317501

RESUMO

BACKGROUND: Recently, circular RNA (circRNA) has become a vital targeted therapy gene for non-small-cell lung cancer (NSCLC) cells. CircRNA_0000877 (Circ_0000877) has been researched in diffuse large B-cell lymphoma (DLBCL). However, whether circ_0000877 regulated NSCLC cell progression is still poorly investigated. The research attempted to investigate the influence of circ_0000877 in NSCLC. METHODS: Circ_0000877 levels in NSCLC tissues and cell lines were determined applying RT-qPCR. Cell functions were evaluated by CCK-8, EdU, flow cytometry, ELISA, and western blot. Gene interactions were predicted by Cirular RNA interactome database and Target Scan website and certified by dual-luciferase reporter, RIP, and RNA pull-down assays. Finally, mice experimental model was established to explore the effects of circ_0000877 on tumor growth in vivo. RESULTS: The elevated trend of circ_0000877 expression was discovered in NSCLC tissues compared to para-carcinoma tissues. The clinicopathological data uncovered that up-regulated circ_0000877 was linked to tumor size, differentiation, and TNM stages of NSCLC patients. Knockdown of circ_0000877 inhibited the proliferation, triggered apoptosis, and prohibited immune escape in NSCLC cells. It was certified that miR-637 was directly interacted with circ_0000877 and targeted by E2F2. Overexpressed E2F2 strongly overturned the functions of circ_0000877 knockdown in NSCLC cells. Mice experimental data demonstrated that circ_0000877 knockdown suppressed tumor growth in vivo. CONCLUSION: The research demonstrated that circ_0000877 exhibited the promotive effect on NSCLC cells proliferation and immune escape by regulating miR-637/E2F2 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , RNA Circular/genética , Neoplasias Pulmonares/genética , Proliferação de Células/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Fator de Transcrição E2F2
6.
Curr Issues Mol Biol ; 45(4): 3268-3278, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37185737

RESUMO

BACKGROUND: E2F transcription factor 2 (E2F2), murine double minute 2 (MDM2) and p16 are some of the key proteins associated with the control of the cell cycle. The aim of this study was to evaluate E2F2, MDM2 and p16 concentrations in the tumour and margin samples of oral squamous cell carcinoma and to assess their association with some selected sociodemographic and clinicopathological characteristics of the patients. METHODS: The study group consisted of 73 patients. Protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: There were no statistically significant differences in the levels of E2F2, MDM2 or p16 in the tumour samples as compared to the margin specimens. We found that patients with N0 showed significantly lower E2F2 concentrations than patients with N1 in the tumour samples and the median protein concentration of E2F2 was higher in HPV-negative patients in the tumour samples. Moreover, the level of p16 in the margin samples was lower in alcohol drinkers as compared to non-drinkers. Similar observations were found in concurrent drinkers and smokers compared to non-drinkers and non-smokers. CONCLUSIONS: E2F2 could potentially promote tumour progression and metastasis. Moreover, our results showed a differential level of the analysed proteins in response to alcohol consumption and the HPV status.

7.
Br J Haematol ; 202(4): 840-855, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365680

RESUMO

Multiple myeloma (MM) is the second most common haematological malignancy. Despite the development of new drugs and treatments in recent years, the therapeutic outcomes of patients are not satisfactory. It is necessary to further investigate the molecular mechanism underlying MM progression. Herein, we found that high E2F2 expression was correlated with poor overall survival and advanced clinical stages in MM patients. Gain- and loss-of-function studies showed that E2F2 inhibited cell adhesion and consequently activated cell epithelial-to-mesenchymal transition (EMT) and migration. Further experiments revealed that E2F2 interacted with the PECAM1 promoter to suppress its transcriptional activity. The E2F2-knockdown-mediated promotion of cell adhesion was significantly reversed by the repression of PECAM1 expression. Finally, we observed that silencing E2F2 significantly inhibited viability and tumour progression in MM cell models and xenograft mouse models respectively. This study demonstrates that E2F2 plays a vital role as a tumour accelerator by inhibiting PECAM1-dependent cell adhesion and accelerating MM cell proliferation. Therefore, E2F2 may serve as a potential independent prognostic marker and therapeutic target for MM.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Mieloma Múltiplo/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proliferação de Células , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo
8.
Exp Cell Res ; 420(1): 113335, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36084669

RESUMO

Multitargeted kinase inhibitors (MKIs) including sorafenib and lenvatinib, are applied for first-line treatment for inoperable hepatocellular carcinoma (HCC) patients, but the therapeutic effect is limited because of drug resistance. Therefore, we sought potential biomarkers to indicate sorafenib and lenvatinib resistance in HCC. In this article, we report a novel long non-coding RNA (lncRNA), AC026401.3, in promoting sorafenib and lenvatinib resistance of HCC cells. AC026401.3 is upregulated in HCC tissues and is positively relevant to HCC patients with large tumor size, cancer recurrence, advanced TNM stage, and poor prognosis. AC026401.3 knockdown or knockout enhances the sensitivity of HCC cells to sorafenib and lenvatinib, respectively. Moreover, AC026401.3 upregulates the expression of the transcription factor E2F2. Mechanistically, AC026401.3 interacts with OCT1 and promotes the recruitment of OCT1 to the promoter region of E2F2, intensifying sorafenib and lenvatinib resistance in HCC by activating the transcription of E2F2. In conclusion, our results reveal that lncRNA AC026401.3 is a risk factor for HCC patients by enhancing sorafenib and lenvatinib resistance of HCC cells, and targeting the AC026401.3-OCT1-E2F2 signaling axis would be a promising strategy for HCC therapeutics.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Fator 1 de Transcrição de Octâmero/metabolismo , RNA Longo não Codificante , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição E2F2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Quinolinas , RNA Longo não Codificante/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fatores de Transcrição
9.
Exp Cell Res ; 414(1): 113082, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218724

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary bone malignancy. Circular RNAs (circRNAs) have been implicated in OS pathogenesis. In the current study, we explored the precise role of circRNA cyclin dependent kinase 14 (circ-CDK14, hsa_circ_0001721) in OS progression. METHODS: The levels of circ-CDK14, miR-198 and E2F transcription factor 2 (E2F2) were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Cell viability, apoptosis, migration and invasion were determined using the Cell Counting-8 Kit (CCK-8), flow cytometry and transwell assays, respectively. Glucose consumption, lactate production and adenosine triphosphate (ATP) level were gauged using the commercial assay kits. The direct relationship between miR-198 and circ-CDK14 or E2F2 was confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays. Animal studies were used to analyze the role of circ-CDK14 in vivo. RESULTS: Our data revealed that circ-CDK14 was up-regulated and miR-198 was down-regulated in OS tissues and cell lines. Circ-CDK14 silencing suppressed OS cell viability, migration, invasion, and glycolysis and promoted cell apoptosis in vitro, as well as diminished tumor growth in vivo. Mechanistically, circ-CDK14 directly targeted miR-198. Moreover, miR-198 was a functional mediator of circ-CDK14 in regulating OS cell progression in vitro. E2F2 was a direct target of miR-198, and miR-198 overexpression regulated OS cell progression in vitro by down-regulating E2F2. Furthermore, circ-CDK14 regulated E2F2 expression by functioning as a sponge of miR-198 in OS cells. CONCLUSION: Our findings demonstrate the inhibitory effect of circ-CDK14 silencing on OS progression by targeting the miR-198/E2F2 axis, establishing a strong rationale for decreasing circ-CDK14 as a novel therapeutic strategy for OS.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , RNA Circular/genética
10.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047293

RESUMO

It is known that E2F2 (E2F transcription factor 2) plays an important role as controller in the cell cycle. This study aimed to analyse the expression of the E2F2 gene and E2F2 protein and demonstrate E2F2 target microRNAs (miRNAs) candidates (miR-125b-5p, miR-155-3p, and miR-214-5p) in oral squamous cell carcinoma tumour and margin samples. The study group consisted 50 patients. The E2F2 gene and miRNAs expression levels were assessed by qPCR, while the E2F2 protein was assessed by ELISA. When analysing the effect of miRNAs expression on E2F2 gene expression and E2F2 protein level, we observed no statistically significant correlations. miR-125b-5p was downregulated, while miR-155-3p, and miR-214-5p were upregulated in tumour samples compared to margin. We observed a difference between the miR-125b-5p expression level in smokers and non-smokers in margin samples. Furthermore, HPV-positive individuals had a significantly higher miR-125b-5p and miR-214-5p expression level compared to HPV-negative patients in tumour samples. The study result showed that the E2F2 gene is not the target for analysed miRNAs in OSCC. Moreover, miR-155-3p and miR-125b-5p could play roles in the pathogenesis of OSCC. A differential expression of the analysed miRNAs was observed in response to tobacco smoke and HPV status.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Infecções por Papillomavirus/genética , Neoplasias Bucais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica
11.
Cardiovasc Drugs Ther ; 36(3): 399-412, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34519914

RESUMO

OBJECTIVE: Approximately 50% of patients with sepsis encounter myocardial injury. The mortality of septic patients with cardiac dysfunction (approx. 70%) is much higher than that of patients with sepsis only (20%). A large number of studies have suggested that lncRNA TTN-AS1 promotes cell proliferation in a variety of diseases. This study delves into the function and mechanism of TTN-AS1 in sepsis-induced myocardial injury in vitro and in vivo. METHODS: LPS was used to induce sepsis in rats and H9c2 cells. Cardiac function of rats was assessed by an ultrasound system. Myocardial injury was revealed by hematoxylin-eosin (H&E) staining. Gain and loss of function of TTN-AS1, miR-29a, and E2F2 was achieved in H9c2 cells before LPS treatment. The expression levels of inflammatory cytokines and cTnT were monitored by ELISA. The expression levels of cardiac enzymes as well as reactive oxygen species (ROS) activity and mitochondrial membrane potential (MMP) were measured using the colorimetric method. The expression levels of TTN-AS1, miR-29a, E2F2, and apoptosis-related proteins were measured by RT-qPCR and/or western blotting. The proliferation and apoptosis of H9c2 cells were separately detected by CCK-8 and flow cytometry. Luciferase reporter assay was used to verify the targeting relationships among TTN-AS1, miR-29a and E2F2, and RIP assay was further used to confirm the binding between miR-29a and E2F2. RESULTS: TTN-AS1 was lowly expressed, while miR-29a was overexpressed in the cell and animal models of sepsis. Overexpression of TTN-AS1 or silencing of miR-29a reduced the expression levels of CK, CK-MB, LDH, TNF-B, IL-1B, and IL-6 in the supernatant of LPS-induced H9c2 cells, attenuated mitochondrial ROS activity, and enhanced MMP. Consistent results were observed in septic rats injected with OE-TTN-AS1. Knockdown of TTN-AS1 or overexpression of miR-29a increased LPS-induced inflammation and injury in H9c2 cells. TTN-AS1 regulated the expression of E2F2 by targeting miR-29a. Overexpression of miR-29a or inhibition of E2F2 abrogated the suppressive effect of TTN-AS1 overexpression on myocardial injury. CONCLUSION: This study indicates TTN-AS1 attenuates sepsis-induced myocardial injury by regulating the miR-29a/E2F2 axis and sheds light on lncRNA-based treatment of sepsis-induced cardiomyopathy.


Assuntos
Fator de Transcrição E2F2 , MicroRNAs , RNA Longo não Codificante , Sepse , Animais , Humanos , Ratos , Apoptose , Conectina , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo
12.
J Cell Mol Med ; 25(2): 1178-1189, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33342041

RESUMO

LBX2-AS1 is a long non-coding RNA that facilitates the development of gastrointestinal cancers and lung cancer, but its participation in ovarian cancer development remained uninvestigated. Clinical data retrieved from TCGA ovarian cancer database and the clinography of 60 ovarian cancer patients who received anti-cancer treatment in our facility were analysed. The overall cell growth, colony formation, migration, invasion, apoptosis and tumour formation on nude mice of ovarian cancer cells were evaluated before and after lentiviral-based LBX2-AS1 knockdown. ENCORI platform was used to explore LBX2-AS1-interacting microRNAs and target genes of the candidate microRNAs. Luciferase reporter gene assay and RNA pulldown assay were used to verify the putative miRNA-RNA interactions. Ovarian cancer tissue specimens showed significant higher LBX2-AS1 expression levels that non-cancerous counterparts. High expression level of LBX2-AS1 was significantly associated with reduced overall survival of patients. LBX2-AS1 knockdown significantly down-regulated the cell growth, colony formation, migration, invasion and tumour formation capacity of ovarian cancer cells and increased their apoptosis in vitro. LBX2-AS1 interacts with and thus inhibits the function of miR-455-5p and miR-491-5p, both of which restrained the expression of E2F2 gene in ovarian cancer cells via mRNA targeting. Transfection of miRNA inhibitors of these two miRNAs or forced expression of E2F2 counteracted the effect of LBX2-AS1 knockdown on ovarian cancer cells. LBX2-AS1 was a novel cancer-promoting lncRNA in ovarian cancer. This lncRNA increased the cell growth, survival, migration, invasion and tumour formation of ovarian cancer cells by inhibiting miR-455-5p and miR-491-5p, thus liberating the expression of E2F2 cancer-promoting gene.


Assuntos
Progressão da Doença , Fator de Transcrição E2F2/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Fator de Transcrição E2F2/metabolismo , Feminino , Humanos , MicroRNAs/genética , Modelos Biológicos , RNA Longo não Codificante/genética , Análise de Sobrevida
13.
Cent Eur J Immunol ; 46(1): 27-37, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897281

RESUMO

AIM OF THE STUDY: E2F transcription factor 2 (E2F2) has increased expression in synovial tissues of rheumatoid arthritis (RA) and stimulates interleukin (IL)-1 α and IL-ß production in cultured RA synovial fibroblast-like cells (RASF), which supports the importance of E2F2 in RA pathogenesis. This study investigated the effect and mechanism of E2F2 in RA. MATERIAL AND METHODS: Cultured RASF were transfected with anti-E2F2 siRNA, and the expression profile was analyzed with an inflammatory response and autoimmunity PCR array loaded with 84-relative genes to explore the pathogenic pathway of E2F2. Apoptosis, migration and tube-like structure formation in the RASF with transfection of anti-E2F2 siRNA or E2F2-expressing plasmids were examined using flow cytometry, transwell assays and Matrigel assays, respectively. RESULTS: Significantly decreased expression of chemokine receptor 4 (CCR4) was detected in RASF with inhibited E2F2 expression, and the CCR4 expression was increased in RASF with transfection of E2F2-expressing plasmids. Silencing E2F2 expression stimulated apoptosis, but retarded migration and tube-like structure formation in RASF. The opposite observation was obtained in RASF with E2F2 overexpression. CONCLUSIONS: High E2F2 expression decreases apoptosis and increases migration and tube-like structure ability in RASF and might perform this role by up-regulating CCR4 expression, which ultimately contributes to the disease progression of RA synovial tissues.

14.
Biochem Biophys Res Commun ; 521(3): 716-720, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31699367

RESUMO

Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy.


Assuntos
Neoplasias Encefálicas/genética , Fator de Transcrição E2F2/genética , Glioma/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia
15.
BMC Cancer ; 20(1): 1037, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115417

RESUMO

BACKGROUND: The E2F family of transcription factor 2 (E2F2) plays an important role in the development and progression of various tumors, but its association with hepatocellular carcinoma (HCC) remains unknown. Our study aimed to investigate the role and clinical significance of E2F2 in HCC. METHODS: HCC raw data were extracted from The Cancer Genome Atlas (TCGA). Wilcoxon signed-rank test, Kruskal-Wallis test and logistic regression were applied to analyze the relationship between the expression of E2F2 and clinicopathologic characteristics. Cox regression and Kaplan-Meier were employed to evaluate the correlation between clinicopathologic features and survival. The biological function of E2F2 was annotated by Gene Set Enrichment Analysis (GSEA). RESULTS: The expression of E2F2 was increased in HCC samples. The expression of elevated E2F2 in HCC samples was prominently correlated with histologic grade (OR = 2.62 for G3-4 vs. G1-2, p = 1.80E-05), clinical stage (OR = 1.74 for III-IV vs. I-II, p = 0.03), T (OR = 1.64 for T3-4 vs.T1-2, p = 0.04), tumor status (OR = 1.88 for with tumor vs. tumor free, p = 3.79E-03), plasma alpha fetoprotein (AFP) value (OR = 3.18 for AFP ≥ 400 vs AFP<20, p = 2.16E-04; OR = 2.50 for 20 ≤ AFP<400 vs AFP<20, p = 2.56E-03). Increased E2F2 had an unfavorable OS (p = 7.468e- 05), PFI (p = 3.183e- 05), DFI (p = 0.001), DSS (p = 4.172e- 05). Elevated E2F2 was independently bound up with OS (p = 0.004, hazard ratio [HR] = 2.4 (95% CI [1.3-4.2])), DFI (P = 0.029, hazard ratio [HR] = 2.0 (95% CI [1.1-3.7])) and PFI (P = 0.005, hazard ratio [HR] = 2.2 (95% CI [1.3-3.9])). GSEA disclosed that cell circle, RNA degradation, pyrimidine metabolism, base excision repair, aminoacyl tRNA biosynthesis, DNA replication, p53 signaling pathway, nucleotide excision repair, ubiquitin-mediated proteolysis, citrate cycle TCA cycle were notably enriched in E2F2 high expression phenotype. CONCLUSIONS: Elevated E2F2 can be a promising independent prognostic biomarker and therapeutic target for HCC. Additionally, cell cycle, pyrimidine metabolism, DNA replication, p53 signaling pathway, ubiquitin-mediated proteolysis, the citrate cycle TCA cycle may be the key pathway by which E2F2 participates in the initial and progression of HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Fator de Transcrição E2F2/metabolismo , Neoplasias Hepáticas/patologia , Adulto , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Terapia Combinada , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Masculino , Prognóstico , RNA-Seq , Estudos Retrospectivos , Taxa de Sobrevida
16.
Exp Physiol ; 105(9): 1588-1597, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32706450

RESUMO

NEW FINDINGS: What is the central question of this study? Dexmedetomidine has a capacity for sedation, anti-anxiety and analgesia with minimal suppression of respiratory function; what is its role in neuropathic pain and what is the involvement of miRNAs? What is the main finding and its importance? Dexmedetomidine attenuates inflammation and apoptosis and the stimulation of TLR4-NF-κB signalling in rat spinal cord via miR-101 overexpression and E2F2 downregulation. ABSTRACT: The significant analgesic effect of dexmedetomidine (Dex) has been underscored in neuropathic pain (NPP), but the underlying mechanism remains unclear. This study explored the functional effect of Dex on microRNA (miR)-101-regulated E2 promoter binding factor 2 (E2F2) with the engagement of Toll-like receptor 4 (TLR4)-nuclear factor-κB (NF-κB) signalling. Chronic constriction injury (CCI) was performed to generate an NPP rat model. The expression of miR-101, E2F2 and TLR4-NF-κB signalling-relevant proteins was assessed by RT-quantitative PCR, immunoblotting and immunohistochemistry. Inflammatory factors were detected by enzyme-linked immunosorbent assay. The results showed that Dex increased mechanical withdrawal threshold and thermal latency to withdraw. The expression of interleukin (IL)-6, IL-8 and tumour necrosis factor-α was increased in CCI rats, but these trends were reversed by Dex. In addition, Dex repressed caspase-9 expression and apoptotic cell numbers in spinal cord tissues in CCI rats. Moreover, the expression of E2F2 was significantly increased, while miR-101 was diminished in CCI rats, which was reversed by Dex. Furthermore, miR-101 inhibitor, E2F2 restoration or administration of a TLR4-specific agonist weakened the effect of Dex. Together, these results suggest that Dex has the capacity to ameliorate NPP by regulating the miR-101-E2F2-TLR4-NF-κB axis in rats subjected to CCI.


Assuntos
Analgésicos/farmacologia , Dexmedetomidina/farmacologia , MicroRNAs/genética , Neuralgia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Constrição , Fator de Transcrição E2F2/metabolismo , Masculino , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo
17.
Rep Pract Oncol Radiother ; 25(5): 808-819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884453

RESUMO

miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.

18.
Connect Tissue Res ; 60(2): 107-116, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29609502

RESUMO

PURPOSE: Extracellular-regulated kinase 5 (ERK5) is thought to regulate osteoblast proliferation. To further understand how ERK5 signaling regulates osteoblast proliferation induced by fluid shear stress (FSS), we examined some potential signaling targets associated with ERK5 in MC3T3-E1 cells. METHODS: MC3T3-E1 cells were treated with XMD8-92 (an ERK5 inhibitor) or Cyclosporin A (CsA, a nuclear factor of activated T cells (NFAT) c1 inhibitor) and/or exposed to 12 dyn/cm2 FSS. Phosphorylated-ERK5 (p-ERK5) and expression levels of NFATc1, ERK5, E2F2, and cyclin E1 were analyzed by western blot. The mRNA levels of genes associated with cell proliferation were analyzed by Polymerase Chain Reaction (PCR) array. Subcellular localization of p-ERK5 and NFATc1 were determined by immunofluorescence. Cell proliferation was evaluated by MTT assay. RESULTS: NFATc1 expression was up-regulated by FSS. XMD8-92 only blocked ERK5 activation; however, CsA decreased NFATc1 and p-ERK5 levels, including after FSS stimulation. Exposure to NFATc1 inhibitor or ERK5 inhibitor resulted in decreased E2F2 and cyclin E1 expression and proliferation by proliferative MC3T3-E1 cells. Furthermore, immunofluorescence results illustrated that NFATc1 induced ERK5 phosphorylation, resulting in p-ERK5 translocation to the nucleus. CONCLUSIONS: Our results reveal that NFATc1 acts as an intermediate to promote the phosphorylation of ERK5 induced by FSS. Moreover, activated NFATc1-ERK5 signaling up-regulates the expression of E2F2 and cyclin E1, which promote osteoblast proliferation.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Reologia , Estresse Mecânico , Animais , Benzodiazepinonas/farmacologia , Linhagem Celular , Proliferação de Células , Ciclina E/metabolismo , Ciclosporina/farmacologia , Fator de Transcrição E2F2/metabolismo , Ativação Enzimática , Camundongos , Fosforilação
19.
BMC Urol ; 19(1): 4, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616540

RESUMO

BACKGROUND: Patients with newly diagnosed non-metastatic prostate adenocarcinoma are typically classified as at low, intermediate, or high risk of disease progression using blood prostate-specific antigen concentration, tumour T category, and tumour pathological Gleason score. Classification is used to both predict clinical outcome and to inform initial management. However, significant heterogeneity is observed in outcome, particularly within the intermediate risk group, and there is an urgent need for additional markers to more accurately hone risk prediction. Recently developed web-based visualization and analysis tools have facilitated rapid interrogation of large transcriptome datasets, and querying broadly across multiple large datasets should identify predictors that are widely applicable. METHODS: We used camcAPP, cBioPortal, CRN, and NIH NCI GDC Data Portal to data mine publicly available large prostate cancer datasets. A test set of biomarkers was developed by identifying transcripts that had: 1) altered abundance in prostate cancer, 2) altered expression in patients with Gleason score 7 tumours and biochemical recurrence, 3) correlation of expression with time until biochemical recurrence across three datasets (Cambridge, Stockholm, MSKCC). Transcripts that met these criteria were then examined in a validation dataset (TCGA-PRAD) using univariate and multivariable models to predict biochemical recurrence in patients with Gleason score 7 tumours. RESULTS: Twenty transcripts met the test criteria, and 12 were validated in TCGA-PRAD Gleason score 7 patients. Ten of these transcripts remained prognostic in Gleason score 3 + 4 = 7, a sub-group of Gleason score 7 patients typically considered at a lower risk for poor outcome and often not targeted for aggressive management. All transcripts positively associated with recurrence encode or regulate mitosis and cell cycle-related proteins. The top performer was BUB1, one of four key MIR145-3P microRNA targets upregulated in hormone-sensitive as well as castration-resistant PCa. SRD5A2 converts testosterone to its more active form and was negatively associated with biochemical recurrence. CONCLUSIONS: Unbiased mining of large patient datasets identified 12 transcripts that independently predicted disease recurrence risk in Gleason score 7 prostate cancer. The mitosis and cell cycle proteins identified are also implicated in progression to castration-resistant prostate cancer, revealing a pivotal role for loss of cell cycle control in the latter.


Assuntos
Ciclo Celular/genética , Mineração de Dados/métodos , Progressão da Doença , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Seguimentos , Humanos , Masculino , Gradação de Tumores/métodos , Valor Preditivo dos Testes
20.
Cell Physiol Biochem ; 48(2): 593-604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30021199

RESUMO

BACKGROUND/AIMS: High levels of cancer stem cells (CSCs) in patients with triple-negative breast cancer (TNBC) correlate with risk of poor clinical outcome and possibly contribute to chemoresistance and metastasis in patients with highly malignant TNBC. Aberrant microRNA expression is associated with the dysfunction of self-renewal and proliferation in cancer stem cells, while there is little information about the TNBC-specific microRNAs in regulating CSC ability. METHODS: Solexa deep sequencing was performed to detect the expression levels of TNBC or non-TNBC stem cells (CSCs) microRNAs. Mammosphere formation assay, qRT-PCR and the xenograft model in nude mice were performed. Bioinformatic analysis and microarray were used to select the target gene, and luciferase reporter assays were used to confirm the binding sites. RESULTS: Solexa sequencing data exhibited differential expression of 193 microRNAs between TNBC and non-TNBC stem cells. The gene ontology analysis and pathways analyses showed that genes were involved in the maintenance of stemness. MiR-4319 could suppress the self-renewal and formation of tumorspheres in TNBC CSCs through E2F2, and also inhibited tumor initiation and metastasis in vivo. Moreover, increased E2F2 could reverse the effect of miR-4319 on the self-renewal in TNBC CSCs. CONCLUSIONS: MiR-4319 suppresses the malignancy of TNBC by regulating self-renewal and tumorigenesis of stem cells and might be a remarkable prognostic factor or therapeutic target for patients with TNBC.


Assuntos
MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Autorrenovação Celular , Transformação Celular Neoplásica , Fator de Transcrição E2F2/antagonistas & inibidores , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA