RESUMO
Lysosomes are central to metabolic homeostasis. The microphthalmia bHLH-LZ transcription factors (MiT/TFEs) family members MITF, TFEB, and TFE3 promote the transcription of lysosomal and autophagic genes and are often deregulated in cancer. Here, we show that the GATOR2 complex, an activator of the metabolic regulator TORC1, maintains lysosomal function by protecting MiT/TFEs from proteasomal degradation independent of TORC1, GATOR1, and the RAG GTPase. We determine that in GATOR2 knockout HeLa cells, members of the MiT/TFEs family are ubiquitylated by a trio of E3 ligases and are degraded, resulting in lysosome dysfunction. Additionally, we demonstrate that GATOR2 protects MiT/TFE proteins in pancreatic ductal adenocarcinoma and Xp11 translocation renal cell carcinoma, two cancers that are driven by MiT/TFE hyperactivation. In summary, we find that the GATOR2 complex has independent roles in TORC1 regulation and MiT/TFE protein protection and thus is central to coordinating cellular metabolism with control of the lysosomal-autophagic system.
Assuntos
Neoplasias Renais , Fator de Transcrição Associado à Microftalmia , Humanos , Células HeLa , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteólise , Autofagia/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas/metabolismo , Neoplasias Renais/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismoRESUMO
Nuclear hormone receptors (NRs) are ligand-binding transcription factors that are widely targeted therapeutically. Agonist binding triggers NR activation and subsequent degradation by unknown ligand-dependent ubiquitin ligase machinery. NR degradation is critical for therapeutic efficacy in malignancies that are driven by retinoic acid and estrogen receptors. Here, we demonstrate the ubiquitin ligase UBR5 drives degradation of multiple agonist-bound NRs, including the retinoic acid receptor alpha (RARA), retinoid x receptor alpha (RXRA), glucocorticoid, estrogen, liver-X, progesterone, and vitamin D receptors. We present the high-resolution cryo-EMstructure of full-length human UBR5 and a negative stain model representing its interaction with RARA/RXRA. Agonist ligands induce sequential, mutually exclusive recruitment of nuclear coactivators (NCOAs) and UBR5 to chromatin to regulate transcriptional networks. Other pharmacological ligands such as selective estrogen receptor degraders (SERDs) degrade their receptors through differential recruitment of UBR5 or RNF111. We establish the UBR5 transcriptional regulatory hub as a common mediator and regulator of NR-induced transcription.
Assuntos
Cromatina , Fatores de Transcrição , Humanos , Ligantes , Cromatina/genética , Fatores de Transcrição/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Ubiquitinas , Ubiquitina-Proteína Ligases/genéticaRESUMO
An increasing number of genetic diseases are linked to deregulation of E3 ubiquitin ligases. Loss-of-function mutations in the RING-between-RING (RBR) family E3 ligase RNF216 (TRIAD3) cause Gordon-Holmes syndrome (GHS) and related neurodegenerative diseases. Functionally, RNF216 assembles K63-linked ubiquitin chains and has been implicated in regulation of innate immunity signaling pathways and synaptic plasticity. Here, we report crystal structures of key RNF216 reaction states including RNF216 in complex with ubiquitin and its reaction product, K63 di-ubiquitin. Our data provide a molecular explanation for chain-type specificity and reveal the molecular basis for disruption of RNF216 function by pathogenic GHS mutations. Furthermore, we demonstrate how RNF216 activity and chain-type specificity are regulated by phosphorylation and that RNF216 is allosterically activated by K63-linked di-ubiquitin. These molecular insights expand our understanding of RNF216 function and its role in disease and further define the mechanistic diversity of the RBR E3 ligase family.
Assuntos
Ataxia Cerebelar/enzimologia , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/enzimologia , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/metabolismo , Regulação Alostérica , Sítios de Ligação , Catálise , Ataxia Cerebelar/genética , Cristalografia por Raios X , Predisposição Genética para Doença , Hormônio Liberador de Gonadotropina/genética , Células HEK293 , Humanos , Hipogonadismo/genética , Mutação com Perda de Função , Lisina , Modelos Moleculares , Fenótipo , Fosforilação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.
Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Canal de Sódio Disparado por Voltagem NAV1.5 , Ubiquitina-Proteína Ligases Nedd4 , Ubiquitinação , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/metabolismo , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células HEK293RESUMO
The cullin-4-based RING-type (CRL4) family of E3 ubiquitin ligases functions together with dedicated substrate receptors. Out of the Ë29 CRL4 substrate receptors reported, the DDB1- and CUL4-associated factor 1 (DCAF1) is essential for cellular survival and growth, and its deregulation has been implicated in tumorigenesis. We carried out biochemical and structural studies to examine the structure and mechanism of the CRL4DCAF1 ligase. In the 8.4 Å cryo-EM map of CRL4DCAF1 , four CUL4-RBX1-DDB1-DCAF1 protomers are organized into two dimeric sub-assemblies. In this arrangement, the WD40 domain of DCAF1 mediates binding with the cullin C-terminal domain (CTD) and the RBX1 subunit of a neighboring CRL4DCAF1 protomer. This renders RBX1, the catalytic subunit of the ligase, inaccessible to the E2 ubiquitin-conjugating enzymes. Upon CRL4DCAF1 activation by neddylation, the interaction between the cullin CTD and the neighboring DCAF1 protomer is broken, and the complex assumes an active dimeric conformation. Accordingly, a tetramerization-deficient CRL4DCAF1 mutant has higher ubiquitin ligase activity compared to the wild-type. This study identifies a novel mechanism by which unneddylated and substrate-free CUL4 ligases can be maintained in an inactive state.
Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Proteínas Culina/metabolismo , Humanos , Modelos Moleculares , Mutação , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.
Assuntos
COVID-19 , Interferons , Humanos , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Ubiquitina/metabolismo , Antivirais , Poliproteínas , Imunidade , Citocinas/metabolismo , Ubiquitinas/genética , Ubiquitina TiolesteraseRESUMO
This study describes a new release of the Arabidopsis thaliana PeptideAtlas proteomics resource (build 2023-10) providing protein sequence coverage, matched mass spectrometry (MS) spectra, selected post-translational modifications (PTMs), and metadata. 70 million MS/MS spectra were matched to the Araport11 annotation, identifying â¼0.6 million unique peptides and 18,267 proteins at the highest confidence level and 3396 lower confidence proteins, together representing 78.6% of the predicted proteome. Additional identified proteins not predicted in Araport11 should be considered for the next Arabidopsis genome annotation. This release identified 5198 phosphorylated proteins, 668 ubiquitinated proteins, 3050 N-terminally acetylated proteins, and 864 lysine-acetylated proteins and mapped their PTM sites. MS support was lacking for 21.4% (5896 proteins) of the predicted Araport11 proteome: the "dark" proteome. This dark proteome is highly enriched for E3 ligases, transcription factors, and for certain (e.g., CLE, IDA, PSY) but not other (e.g., THIONIN, CAP) signaling peptides families. A machine learning model trained on RNA expression data and protein properties predicts the probability that proteins will be detected. The model aids in discovery of proteins with short half-life (e.g., SIG1,3 and ERF-VII TFs) and for developing strategies to identify the missing proteins. PeptideAtlas is linked to TAIR, tracks in JBrowse, and several other community proteomics resources.
Assuntos
Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Processamento de Proteína Pós-Traducional , Peptídeos/análise , Bases de Dados de ProteínasRESUMO
Mutations in the DNA helicase RECQL4 lead to Rothmund-Thomson syndrome (RTS), a disorder characterized by mitochondrial dysfunctions, premature aging, and genomic instability. However, the mechanisms by which these mutations lead to pathology are unclear. Here we report that RECQL4 is ubiquitylated by a mitochondrial E3 ligase, MITOL, at two lysine residues (K1101, K1154) via K6 linkage. This ubiquitylation hampers the interaction of RECQL4 with mitochondrial importer Tom20, thereby restricting its own entry into mitochondria. We show the RECQL4 2K mutant (where both K1101 and K1154 are mutated) has increased entry into mitochondria and demonstrates enhanced mitochondrial DNA (mtDNA) replication. We observed that the three tested RTS patient mutants were unable to enter the mitochondria and showed decreased mtDNA replication. Furthermore, we found that RECQL4 in RTS patient mutants are hyperubiquitylated by MITOL and form insoluble aggregate-like structures on the outer mitochondrial surface. However, depletion of MITOL allows RECQL4 expressed in these RTS mutants to enter mitochondria and rescue mtDNA replication. Finally, we show increased accumulation of hyperubiquitylated RECQL4 outside the mitochondria leads to the cells being potentiated to increased mitophagy. Hence, we conclude regulating the turnover of RECQL4 by MITOL may have a therapeutic effect in patients with RTS.
Assuntos
Mitocôndrias , Mitofagia , RecQ Helicases , Ubiquitina-Proteína Ligases , Humanos , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Mitofagia/genética , Mutação , RecQ Helicases/genética , RecQ Helicases/metabolismo , Síndrome de Rothmund-Thomson/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Replicação do DNA/genéticaRESUMO
Proteolysis Targeting Chimeras (PROTACs) are an emerging therapeutic modality and chemical biology tools for Targeted Protein Degradation (TPD). PROTACs contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. There are over 600 E3 ligases known so far, but only a handful have been exploited for TPD applications. A key reason for this is the scarcity of ligands binding various E3 ligases and the paucity of structural data available, which complicates ligand design across the family. In this study, we aim to progress PROTAC discovery by proposing a shortlist of E3 ligases that can be prioritized for covalent targeting by performing systematic structural ligandability analysis on a chemoproteomic dataset of potentially reactive cysteines across hundreds of E3 ligases. One of the goals of this study is to apply AlphaFold (AF) models for ligandability evaluations, as for a vast majority of these ligases an experimental structure is not available in the protein data bank (PDB). Using a combination of pocket features, AF model quality and additional aspects, we propose a shortlist of E3 ligases and corresponding cysteines that can be prioritized to potentially discover covalent ligands and expand the PROTAC toolbox.
Assuntos
Cisteína , Ligação Proteica , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ligantes , Cisteína/química , Cisteína/metabolismo , Humanos , Modelos Moleculares , Sítios de Ligação , Bases de Dados de ProteínasRESUMO
BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.
Assuntos
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligases/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Seca , Filogenia , Secas , Ubiquitinas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismoRESUMO
Mitogen-activated protein kinase (MAPK) cascades are conserved signaling pathways that transduce extracellular signals into diverse cellular responses. Arabidopsis MAPKKK18 is a component of the MAPKKK17/18-MKK3-MPK1/2/7/14 cascades, which play critical roles in abscisic acid (ABA) signaling, drought tolerance and senescence. A very important aspect of MAP kinase signaling is both its activation and its termination, which must be tightly controlled to achieve appropriate biological responses. Recently, the ubiquitin-proteasome system (UPS) has received increasing attention as a key mechanism for maintaining the homeostasis of MAPK cascade components and other ABA signaling effectors. Previous studies have shown that the stability of MAPKKK18 is regulated by the UPS via the ABA core pathway. Here, using multiple proteomic approaches, we found that MAPKKK17/18 turnover is tightly controlled by three E3 ligases, UPL1, UPL4 and KEG. We also identified lysines 154 and 237 as critical for MAPKKK18 stability. Taken together, this study sheds new light on the mechanism that controls MAPKKK17/18 activity and function.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteômica , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , MAP Quinase Quinase Quinases/metabolismoRESUMO
Chemically induced proximity (CIP) refers to co-opting naturally occurring biological pathways using synthetic molecules to recruit neosubstrates that are not normally encountered or to enhance the affinity of naturally occurring interactions. Leveraging proximity biology through CIPs has become a rapidly evolving field and has garnered considerable interest in basic research and drug discovery. PROteolysis TArgeting Chimera (PROTAC) is a well-established CIP modality that induces the proximity between a target protein and an E3 ubiquitin ligase, causing target protein degradation via the ubiquitin-proteasome system. Inspired by PROTACs, several other induced proximity modalities have emerged to modulate both proteins and RNA over recent years. In this review, we summarize the critical advances and opportunities in the field, focusing on protein degraders, RNA degraders and non-degrader modalities such as post-translational modification (PTM) and protein-protein interaction (PPI) modulators. We envision that these emerging proximity-based drug modalities will be valuable resources for both biological research and therapeutic discovery in the future.
Assuntos
Tiques , Humanos , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Descoberta de Drogas , RNA/metabolismo , Biologia , LigantesRESUMO
Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14-3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.
Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Transporte/metabolismo , Liases/metabolismo , Estresse Fisiológico/fisiologia , Proteínas 14-3-3/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Liases/genética , Isoformas de Proteínas , Estabilidade ProteicaRESUMO
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ubiquitinas/metabolismo , Linhagem Celular TumoralRESUMO
The tumor microenvironment (TME) plays an important role in neoplastic development. Matrix metalloproteinases (MMPs) are critically involved in tumorigenesis by modulation of the TME and degradation of the extracellular matrix (ECM) in a large variety of malignancies. Evidence has revealed that dysregulated MMPs can lead to ECM damage, the promotion of cell migration and tumor metastasis. The expression and activities of MMPs can be tightly regulated by TIMPs, multiple signaling pathways and noncoding RNAs. MMPs are also finely controlled by E3 ubiquitin ligases. The current review focuses on the molecular mechanism by which MMPs are governed by E3 ubiquitin ligases in carcinogenesis. Due to the essential role of MMPs in oncogenesis, they have been considered the attractive targets for antitumor treatment. Several strategies that target MMPs have been discovered, including the use of small-molecule inhibitors, peptides, inhibitory antibodies, natural compounds with anti-MMP activity, and RNAi therapeutics. However, these molecules have multiple disadvantages, such as poor solubility, severe side-effects and low oral bioavailability. Therefore, it is necessary to discover the novel inhibitors that suppress MMPs for cancer therapy. Here, we discuss the therapeutic potential of targeting E3 ubiquitin ligases to inhibit MMPs. We hope this review will stimulate the discovery of novel therapeutics for the MMP-targeted treatment of a variety of human cancers.
Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Carcinogênese , Transformação Celular Neoplásica , Metaloproteinases da Matriz , Ubiquitinas/uso terapêuticoRESUMO
Meiotic crossovers, which are exchanges of genetic material between homologous chromosomes, are more evenly and distantly spaced along chromosomes than expected by chance. This is because the occurrence of one crossover reduces the likelihood of nearby crossover events - a conserved and intriguing phenomenon called crossover interference. Although crossover interference was first described over a century ago, the mechanism allowing coordination of the fate of potential crossover sites half a chromosome away remains elusive. In this review, we discuss the recently published evidence supporting a new model for crossover patterning, coined the coarsening model, and point out the missing pieces that are still needed to complete this fascinating puzzle.
Assuntos
Cromossomos , Troca Genética , MeioseRESUMO
Hematopoiesis is responsible for numerous functions, ranging from oxygen transportation to host defense, to injury repair. This process of hematopoiesis is maintained throughout life by hematopoietic stem cells and requires a controlled balance between self-renewal, differentiation, and quiescence. Disrupting this balance can result in hematopoietic malignancies, including anemia, immune deficiency, leukemia, and lymphoma. Recent work has shown that FBOX E3 ligases, a substrate recognition component of the ubiquitin proteasome system (UPS), have an integral role in maintaining this balance. In this review, we detail how FBOX proteins target specific proteins for degradation to regulate hematopoiesis through cell processes, such as cell cycle, development, and apoptosis.
Assuntos
Hematopoese , Proteólise , Ubiquitina-Proteína Ligases , Proteínas F-Box/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Ubiquitin, a small protein, is well known for tagging target proteins through a cascade of enzymatic reactions that lead to protein degradation. The ubiquitin tag, apart from its signaling role, is paramount in destabilizing the modified protein. Here, we explore the complex role of ubiquitin-mediated protein destabilization in the intricate proteolysis process by the 26S proteasome. In addition, the significance of the so-called ubiquitin-independent pathway and the role of the 20S proteasome are considered. Next, we discuss the ubiquitin-proteasome system's interplay with pathogenic microorganisms and how the microorganisms manipulate this system to establish infection by a range of elaborate pathways to evade or counteract host responses. Finally, we focus on the mechanisms that rely either on (i) hijacking the host and on delivering pathogenic E3 ligases and deubiquitinases that promote the degradation of host proteins, or (ii) counteracting host responses through the stabilization of pathogenic effector proteins.
RESUMO
Protein post-translational modification with ubiquitin (Ub) is a versatile signal regulating almost all aspects of cell biology, and an increasing range of diseases is associated with impaired Ub modification. In this light, the Ub system offers an attractive, yet underexplored route to the development of novel targeted treatments. A promising strategy for small molecule intervention is posed by the final components of the enzymatic ubiquitination cascade, E3 ligases, as they determine the specificity of the protein ubiquitination pathway. Here, we present UbSRhodol, an autoimmolative Ub-based probe, which upon E3 processing liberates the pro-fluorescent dye, amenable to profile the E3 transthiolation activity for recombinant and in cell-extract E3 ligases. UbSRhodol enabled detection of changes in transthiolation efficacy evoked by enzyme key point mutations or conformational changes, and offers an excellent assay reagent amenable to a high-throughput screening setup allowing the identification of small molecules modulating E3 activity.
Assuntos
Corantes Fluorescentes , Ubiquitina , Ubiquitina/metabolismo , Cisteína/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The cullin-RING E3 ligases (CRLs) regulate diverse cellular processes in all eukaryotes. CRL activity is controlled by several proteins or protein complexes, including NEDD8, CAND1, and the CSN Recently, a mammalian protein called Glomulin (GLMN) was shown to inhibit CRLs by binding to the RING BOX (RBX1) subunit and preventing binding to the ubiquitin-conjugating enzyme. Here, we show that Arabidopsis ABERRANT LATERAL ROOT FORMATION4 (ALF4) is an ortholog of GLMN The alf4 mutant exhibits a phenotype that suggests defects in plant hormone response. We show that ALF4 binds to RBX1 and inhibits the activity of SCFTIR1, an E3 ligase responsible for degradation of the Aux/IAA transcriptional repressors. In vivo, the alf4 mutation destabilizes the CUL1 subunit of the SCF Reduced CUL1 levels are associated with increased levels of the Aux/IAA proteins as well as the DELLA repressors, substrate of SCFSLY1 We propose that the alf4 phenotype is partly due to increased levels of the Aux/IAA and DELLA proteins.