RESUMO
Transcription-coupled nucleotide excision repair (TC-NER) is a highly conserved DNA repair pathway that removes bulky lesions in the transcribed genome. Cockayne syndrome B protein (CSB), or its yeast ortholog Rad26, has been known for decades to play important roles in the lesion-recognition steps of TC-NER. Another conserved protein ELOF1, or its yeast ortholog Elf1, was recently identified as a core transcription-coupled repair factor. How Rad26 distinguishes between RNA polymerase II (Pol II) stalled at a DNA lesion or other obstacles and what role Elf1 plays in this process remains unknown. Here, we present cryo-EM structures of Pol II-Rad26 complexes stalled at different obstacles that show that Rad26 uses a common mechanism to recognize a stalled Pol II, with additional interactions when Pol II is arrested at a lesion. A cryo-EM structure of lesion-arrested Pol II-Rad26 bound to Elf1 revealed that Elf1 induces further interactions between Rad26 and a lesion-arrested Pol II. Biochemical and genetic data support the importance of the interplay between Elf1 and Rad26 in TC-NER initiation. Together, our results provide important mechanistic insights into how two conserved transcription-coupled repair factors, Rad26/CSB and Elf1/ELOF1, work together at the initial lesion recognition steps of transcription-coupled repair.
Assuntos
Reparo por Excisão , Parada Cardíaca , Humanos , Cognição , Dano ao DNA , RNA Polimerase II/genética , Saccharomyces cerevisiae/genéticaRESUMO
The distinct human leukocyte antigen (HLA) class I expression pattern of human extravillous trophoblasts (EVT) endows them with unique tolerogenic properties that enable successful pregnancy. Nevertheless, how this process is elaborately regulated remains elusive. Previously, E74 like ETS transcription factor 3 (ELF3) was identified to govern high-level HLA-C expression in EVT. In the present study, ELF3 is found to bind to the enhancer region of two adjacent NOD-like receptor (NLR) genes, NLR family pyrin domain-containing 2 and 7 (NLRP2, NLRP7). Notably, our analysis of ELF3-deficient JEG-3 cells, a human choriocarcinoma cell line widely used to study EVT biology, suggests that ELF3 transactivates NLRP7 while suppressing the expression of NLRP2. Moreover, we find that NLRP2 and NLRP7 have opposing effects on HLA-C expression, thus implicating them in immune evasion at the maternal-fetal interface. We confirmed that NLRP2 suppresses HLA-C levels and described a unique role for NLRP7 in promoting HLA-C expression in JEG-3. These results suggest that these two NLR genes, which arose via gene duplication in primates, are fine-tuned by ELF3 yet have acquired divergent functions to enable proper expression levels of HLA-C in EVT, presumably through modulating the degradation kinetics of IkBα. Targeting the ELF3-NLRP2/NLRP7-HLA-C axis may hold therapeutic potential for managing pregnancy-related disorders, such as recurrent hydatidiform moles and fetal growth restriction, and thus improve placental development and pregnancy outcomes.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Trofoblastos Extravilosos , Antígenos HLA-C , Trofoblastos , Feminino , Humanos , Gravidez , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Antígenos HLA-C/metabolismo , Antígenos HLA-C/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Trofoblastos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismoRESUMO
Precise regulation of flowering time is critical for cereal crops to synchronize reproductive development with optimum environmental conditions, thereby maximizing grain yield. The plant-specific gene GIGANTEA (GI) plays an important role in the control of flowering time, with additional functions on the circadian clock and plant stress responses. In this study, we show that GI loss-of-function mutants in a photoperiod-sensitive tetraploid wheat background exhibit significant delays in heading time under both long-day (LD) and short-day photoperiods, with stronger effects under LD. However, this interaction between GI and photoperiod is no longer observed in isogenic lines carrying either a photoperiod-insensitive allele in the PHOTOPERIOD1 (PPD1) gene or a loss-of-function allele in EARLY FLOWERING 3 (ELF3), a known repressor of PPD1. These results suggest that the normal circadian regulation of PPD1 is required for the differential effect of GI on heading time in different photoperiods. Using crosses between mutant or transgenic plants of GI and those of critical genes in the flowering regulation pathway, we show that GI accelerates wheat heading time by promoting FLOWERING LOCUS T1 (FT1) expression via interactions with ELF3, VERNALIZATION 2 (VRN2), CONSTANS (CO), and the age-dependent microRNA172-APETALA2 (AP2) pathway, at both transcriptional and protein levels. Our study reveals conserved GI mechanisms between wheat and Arabidopsis but also identifies specific interactions of GI with the distinctive photoperiod and vernalization pathways of the temperate grasses. These results provide valuable knowledge for modulating wheat heading time and engineering new varieties better adapted to a changing environment.
Assuntos
Relógios Circadianos , Triticum , Triticum/fisiologia , Flores , Fotoperíodo , Genes de Plantas/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas/genéticaRESUMO
Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor ß (TGF-ß) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-ß-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-ß-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.
Assuntos
Fator 4 Ativador da Transcrição , Aminoácidos , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição , Fator de Crescimento Transformador beta , Transição Epitelial-Mesenquimal/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aminoácidos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Transdução de Sinais , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Transcriptoma , AnimaisRESUMO
Plants use photoperiodism to activate flowering in response to a particular daylength. In rice, flowering is accelerated in short-day conditions, and even a brief exposure to light during the dark period (night-break) is sufficient to delay flowering. Although many of the genes involved in controlling flowering in rice have been uncovered, how the long- and short-day flowering pathways are integrated, and the mechanism of photoperiod perception is not understood. While many of the signaling components controlling photoperiod-activated flowering are conserved between Arabidopsis and rice, flowering in these two systems is activated by opposite photoperiods. Here we establish that photoperiodism in rice is controlled by the evening complex (EC). We show that mutants in the EC genes LUX ARRYTHMO (LUX) and EARLY FLOWERING3 (ELF3) paralogs abolish rice flowering. We also show that the EC directly binds and suppresses the expression of flowering repressors, including PRR37 and Ghd7. We further demonstrate that light acts via phyB to cause a rapid and sustained posttranslational modification of ELF3-1. Our results suggest a mechanism by which the EC is able to control both long- and short-day flowering pathways.
Assuntos
Flores , Oryza , Fotoperíodo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Luz , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Immune escape and metabolic reprogramming are two essential hallmarks of cancer. Mucin-16 (MUC16) has been linked to glycolysis and immune response in different cancers. However, its involvement in nasopharyngeal carcinoma (NPC) has not been well described. We seek to dissect the functions and detailed mechanisms of MUC16 in NPC. Bioinformatics prediction was performed to identify NPC-related molecules. MUC16 was significantly enhanced in NPC tissues, which was correlated with the advanced tumor stage of patients. Lentiviral plasmids-mediated MUC16 deletion inhibited the malignant behavior of NPC cells, and glycolysis inhibition by MUC16 deletion blocked immune escape in NPC cells. E74-like factor 3 (ELF3) bound to the MUC16 promoter promotes the transcription of MUC16. MUC16 overexpression reversed the repressive effect of ELF3 silencing on glycolysis and immune escape in NPC and accelerated tumor growth in vivo. Overexpression of ELF3 in NPC was associated with reduced DNA methylation in its promoter. Our findings revealed the role of the ELF3/MUC16 axis in the immune escape and metabolic reprogramming of NPC, providing potential therapeutic targets for NPC.NEW & NOTEWORTHY We identified the functions of E74-like factor 3 (ELF3) in glycolysis and immune escape of nasopharyngeal carcinoma cells for the first time. As a transcription factor, ELF3 promoted mucin-16 (MUC16) expression by binding to its promoter, leading to the glycolysis-mediated immune escape of nasopharyngeal carcinoma (NPC) cells. Targeting the ELF3/MUC16 axis generates a superior antitumor immune response, which will help establish a novel approach to restore protective antitumor immunity for NPC immunotherapy.
Assuntos
Metilação de DNA , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Glicólise , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Fatores de Transcrição , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Evasão Tumoral/genética , Camundongos , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Camundongos Nus , Masculino , Feminino , Regiões Promotoras Genéticas , Reprogramação Celular/genética , Camundongos Endogâmicos BALB C , Reprogramação MetabólicaRESUMO
Aminoglycosides are important treatment options for serious lung infections, but modeling analyses to quantify their human lung epithelial lining fluid (ELF) penetration are lacking. We estimated the extent and rate of penetration for five aminoglycosides via population pharmacokinetics from eight published studies. The area under the curve in ELF vs plasma ranged from 50% to 100% and equilibration half-lives from 0.61 to 5.80 h, indicating extensive system hysteresis. Aminoglycoside ELF peak concentrations were blunted, but overall exposures were moderately high.
Assuntos
Aminoglicosídeos , Antibacterianos , Humanos , Antibacterianos/farmacocinética , Pulmão , AmicacinaRESUMO
We described the diagnosis and treatment of a patient with autoinflammatory disease, named "Deficiency in ELF4, X-linked (DEX)". A novel ELF4 variant was discovered and its pathogenic mechanism was elucidated. The data about clinical, laboratory and endoscopic features, treatment, and follow-up of a patient with DEX were analyzed. Whole exome sequencing and Sanger sequencing were performed to identify potential pathogenic variants. The mRNA and protein levels of ELF4 were analyzed by qPCR and Western blotting, respectively. The association of ELF4 frameshift variant with nonsense-mediated mRNA decay (NMD) in the pathogenesis DEX was examined. Moreover, RNA-seq was performed to identify the key molecular events triggered by ELF4 variant. The relationship between ELF4 and IFN-ß activity was validated using a dual-luciferase reporter assay and a ChIP-qPCR assay. An 11-year-old boy presented with a Behçet's-like phenotype. The laboratory abnormality was the most obvious in elevated inflammatory indicators. Endoscopy revealed multiple ileocecal ulcers. Intestinal histopathology showed inflammatory cell infiltrations. The patient was treated with long-term immunosuppressant and TNF-α blocker (adalimumab), which reaped an excellent response over 16 months of follow-up. Genetic analysis identified a maternal hemizygote frameshift variant (c.1022del, p.Q341Rfs*30) in ELF4 gene in the proband. The novel variant decreased the mRNA level of ELF4 via the NMD pathway. Mechanistically, insufficient expression of ELF4 disturbed the immune system, leading to immunological disorders and pathogen susceptibility, and disrupted ELF4-activating IFN-ß responses. This analysis detailed the clinical characteristics of a Chinese patient with DEX who harbored a novel ELF4 frameshift variant. For the first time, we used patient-derived cells and carried out transcriptomic analysis to delve into the mechanism of ELF4 variant in DEX.
Assuntos
Mutação da Fase de Leitura , Perfilação da Expressão Gênica , Criança , Humanos , Masculino , Sequenciamento do Exoma , Predisposição Genética para Doença , Degradação do RNAm Mediada por Códon sem Sentido , Linhagem , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , TranscriptomaRESUMO
Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.
Assuntos
Artrite , Síndrome de Behçet , Produtos Biológicos , Doenças Inflamatórias Intestinais , Masculino , Humanos , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/genética , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Artralgia , Proteínas de Ligação a DNA , Fatores de Transcrição/genéticaRESUMO
BACKGROUND AND AIMS: The diagnostic performance of the Fibrosis-4 (FIB-4) index and nonalcoholic fatty liver disease (NAFLD) fibrosis score (NFS) is poor in patients with type 2 diabetes mellitus (T2DM). We determined the usefulness of the Enhanced Liver Fibrosis (ELF) test in patients with T2DM. METHODS: A total of 1228 patients with biopsy-proven NAFLD were enrolled. The diagnostic performance of the ELF test for predicting advanced fibrosis in participants with or without T2DM was evaluated in comparison with the FIB-4 index and NFS. RESULTS: Overall, the area under the curve of the ELF test for predicting advanced fibrosis was greater (0.828) than that of the FIB-4 index (0.727) and NFS (0.733). The diagnostic performance of the ELF test (area under the curve, 0.820) was also superior to that of the FIB-4 index (0.698) and NFS (0.700) in patients with T2DM. With the low cutoff values for each noninvasive test, the ELF test provided an acceptable false negative rate (cutoff value 9.8, 6.7%) in this population, unlike the FIB-4 index (1.30, 14.5%) and NFS (-1.455, 12.4%). After propensity score matching to avoid selection bias including age, sex, body mass index, and the prevalence of advanced fibrosis, the ELF test with a low cutoff value showed a high sensitivity (≥91.4%) and a high negative predictive value (≥96.8%), irrespective of the presence or absence of T2DM. CONCLUSIONS: The high diagnostic performance of the ELF test for predicting advanced fibrosis in individuals with or without T2DM could address an unmet medical need for accurate assessment of liver fibrosis in patients with diabetes and NAFLD.
Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Alanina Transaminase , Aspartato Aminotransferases , Cirrose Hepática/patologia , Biópsia , Fígado/patologia , Índice de Gravidade de DoençaRESUMO
We present a theoretical study of the [3+2] cycloaddition (32CA) reactions of N-benzyl fluoro nitrone with a series of maleimides producing isoxazolidines. We use the Molecular Electron Density Theory at the MPWB1K/6-311G(d) level. We focus on the reaction mechanism, selectivity, solvent, and temperature effects. In addition, we perform topological analyses at the minimal and transition states to identify the intermolecular interactions. Electron Localization Function approach classifies the N-benzyl fluoro nitrone as zwitterionic (zw-) three-atom components (TACs), associated with a high energy barrier. The low polar character of the reaction is evaluated using the Conceptual Density Functional Theory analysis of the reactants, confirmed by the low global electron density transfer computed at the transition states. Computations show that these 32CA reactions follow a one-step mechanism under kinetic control, with highly asynchronous bond formation and no new covalent bond is formed at the TS. Besides, the potential energy surfaces along the reaction pathways in gas phase and in solvent are mapped. The corresponding Gibbs free energy profiles reveal that the exo-cycloadducts are kinetically and thermodynamically more favored than endo-cycloadducts, in agreement with the exo-selectivity observed experimentally. In particular, we found that solvent and temperature did not affect this selectivity and mainly influence the activation energies and the exothermic character of these 32CA reactions.
RESUMO
Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F2), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties.
RESUMO
Vernalization and photoperiod pathways converging at FT1 control the transition to flowering in wheat. Here, we identified a gain-of-function mutation in FT-D1 that results in earlier heading date (HD), and shorter plant height and spike length in the gamma ray-induced eh1 wheat mutant. Knockout of the wild-type and overexpression of the mutated FT-D1 indicate that both alleles are functional to affect HD and plant height. Protein interaction assays demonstrated that the frameshift mutation in FT-D1eh1 exon 3 led to gain-of-function interactions with 14-3-3A and FDL6, thereby enabling the formation of florigen activation complex (FAC) and consequently activating a flowering-related transcriptomic programme. This mutation did not affect FT-D1eh1 interactions with TaNaKR5 or TaFTIP7, both of which could modulate HD, potentially via mediating FT-D1 translocation to the shoot apical meristem. Furthermore, the 'Segment B' external loop is essential for FT-D1 interaction with FDL6, while residue Y85 is required for interactions with TaNaKR5 and TaFTIP7. Finally, the flowering regulatory hub gene, ELF5, was identified as the FT-D1 regulatory target. This study illustrates FT-D1 function in determining wheat HD with a suite of interaction partners and provides genetic resources for tuning HD in elite wheat lines.
RESUMO
Although elevated ambient temperature causes many effects on plant growth and development, the mechanisms of plant high-ambient temperature sensing remain unknown. In this study, we show that GLYCOGEN SYNTHASE KINASE 3s (GSK3s) negatively regulate high-ambient temperature response and oligomerize upon high-temperature treatment. We demonstrate that GSK3 kinase BIN2 specifically interacts with the high-temperature sensor phytochrome B (phyB) but not the high-temperature sensor EARLY FLOWER 3 (ELF3) to phosphorylate and promote phyB photobody formation. Furthermore, we show that phosphorylation of phyB by GSK3s promotes its interaction with ELF3. Subsequently, we find that ELF3 recruits the phyB photobody facilitator HEMERA (HMR) to promote its association with phyB. Taken together, our data reveal a mechanism that GSK3s promote the phyB-ELF3-HMR complex formation in regulating plant thermomorphogenesis.
RESUMO
BACKGROUND: Airway basal cells (BC) from patients with chronic obstructive pulmonary disease (COPD) regenerate abnormal airway epithelium and this was associated with reduced expression of several genes involved in epithelial repair. Quercetin reduces airway epithelial remodeling and inflammation in COPD models, therefore we examined whether quercetin promotes normal epithelial regeneration from COPD BC by altering gene expression. METHODS: COPD BC treated with DMSO or 1 µM quercetin for three days were cultured at air/liquid interface (ALI) for up to 4 weeks. BC from healthy donors cultured at ALI were used as controls. Polarization of cells was determined at 8 days of ALI. The cell types and IL-8 expression in differentiated cell cultures were quantified by flow cytometry and ELISA respectively. Microarray analysis was conducted on DMSO or 1 µM quercetin-treated COPD BC for 3 days to identify differentially regulated genes (DEG). Bronchial brushings obtained from COPD patients with similar age and disease status treated with either placebo (4 subjects) or 2000 mg/day quercetin (7 subjects) for 6 months were used to confirm the effects of quercetin on gene expression. RESULTS: Compared to placebo-, quercetin-treated COPD BC showed significantly increased transepithelial resistance, more ciliated cells, fewer goblet cells, and lower IL-8. Quercetin upregulated genes associated with tissue and epithelial development and differentiation in COPD BC. COPD patients treated with quercetin, but not placebo showed increased expression of two developmental genes HOXB2 and ELF3, which were also increased in quercetin-treated COPD BC with FDR < 0.001. Active smokers showed increased mRNA expression of TGF-ß (0.067) and IL-8 (22.0), which was reduced by 3.6 and 4.14 fold respectively after quercetin treatment. CONCLUSIONS: These results indicate that quercetin may improve airway epithelial regeneration by increasing the expression of genes involved in epithelial development/differentiation in COPD. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov on 6-18-2019. The study number is NCT03989271.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/metabolismo , Interleucina-8/metabolismo , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Brônquios/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/farmacologiaRESUMO
Quantum chemical calculations of the anions AeF- (Ae=Be-Ba) have been carried out using ab initio methods at the CCSD(T)/def2-TZVPP level and density functional theory employing BP86 with various basis sets. The detailed bonding analyses using different charge- and energy partitioning methods show that the molecules possess three distinctively different dative bonds in the lighter species with Ae=Be, Mg and four dative bonds when Ae=Ca, Sr, Ba. The occupied 2p atomic orbitals (AOs) and to a lesser degree the occupied 2s AO of F- donate electronic charge into the vacant spx(σ) and p(π) orbitals of Be and Mg which leads to a triple bond Ae F-. The heavier Ae atoms Ca, Sr, Ba use their vacant (n-1)d AOs as acceptor orbitals which enables them to form a second σ donor bond with F- that leads to quadruply bonded Ae F- (Ae=Ca-Ba). The presentation of molecular orbitals or charge distribution using only one isodensity value may give misleading information about the overall nature of the orbital or charge distribution. Better insights are given by contour line diagrams. The ELF calculations provide monosynaptic and disynaptic basins of AeF- which nicely agree with the analysis of the occupied molecular orbitals and with the charge density difference maps. A particular feature of the covalent bonds in AeF- concerns the inductive interaction of F- with the soft valence electrons in the (n)s valence orbitals of Ae. The polarization of the (n)s2 electrons induces a (n)spx hybridized lone-pair orbital at atom Ae, which yields a large dipole moment with the negative end at Ae. The concomitant formation of a vacant (n)spx AO of atom Ae, which overlaps with the occupied 2p(σ) AO of F-, leads to a strong covalent σ bond.
RESUMO
BACKGROUND AND AIMS: Several scientific associations recommend a sequential combination of non-invasive tests (NITs) to identify high-risk MASLD patients but their cost-effectiveness is unknown. METHODS: A cost-utility model was developed to assess the incremental cost-effectiveness ratio (ICER) of recommended screening strategies for patients with clinically suspected MASLD, specifically those with type 2 diabetes (T2D) and obesity with multiple cardiometabolic risk factors which will be initiated in primary care. Six screening strategies were assessed, using either vibration-controlled transient elastography (VCTE) or the enhanced liver fibrosis (ELF) test as a second-line test following an initial Fibrosis-4 (FIB-4) assessment as the first line NIT. The model included treatment effects of resmetirom for metabolic dysfunction-associated steatohepatitis (MASH) patients with F2 or F3 fibrosis. RESULTS: All screening strategies for high-risk MASLD in US incurred additional costs compared to no screening, ranging from $13 587 to $14 730 per patient with T2D and $14 274 to $15 661 per patient with obesity. However, screening reduced long-term costs, ranging from $22 150 to $22 279 per patient with T2D and $13 704 to $13 705 per patient with obesity, compared to $24 221 and $14 956 for no screening, respectively. ICERs ranged from $26 913 to $27 884 per QALY for T2D patients and $23 265 to $24 992 per QALY for patients with obesity. While ICERs were influenced by VCTE availability, they remained cost-effective when using ELF as the second-line test. Our findings remain robust across a range of key parameters. CONCLUSIONS: Screening for high-risk MASLD is cost-effective according to recent guidelines. Implementing these screening strategies in primary care should be considered.
RESUMO
BACKGROUND AND AIMS: Non-invasive tests (NITs) are underutilized for diagnosis and risk stratification in metabolic dysfunction-associated steatotic liver disease (MASLD), despite good accuracy. This study aimed to identify challenges and barriers to the use of NITs in clinical practice. METHODS: We conducted a qualitative exploratory study in Germany, Italy, United Kingdom and United States. Phase 1 participants (primary care physicians, hepatologists, diabetologists, researchers, healthcare administrators, payers and patient advocates; n = 29) were interviewed. Phase 2 participants (experts in MASLD; n = 8) took part in a group discussion to validate and expand on Phase 1 findings. Finally, we triangulated perspectives in a hybrid deductive/inductive thematic analysis. RESULTS: Four themes hindering the use of NITs emerged: (1) limited knowledge and awareness; (2) unclear referral pathways for patients affected by liver conditions; (3) uncertainty over the value of NITs in monitoring and managing liver diseases; and (4) challenges justifying system-level reimbursement. Through these themes, participants perceived a stigma associated with liver diseases, and primary care physicians generally lacked awareness, adequate knowledge and skills to use recommended NITs. We identified uncertainties over the results of NITs, specifically to guide lifestyle intervention or to identify patients that should be referred to a specialist. Participants indicated an ongoing need for research and development to improve the prognostic value of NITs and communicating their cost-effectiveness to payers. CONCLUSIONS: This qualitative study suggests that use of NITs for MASLD is limited due to several individual and system-level barriers. Multi-level interventions are likely required to address these barriers.
Assuntos
Pesquisa Qualitativa , Humanos , Masculino , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Encaminhamento e Consulta , Estados Unidos , Medição de Risco , Pessoa de Meia-IdadeRESUMO
BACKGROUND AND OBJECTIVES: Decreased or loss of ABO blood group antigen expression has been observed in acute myeloid leukaemia (AML) patients. We studied the clinical significance of this group in AML patients. MATERIALS AND METHODS: This was a retrospective, single-centre cohort study in which the data were retrieved from April 2009 to December 2019. A total of 1592 AML patients with normal ABO blood group antigen (Group I) and 65 patients of decreased or loss of ABO blood group antigen (Group II) group were enrolled. Data were collected at the time of initial admission for pathological diagnosis. To interrogate the underlying mechanism, publicly available The Cancer Genome Atlas AML data were downloaded. RESULTS: Group II consisted of 3.9% (65/1657) of AML patients. The 90-day survival (D90) probability was higher for Group II with a mean survival of 86.4 days compared to 80.6 days for Group I (p = 0.047). Group II had higher haematocrit (28.6 vs. 27.4%) and lower d-dimer, fibrinogen degradation production and C-reactive protein. Publicly available data revealed that among 11 CpG methylation sites within the ABO gene, 4 sites with elevated methylation level were associated with improved D90 survival probability and demonstrated an inverse correlation with ABO gene expression. Lower expression of the ABO gene showed improved survival trends for D90 (p = 0.058) and 180-day survival (p = 0.072). CONCLUSION: AML with decreased expression or loss of ABO blood group showed better early survival during D90. Transfusion support for this subgroup of AML patients should be meticulously performed considering serum typing.
Assuntos
Sistema ABO de Grupos Sanguíneos , Leucemia Mieloide Aguda , Humanos , Estudos Retrospectivos , Sistema ABO de Grupos Sanguíneos/genética , Estudos de Coortes , Relevância Clínica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapiaRESUMO
Epithelial ovarian cancer (EOC) is one of the most lethal gynecological cancers despite a relatively low incidence. Angiogenesis, one of the hallmarks of cancer, is essential for the pathogenesis of EOC, which is related to the induction of angiogenic factors. We found that ELF3 was highly expressed in EOCs under hypoxia and functioned as a transcription factor for IGF1. The ELF3-mediated increase in the secretion of IGF1 and VEGF promoted endothelial cell proliferation, migration, and EOC angiogenesis. Although this situation was much exaggerated under hypoxia, ELF3 silencing under hypoxia significantly attenuated angiogenic activity in endothelial cells by reducing the expression and secretion of IGF1 and VEGF. ELF3 silencing attenuated angiogenesis and tumorigenesis in ex vivo and xenograft mouse models. Consequently, ELF3 plays an important role in the induction of angiogenesis and tumorigenesis in EOC as a transcription factor of IGF1. A detailed understanding of the biological mechanism of ELF3 may both improve current antiangiogenic therapies and have anticancer effects for EOC.