RESUMO
Fenbendazole (FBZ) has been safely used as an antiparasitic agent in animals for decades, and the anticancer effects of FBZ have been studied through various mechanisms. However, there is a lack of in vivo studies that include lymphoma. Therefore, this study examined the effects of FBZ on EL-4 cells and a mouse T lymphoma model. FBZ induced G2/M phase arrest in EL-4 cells, resulting in cell death and decreased metabolic activity. However, FBZ had no anticancer effects on an EL-4 mouse lymphoma model in vivo, as evident by rapid weight loss and tumor growth comparable to the control. The FBZ-treated EL-4 cells expressed higher levels of PD-L1 and CD86, which are associated with T cell immunity in the tumor microenvironment (TME), than the controls. Furthermore, the hematoxylin and eosin staining of the FBZ-treated tumor tissues showed a starry sky pattern, which is seen in actively proliferating cancer tissues, and an immunohistochemical analysis revealed a high percentage of immunosuppressive M2 macrophages. These changes in the immune activity in the TME contradict the results of the in vitro experiments, and further studies are needed to determine the detailed mechanisms by which FBZ induces these responses.
RESUMO
Thymic stromal lymphopoietin (TSLP), a type I cytokine belonging to the IL-2 cytokine family, promotes Th2-mediated inflammatory responses. The aim of this study is to investigate whether TSLP increases inflammatory responses via induction of autophagy using a murine T cell lymphoma cell line, EL4 cells, and lipopolysaccharide (LPS)-injected mice. TSLP increased expression levels of autophagy-related factors, such as Beclin-1, LC3-II, p62, Atg5, and lysosome associated membrane protein 1/2, whereas these factors increased by TSLP disappeared by neutralization of TSLP in EL4 cells. TSLP activated JAK1/JAK2/STAT5/JNK/PI3K, while the blockade of JAK1/JAK2/STAT5/JNK/PI3K signaling pathways reduced the expression levels of Beclin-1, LC3-II, and p62 in TSLP-stimulated EL4 cells. In addition, TSLP simultaneously increased levels of inflammatory cytokines via induction of autophagy by activation of JAK1/JAK2/STAT5/JNK/PI3K signaling pathways. In an LPS-induced acute liver injury (ALI) mouse model, exogenous TSLP increased expression levels of Beclin-1 and LC3-II, whereas functional deficiency of TSLP by TSLP siRNA resulted in lower expression of Beclin-1, LC3-II, and inflammatory cytokines, impairing their ability to form autophagosomes in ALI mice. Thus, our findings show a new role of TSLP between autophagy and inflammatory responses. In conclusion, regulating TSLP-induced autophagy may be a potential therapeutic strategy for inflammatory responses.
Assuntos
Autofagia/fisiologia , Citocinas/metabolismo , Inflamação/metabolismo , Células Th2/metabolismo , Animais , Células Cultivadas , Hepatopatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Linfopoietina do Estroma do TimoRESUMO
Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 µg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 µg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 µg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture.
Assuntos
Células-Tronco Germinativas Adultas/efeitos dos fármacos , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/metabolismo , Animais , Animais Recém-Nascidos , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Ensaio de Unidades Formadoras de Colônias , Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Espermatogênese/efeitos dos fármacos , Proteína X Associada a bcl-2/genéticaRESUMO
Extracellular vesicles (EVs) show promising potential to be used as therapeutics, disease biomarkers, and drug delivery vehicles. We aimed to modify EVs with miR-155 to modulate macrophage immune response that can be potentially used against infectious diseases. Primarily, we characterized T cells (EL-4) EVs by several standardized techniques and confirmed that the EVs could be used for experimental approaches. The bioactivities of the isolated EVs were confirmed by the uptake assessment, and the results showed that target cells can successfully uptake EVs. To standardize the loading protocol by electroporation for effective biological functionality, we chose fluorescently labelled miR-155 mimics because of its important roles in the immune regulations to upload them into EVs. The loading procedure showed that the dosage of 1 µg of miRNA mimics can be efficiently loaded to the EVs at 100 V, further confirmed by flow cytometry. The functional assay by incubating these modified EVs (mEVs) with in vitro cultured cells led to an increased abundance of miR-155 and decreased the expressions of its target genes such as TSHZ3, Jarid2, ZFP652, and WWC1. Further evaluation indicated that these mEVs induced M1-type macrophage polarization with increased TNF-α, IL-6, IL-1ß, and iNOS expression. The bioavailability analysis revealed that mEVs could be detected in tissues of the livers. Overall, our study demonstrated that EVs can be engineered with miR-155 of interest to modulate the immune response that may have implications against infectious diseases.
Assuntos
Doenças Transmissíveis , Vesículas Extracelulares , MicroRNAs , Humanos , Linfócitos T/metabolismo , Macrófagos , MicroRNAs/genética , Vesículas Extracelulares/metabolismo , Doenças Transmissíveis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/farmacologiaRESUMO
Suitable carriers are crucial to RNAi applications for cancer genotherapy and T-cell immunotherapy. In this research, we selected two extensively-investigated biocompatible inorganic nanoparticle carriers, i.e., layered double hydroxide (LDH) and lipid-coated calcium phosphate (LCP) and then compared their efficacy for siRNA delivery in T cells, in order to understand which carrier is more efficient in delivering functional programmed cell death protein 1 siRNA (PD-1 siRNA) to suspended T lymphocytes. Both LDH and LCP nanoparticles quickly delivered gene segment to mouse T cell lines (EL4), while the LCP nanoparticles exhibited more cellular uptake and higher PD-1 gene silence efficiency. We further demonstrated that LCP nanoparticles successfully reduced the expression of PD-1 in human ex vivo tumor infiltrating lymphocytes (TILs). Thus, LCP nanoparticles can be used as a better nano-carrier for gene therapy in lymphocytes, especially in regards to TIL-related cancer immunotherapy.
RESUMO
Ascorbyl stearate (Asc-s) is a derivative of ascorbic acid with better anti-tumour efficacy compared to its parent compound ascorbic acid. In this study, we have examined radio-sensitizing effect of Asc-s in murine T cell lymphoma (EL4) cells at 4 Gy. Asc-s and radiation treatment reduced cell proliferation, induced apoptosis in a dose dependent manner by arresting the cells at S/G2-M phase of cell cycle. It also decreased the frequency of cancer stem cells per se, with significantly higher decrease in combination with radiation treatment./Further, Asc-s and radiation treatment increased the level of reactive oxygen species (ROS), drop in mitochondrial membrane potential (MMP) and increased caspase-3 activity resulting in apoptosis of EL4 cells. Further it also significantly decreased GSH/GSSG ratio due to binding of Asc-s with thiols. The increase in oxidative stress induced by Asc-s and radiation treatment was abrogated by thiol antioxidants in EL4 cells. Interestingly, this redox modulation triggered significant increase in protein glutathionylation in a time dependent manner. Asc-s treatment resulted in glutathionylation of IKK, p50-NF-kB and mutated p53, thereby inhibiting cancer progression during oxidative stress. Asc-s quenches GSH ensuing Asc-s + GSH adduct thereby further modulating GSH/GSSG ratio as evident from HPLC and docking studies. The anti-tumour effect of Asc-s along with radiation was studied by injecting EL4 cells in synegenicC57/BL6 male mice. Intraperitoneal injection of Asc-s followed by radiation exposure at 4 Gy to the tumour bearing mice resulted in radio-sensitization which is evident from significant regression of tumour as evident from tumour burden index. The survival study supports the data that Asc-s pre-treatment enhances radio-sensitization in murine lymphoma. Our data, suggest that Asc-s and ionizing radiation induced cell cycle arrest and apoptosis by perturbing redox balance through irreversible complexes of thiols with Asc-s, disturbed mitochondrial membrane permeability and activation of caspase-3 in EL4 cells.