Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Clin Proteomics ; 21(1): 10, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355435

RESUMO

BACKGROUND: COPD is a complex respiratory disorder with high morbidity and mortality rates. Even with the current conventional diagnostic methods, including circulating inflammatory biomarkers, underdiagnosis rates in COPD remain as high as 70%. Our study was a comparative cross-sectional study that aimed to address the diagnostic challenges by identifying future biomarker candidates in COPD variants. METHODS: This study used a label-free plasma proteomics approach that combined mass spectrometric data with bioinformatics to shed light on the functional roles of differentially expressed proteins in the COPD lung microenvironment. The predictive capacity of the screened proteins was assessed using Receiver Operating Characteristic (ROC) curves, with Western blot analysis validating protein expression patterns in an independent cohort. RESULTS: Our study identified three DEPs-reticulocalbin-1, sideroflexin-4, and liprinα-3 that consistently exhibited altered expression in COPD exacerbation. ROC analysis indicated strong predictive potential, with AUC values of 0.908, 0.715, and 0.856 for RCN1, SFXN4, and LIPα-3, respectively. Validation through Western blot analysis confirmed their expression patterns in an independent validation cohort. CONCLUSIONS: Our study discovered a novel duo of proteins reticulocalbin-1, and sideroflexin-4 that showed potential as valuable future biomarkers for the diagnosis and clinical management of COPD exacerbations.

2.
Cell Mol Life Sci ; 77(16): 3161-3176, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32100084

RESUMO

As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.


Assuntos
Colágeno/imunologia , Animais , Endocitose/imunologia , Matriz Extracelular/imunologia , Fibrose/imunologia , Humanos , Neoplasias/imunologia
3.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576139

RESUMO

Basement membrane (BM) zone-associated collagen XV (ColXV) has been shown to suppress the malignancy of tumour cells, and its restin domain can inhibit angiogenesis. In human breast cancer, as well as in many other human carcinomas, ColXV is lost from the epithelial BM zone prior to tumour invasion. Here, we addressed the roles of ColXV in breast carcinogenesis using the transgenic MMTV-PyMT mouse mammary carcinoma model. We show here for the first time that the inactivation of Col15a1 in mice leads to changes in the fibrillar tumour matrix and to increased mammary tumour growth. ColXV is expressed by myoepithelial and endothelial cells in mammary tumours and is lost from the ductal BM along with the loss of the myoepithelial layer during cancer progression while persisting in blood vessels and capillaries, even in invasive tumours. However, despite the absence of anti-angiogenic restin domain, neovascularisation was reduced rather than increased in the ColXV-deficient mammary tumours compared to controls. We also show that, in robust tumour cell transplantation models or in a chemical-induced fibrosarcoma model, the inactivation of Col15a1 does not affect tumour growth or angiogenesis. In conclusion, our results support the proposed tumour suppressor function of ColXV in mammary carcinogenesis and reveal diverse roles of this collagen in different cancer types.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Colágeno/deficiência , Matriz Extracelular/metabolismo , Deleção de Genes , Neoplasias Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/patologia , Proliferação de Células , Colágeno/genética , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Fibrossarcoma/patologia , Fibrose , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Estromais/patologia , Células Estromais/ultraestrutura , Análise de Sobrevida
4.
Breast Cancer Res Treat ; 182(2): 267-282, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32445177

RESUMO

PURPOSE: MMP9 is a matricellular protein associated with extracellular matrix (ECM) remodelling, that promotes tumour progression, and modulates the activity of cell adhesion molecules and cytokines. This study aims to assess the prognostic value of MMP9 and its association with cytoskeletal modulators in early-stage invasive breast cancer (BC). METHODS: MMP9 expression was evaluated by immunohistochemistry using a well-characterised series of primary BC patients with long-term clinical follow-up. Association with clinicopathological factors, patient outcome and ECM remodelling BC-biomarkers were investigated. METABRIC dataset, BC-GenExMiner v4.0 and TCGA were used for the external validation of MMP9 expression. GSEA gene enrichment analyses were used to evaluate MMP9 associated pathways. RESULTS: MMP9 immunopositivity was observed in the stroma and cytoplasm of BC cells. Elevated MMP9 protein levels were associated with high tumour grade, high Nottingham Prognostic Index, and hormonal receptor negativity. Elevated MMP9 protein expression correlated significantly with cytokeratin 17 (Ck17), Epidermal Growth Factor Receptor (EGFR), proliferation (Ki67) biomarkers, cell surface adhesion receptor (CD44) and cell division control protein 42 (CDC42). Cytoplasmic MMP9 expression was an independent prognostic factor associated with shorter BC-specific survival. In the external validation cohorts, MMP9 expression was also associated with poor patients' outcome. Transcriptomic analysis confirmed a positive association between MMP9 and ECM remodelling biomarkers. GSEA analysis supports MMP9 association with ECM and cytoskeletal pathways. CONCLUSION: This study provides evidence for the prognostic value of MMP9 in BC. Further functional studies to decipher the role of MMP9 and its association with cytoskeletal modulators in BC progression are warranted.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/mortalidade , Mama/metabolismo , Mama/patologia , Metaloproteinase 9 da Matriz/metabolismo , Biomarcadores Tumorais/análise , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Prognóstico , Estudos Prospectivos , RNA Mensageiro/metabolismo , Fatores de Tempo , Análise Serial de Tecidos
5.
Biol Chem ; 399(9): 959-971, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29604204

RESUMO

Human tissue kallikreins (KLKs) are 15 members of the serine protease family and are present in various healthy human tissues including airway tissues. Multiple studies have revealed their crucial role in the pathophysiology of a number of chronic, infectious and tumour lung diseases. KLK1, 3 and 14 are involved in asthma pathogenesis, and KLK1 could be also associated with the exacerbation of this inflammatory disease caused by rhinovirus. KLK5 was demonstrated as an influenza virus activating protease in humans, and KLK1 and 12 could also be involved in the activation and spread of these viruses. KLKs are associated with lung cancer, with up- or downregulation of expression depending on the KLK, cancer subtype, stage of tumour and also the microenvironment. Functional studies showed that KLK12 is a potent pro-angiogenic factor. Moreover, KLK6 promotes malignant-cell proliferation and KLK13 invasiveness. In contrast, KLK8 and KLK10 reduce proliferation and invasion of malignant cells. Considering the involvement of KLKs in various physiological and pathological processes, KLKs appear to be potential biomarkers and therapeutic targets for lung diseases.


Assuntos
Calicreínas/metabolismo , Pneumopatias/enzimologia , Proliferação de Células , Humanos , Pneumopatias/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia
6.
Biochem Soc Trans ; 44(5): 1347-1354, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911717

RESUMO

The extracellular matrix (ECM) is a network of secreted proteins that, beyond providing support for tissues and organs, is involved in the regulation of a variety of cell functions, including cell proliferation, polarity, migration and oncogenic transformation. ECM homeostasis is maintained through a tightly controlled balance between synthesis, deposition and degradation. While the role of metalloproteases in ECM degradation is widely recognised, the contribution of ECM internalisation and intracellular degradation to ECM maintenance has been mostly overlooked. In this review, I will summarise what is known about the molecular mechanisms mediating ECM endocytosis and how this process impacts on diseases, such as fibrosis and cancer.


Assuntos
Endocitose , Matriz Extracelular/metabolismo , Homeostase , Neoplasias/metabolismo , Animais , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Modelos Biológicos , Neoplasias/patologia
7.
Cardiovasc Res ; 120(4): 417-432, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37976180

RESUMO

AIMS: Abdominal aortic aneurysm (AAA) is a highly lethal disease with progressive dilatation of the abdominal aorta accompanied by degradation and remodelling of the vessel wall due to chronic inflammation. Platelets play an important role in cardiovascular diseases, but their role in AAA is poorly understood. METHODS AND RESULTS: The present study revealed that platelets play a crucial role in promoting AAA through modulation of inflammation and degradation of the extracellular matrix (ECM). They are responsible for the up-regulation of SPP1 (osteopontin, OPN) gene expression in macrophages and aortic tissue, which triggers inflammation and remodelling and also platelet adhesion and migration into the abdominal aortic wall and the intraluminal thrombus (ILT). Further, enhanced platelet activation and pro-coagulant activity result in elevated gene expression of various cytokines, Mmp9 and Col1a1 in macrophages and Il-6 and Mmp9 in fibroblasts. Enhanced platelet activation and pro-coagulant activity were also detected in AAA patients. Further, we detected platelets and OPN in the vessel wall and in the ILT of patients who underwent open repair of AAA. Platelet depletion in experimental murine AAA reduced inflammation and ECM remodelling, with reduced elastin fragmentation and aortic diameter expansion. Of note, OPN co-localized with platelets, suggesting a potential role of OPN for the recruitment of platelets into the ILT and the aortic wall. CONCLUSION: In conclusion, our data strongly support the potential relevance of anti-platelet therapy to reduce AAA progression and rupture in AAA patients.


Assuntos
Aneurisma da Aorta Abdominal , Metaloproteinase 9 da Matriz , Humanos , Animais , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Fibroblastos/metabolismo
8.
Biol Rev Camb Philos Soc ; 98(2): 481-519, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36412213

RESUMO

Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.


Assuntos
Matriz Extracelular , Músculo Esquelético , Matriz Extracelular/química , Músculo Esquelético/fisiologia , Biomarcadores , Exercício Físico
9.
ESC Heart Fail ; 10(2): 858-871, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36444917

RESUMO

AIMS: Familial hypertrophic cardiomyopathy (HCM) is the most common form of inherited cardiac disease. It is characterized by myocardial hypertrophy and diastolic dysfunction, and can lead to severe heart failure, arrhythmias, and sudden cardiac death. Cardiac fibrosis, defined by excessive accumulation of extracellular matrix (ECM) components, is central to the pathophysiology of HCM. The ECM proteoglycan lumican is increased during heart failure and cardiac fibrosis, including HCM, yet its role in HCM remains unknown. We provide an in-depth assessment of lumican in clinical and experimental HCM. METHODS: Left ventricular (LV) myectomy specimens were collected from patients with hypertrophic obstructive cardiomyopathy (n = 15), and controls from hearts deemed unsuitable for transplantation (n = 8). Hearts were harvested from a mouse model of HCM; Myh6 R403Q mice administered cyclosporine A and wild-type littermates (n = 8-10). LV tissues were analysed for mRNA and protein expression. Patient myectomy or mouse mid-ventricular sections were imaged using confocal microscopy, direct stochastic optical reconstruction microscopy (dSTORM), or electron microscopy. Human foetal cardiac fibroblasts (hfCFBs) were treated with recombinant human lumican (n = 3) and examined using confocal microscopy. RESULTS: Lumican mRNA was increased threefold in HCM patients (P < 0.05) and correlated strongly with expression of collagen I (R2  = 0.60, P < 0.01) and III (R2  = 0.58, P < 0.01). Lumican protein was increased by 40% in patients with HCM (P < 0.01) and correlated with total (R2  = 0.28, P = 0.05) and interstitial (R2  = 0.30, P < 0.05) fibrosis. In mice with HCM, lumican mRNA increased fourfold (P < 0.001), and lumican protein increased 20-fold (P < 0.001) in insoluble ECM lysates. Lumican and fibrillar collagen were located together throughout fibrotic areas in HCM patient tissue, with increased co-localization measured in patients and mice with HCM (patients: +19%, P < 0.01; mice: +13%, P < 0.01). dSTORM super-resolution microscopy was utilized to image interstitial ECM which had yet to undergo overt fibrotic remodelling. In these interstitial areas, collagen I deposits located closer to (-15 nm, P < 0.05), overlapped more frequently with (+7.3%, P < 0.05) and to a larger degree with (+5.6%, P < 0.05) lumican in HCM. Collagen fibrils in such deposits were visualized using electron microscopy. The effect of lumican on collagen fibre formation was demonstrated by adding lumican to hfCFB cultures, resulting in thicker (+53.8 nm, P < 0.001), longer (+345.9 nm, P < 0.001), and fewer (-8.9%, P < 0.001) collagen fibres. CONCLUSIONS: The ECM proteoglycan lumican is increased in HCM and co-localizes with fibrillar collagen throughout areas of fibrosis in HCM. Our data suggest that lumican may promote formation of thicker collagen fibres in HCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Humanos , Animais , Camundongos , Lumicana/fisiologia , Cardiomiopatia Hipertrófica/genética , Insuficiência Cardíaca/metabolismo , Colágeno Tipo I , Fibrose , RNA Mensageiro
10.
Animals (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830471

RESUMO

Diabetes mellitus and pancreatitis are common pancreatic diseases in dogs, affecting the endocrine and exocrine portions of the organ. Dogs have a significant role in the history of research related to genetic diseases, being considered potential models for the study of human diseases. This review discusses the importance of using the extracellular matrix of the canine pancreas as a model for the study of diabetes mellitus and pancreatitis, in addition to focusing on the importance of using extracellular matrix in new regenerative techniques, such as decellularization and recellularization. Unlike humans, rabbits, mice, and pigs, there are no reports in the literature characterizing the healthy pancreatic extracellular matrix in dogs, in addition to the absence of studies related to matrix components that are involved in triggering diabetes melittus and pancreatitis. The extracellular matrix plays the role of physical support for the cells and allows the regulation of various cellular processes. In this context, it has already been demonstrated that physiologic and pathologic pancreatic changes lead to ECM remodeling, highlighting the importance of an in-depth study of the changes associated with pancreatic diseases.

11.
Clin Obes ; 13(5): e12607, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340990

RESUMO

Compromised adipose tissue plasticity is a hallmark finding of obesity orchestrated by the intricate interplay between various extracellular matrix components. Collagen6 (COL6) is well characterized in obese visceral adipose tissue (VAT), not much is known about MMP14 which is hypothesized to be the key player in matrix reorganization. Subjects with obesity (BMI ≥40; n = 50) aged 18-60 years undergoing bariatric surgery and their age-matched controls (BMI < 25; n = 30) were included. MMP14, Col6A3 and Tissue inhibitor of metalloproteinase 2 (TIMP2) mRNA expression was assessed in VAT and their serum levels along with endotrophin were estimated in both groups preoperatively and post-operatively in the obese group. The results were analysed statistically and correlated with anthropometric and glycaemic parameters, namely fasting glucose and insulin, HbA1c, HOMA-IR, HOMA-ß and QUICKI. Circulating levels as well as mRNA expression profiling revealed significant differences between the individuals with and without obesity (p < .05), more so in individuals with diabetes and obesity (p < .05). Follow-up serum analysis revealed significantly raised MMP14 (p < .001), with decreased Col6A3, endotrophin and TIMP2 levels (p < .01, p < .001 and p < .01, respectively). A rise in serum MMP14 protein, simultaneous with post-surgical weight loss and decreased serum levels of associated extracellular matrix (ECM) remodellers, suggests its crucial role in modulating obesity-associated ECM fibrosis and pliability of VAT.


Assuntos
Resistência à Insulina , Inibidor Tecidual de Metaloproteinase-2 , Humanos , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Gordura Intra-Abdominal , Metaloproteinase 14 da Matriz/metabolismo , Obesidade/genética , Obesidade/cirurgia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
J Biol Eng ; 17(1): 60, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770970

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) causes an increasing health burden in the 21st century due to aging population. The complex pathophysiology remains to be understood to develop novel prevention and treatment strategies. Microphysiological systems (MPSs), also known as organ-on-chip or lab-on-a-chip systems, proved promising in bridging in vitro and in vivo approaches by applying integer AV tissue and modelling biomechanical microenvironment. This study introduces a novel MPS comprising different micropumps in conjunction with a tissue-incubation-chamber (TIC) for long-term porcine and human AV incubation (pAV, hAV). RESULTS: Tissue cultures in two different MPS setups were compared and validated by a bimodal viability analysis and extracellular matrix transformation assessment. The MPS-TIC conjunction proved applicable for incubation periods of 14-26 days. An increased metabolic rate was detected for pulsatile dynamic MPS culture compared to static condition indicated by increased LDH intensity. ECM changes such as an increase of collagen fibre content in line with tissue contraction and mass reduction, also observed in early CAVD, were detected in MPS-TIC culture, as well as an increase of collagen fibre content. Glycosaminoglycans remained stable, no significant alterations of α-SMA or CD31 epitopes and no accumulation of calciumhydroxyapatite were observed after 14 days of incubation. CONCLUSIONS: The presented ex vivo MPS allows long-term AV tissue incubation and will be adopted for future investigation of CAVD pathophysiology, also implementing human tissues. The bimodal viability assessment and ECM analyses approve reliability of ex vivo CAVD investigation and comparability of parallel tissue segments with different treatment strategies regarding the AV (patho)physiology.

13.
Tissue Cell ; 74: 101704, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871826

RESUMO

As a principal matrisomal protein, collagen is involved in the regulation of the structural framework of extracellular matrix (ECM) and therefore is potentially crucial in determining the biophysical character of the ECM. It has been suggested that collagen architecture plays a role in ovarian cancer development, progression and therapeutic responses which led us to examine the collagen morphology in normal and cancerous ovarian tissue. Also, the behaviour of ovarian cancer cells cultured in four qualitatively different collagen gels was investigated. The results here provide evidence that collagen I morphology in the cancerous ovary is distinct from that in the normal ovary. Tumour-associated collagen I showed streams or channels of thick elongated collagen I fibrils. Moreover, fibril alignment was significantly more prevalent in endometrioid and clear cell cancers than other ovarian cancer subtypes. In this work, for the first-time collagen I architecture profiling (CAP) was introduced using histochemical staining, which distinguished between the collagen I morphologies of ovarian cancer subtypes. Immunohistochemical examination of ovarian normal and cancerous tissues also supported the notion that focal adhesion and Rho signalling are upregulated in ovarian cancers, especially in the high-grade serous tumours, as indicated by higher expression of p-FAK and p190RhoGEF. The results also support the concept that collagen I architecture, which might be collagen I concentration-dependent, influences proliferation in ovarian cancer cells. The study provides evidence that modification of collagen I architecture integrity is associated with ovarian cancer development and therapeutic responses.


Assuntos
Colágeno Tipo I/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/sangue , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo I/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
14.
J R Soc Interface ; 18(175): 20200823, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593211

RESUMO

Through mechanical forces, biological cells remodel the surrounding collagen network, generating striking deformation patterns. Tethers-tracts of high densification and fibre alignment-form between cells, thinner bands emanate from cell clusters. While tethers facilitate cell migration and communication, how they form is unclear. Combining modelling, simulation and experiment, we show that tether formation is a densification phase transition of the extracellular matrix, caused by buckling instability of network fibres under cell-induced compression, featuring unexpected similarities with martensitic microstructures. Multiscale averaging yields a two-phase, bistable continuum energy landscape for fibrous collagen, with a densified/aligned second phase. Simulations predict strain discontinuities between the undensified and densified phase, which localizes within tethers as experimentally observed. In our experiments, active particles induce similar localized patterns as cells. This shows how cells exploit an instability to mechanically remodel the extracellular matrix simply by contracting, thereby facilitating mechanosensing, invasion and metastasis.


Assuntos
Colágeno , Matriz Extracelular , Simulação por Computador , Fenômenos Mecânicos , Modelos Biológicos , Transição de Fase
15.
Am J Surg ; 222(1): 56-66, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33189313

RESUMO

BACKGROUND: Surgery to the abdominal wall is ubiquitous worldwide and hernia treatment is challenging and expensive, posing a critical need to tailor treatment to individual patient risk-factors. In this systematic review, we consider specific systemic factors with potential as biomarkers of hernia formation. METHODS: A healthcare database-assisted search, following PRISMA guidelines, identified journal articles for inclusion and analysis. RESULTS: 14 biomarker studies were selected, comparing hernia patients and hernia-free controls, focusing on markers of extracellular matrix (ECM) remodelling and collagen turnover. Matrix metalloproteinase-2 was increased in patients with inguinal hernia. Markers of type IV collagen synthesis were increased in patients with abdominal wall hernia; while markers of fibrillar collagen synthesis were reduced. Additional other ECM signalling proteins differ significantly within published studies. CONCLUSION: We identify a lack of high-quality evidence of systemic biomarkers in tailoring treatment strategies relative to patient-specific risks, but recognise the potential held within biomarker-based diagnostic studies to improve management of hernia pathogeneses.


Assuntos
Parede Abdominal/patologia , Colágeno Tipo IV/biossíntese , Matriz Extracelular/patologia , Hérnia Abdominal/diagnóstico , Metaloproteinase 2 da Matriz/sangue , Biomarcadores/sangue , Biomarcadores/metabolismo , Hérnia Abdominal/sangue , Hérnia Abdominal/etiologia , Hérnia Abdominal/patologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Prognóstico , Medição de Risco/métodos
16.
Biol Open ; 9(12)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33234702

RESUMO

Frank-Ter Haar syndrome (FTHS, MIM #249420) is a rare skeletal dysplasia within the defective collagen remodelling spectrum (DECORS), which is characterised by craniofacial abnormalities, skeletal malformations and fibrotic soft tissues changes including dermal fibrosis and joint contractures. FTHS is caused by homozygous or compound heterozygous loss-of-function mutation or deletion of SH3PXD2B (Src homology 3 and Phox homology domain-containing protein 2B; MIM #613293). SH3PXD2B encodes an adaptor protein with the same name, which is required for full functionality of podosomes, specialised membrane structures involved in extracellular matrix (ECM) remodelling. The pathogenesis of DECORS is still incompletely understood and, as a result, therapeutic options are limited. We previously generated an mmp14a/b knockout zebrafish and demonstrated that it primarily mimics the DECORS-related bone abnormalities. Here, we present a novel sh3pxd2b mutant zebrafish, pretzel, which primarily reflects the DECORS-related dermal fibrosis and contractures. In addition to relatively mild skeletal abnormalities, pretzel mutants develop dermal and musculoskeletal fibrosis, contraction of which seems to underlie grotesque deformations that include kyphoscoliosis, abdominal constriction and lateral folding. The discrepancy in phenotypes between mmp14a/b and sh3pxd2b mutants suggests that in fish, as opposed to humans, there are differences in spatiotemporal dependence of ECM remodelling on either sh3pxd2b or mmp14a/b The pretzel model presented here can be used to further delineate the underlying mechanism of the fibrosis observed in DECORS, as well as screening and subsequent development of novel drugs targeting DECORS-related fibrosis.This paper has an associated First Person interview with the first author of the article.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Colágeno/metabolismo , Anormalidades Craniofaciais/etiologia , Anormalidades Craniofaciais/metabolismo , Proteínas de Drosophila/genética , Cardiopatias Congênitas/etiologia , Cardiopatias Congênitas/metabolismo , Osteocondrodisplasias/congênito , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anormalidades Craniofaciais/patologia , Derme/metabolismo , Derme/patologia , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Edição de Genes , Cardiopatias Congênitas/patologia , Imuno-Histoquímica , Mutação , Osteocondrodisplasias/etiologia , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Fenótipo , Peixe-Zebra
17.
J Tissue Eng Regen Med ; 12(7): 1658-1669, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29763974

RESUMO

Utra Violet type A (UVA) exposure strongly affects the ageing of human skin by modifying both epidermis and dermis and their cross talk as well. The possibility to get a deep understanding in vitro of such crucial mechanism would have a huge impact in the development of antiageing compounds. Here, we present a full thickness model of human skin equivalent formed by a millimeter-sized dermis completely composed of fibroblasts embedded in their own extracellular matrix. We show that such endogenous nature of the dermis compartment allows the replication of the complexity of the mutual interactions occurring between cellular and extracellular components of the skin under UVA exposure: (a) oxidative stress formation in the whole tissue (dermis and epidermis); (b) senescence of germinative layer of epidermal tissue in terms of p63, ki67, and activated caspase-3 regulation; (c) modification of the collagenous network architecture in the dermis compartment. By using this human skin model, it is possible to study a widely shared assumptions not yet proved in vitro such the effect of UVA on the self-renewal capability of skin stem cells.


Assuntos
Derme/metabolismo , Epiderme/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Derme/patologia , Epiderme/patologia , Matriz Extracelular/patologia , Fibroblastos/patologia , Humanos , Engenharia Tecidual
18.
J Tissue Eng Regen Med ; 11(1): 231-245, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-24799390

RESUMO

Spatiotemporal changes in the extracellular matrix (ECM) were studied within abdominal aortic aneurysms (AAAs) generated in rats via elastase infusion. At 7, 14 and 21 days post-induction, AAA tissues were divided into proximal, mid- and distal regions, based on their location relative to the renal arteries and the region of maximal aortic diameter. Wall thicknesses differed significantly between the AAA spatial regions, initially increasing due to positive matrix remodelling and then decreasing due to wall thinning and compaction of matrix as the disease progressed. Histological images analysed using custom segmentation tools indicated significant differences in ECM composition and structure vs healthy tissue, and in the extent and nature of matrix remodelling between the AAA spatial regions. Histology and immunofluorescence (IF) labelling provided evidence of neointimal AAA remodelling, characterized by presence of elastin-containing fibres. This remodelling was effected by smooth muscle α-actin-positive neointimal cells, which transmission electron microscopy (TEM) showed to differ morphologically from medial SMCs. TEM of the neointima further showed the presence of elongated deposits of amorphous elastin and the presence of nascent, but not mature, elastic fibres. These structures appeared to be deficient in at least one microfibrillar component, fibrillin-1, which is critical to mature elastic fibre assembly. The substantial production of elastin and elastic fibre-like structures that we observed in the AAA neointima, which was not observed elsewhere within AAA tissues, provides a unique opportunity to capitalize on this autoregenerative phenomenon and direct it from the standpoint of matrix organization towards restoring healthy aortic matrix structure, mechanics and function. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/patologia , Matriz Extracelular/metabolismo , Músculo Liso Vascular/patologia , Actinas/metabolismo , Animais , Aorta/patologia , Modelos Animais de Doenças , Tecido Elástico/patologia , Elastina/metabolismo , Imunofluorescência , Miócitos de Músculo Liso , Elastase Pancreática/metabolismo , Fenótipo , Ratos , Ratos Sprague-Dawley , Regeneração , Análise Espaço-Temporal
19.
J Tissue Eng Regen Med ; 11(7): 1963-1973, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26631842

RESUMO

Current options for aortic valve replacements are non-viable and thus lack the ability to grow and remodel, which can be problematic for paediatric applications. Toward the development of living valve substitutes that can grow and remodel, porcine aortic valve interstitial cells (VICs) were isolated and encapsulated within proteolytically degradable and cell-adhesive poly(ethylene glycol) (PEG) hydrogels, in an effort to study their phenotypes and functions. The results showed that encapsulated VICs maintained high viability and proliferated within the hydrogels. The VICs actively remodelled the hydrogels via secretion of matrix metalloproteinase-2 (MMP-2) and deposition of new extracellular matrix (ECM) components, including collagens I and III. The soft hydrogels with compressive moduli of ~4.3 kPa quickly reverted VICs from an activated myofibroblastic phenotype to a quiescent, unactivated phenotype, evidenced by the loss of α-smooth muscle actin expression upon encapsulation. In an effort to promote VIC-mediated ECM production, ascorbic acid (AA) was supplemented in the medium to investigate its effects on VIC function and phenotype. AA treatment enhanced VIC spreading and proliferation, and inhibited apoptosis. AA treatment also promoted VIC-mediated ECM remodelling by increasing MMP-2 activity and depositing collagens I and III. AA treatment did not significantly influence the expression of α-smooth muscle actin (myofibroblast activation marker) and alkaline phosphatase (osteogenic differentiation marker). No calcification or nodule formation was observed within the cell-laden hydrogels, with or without AA treatment. These results suggest the potential of this system and the beneficial effect of AA in heart valve tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Valva Aórtica , Ácido Ascórbico/farmacologia , Proteínas da Matriz Extracelular/biossíntese , Matriz Extracelular/metabolismo , Hidrogéis/química , Alicerces Teciduais/química , Animais , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Suínos
20.
Biol Open ; 5(6): 875-82, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27170254

RESUMO

Extracellular matrix (ECM) remodelling is integral to numerous physiological and pathological processes in biology, such as embryogenesis, wound healing, fibrosis and cancer. Until recently, most cellular studies have been conducted on 2D environments where mechanical cues significantly differ from physiologically relevant 3D environments, impacting cellular behaviour and masking the interpretation of cellular function in health and disease. We present an integrated methodology where cell-ECM interactions can be investigated in 3D environments via ECM remodelling. Monitoring and quantification of collagen-I structure in remodelled matrices, through designated algorithms, show that 3D matrices can be used to correlate remodelling with increased ECM stiffness observed in fibrosis. Pancreatic stellate cells (PSCs) are the key effectors of the stromal fibrosis associated to pancreatic cancer. We use PSCs to implement our methodology and demonstrate that PSC matrix remodelling capabilities depend on their contractile machinery and ß1 integrin-mediated cell-ECM attachment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA