Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Saudi Pharm J ; 30(10): 1387-1395, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36387339

RESUMO

Muscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.

2.
Mar Drugs ; 19(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34564169

RESUMO

Manzamines are complex polycyclic marine-derived ß-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A's (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA's differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2-MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1.


Assuntos
Antineoplásicos/uso terapêutico , Carbazóis/uso terapêutico , Poríferos , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Organismos Aquáticos , Carbazóis/química , Carbazóis/farmacologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular
3.
Saudi Pharm J ; 28(4): 509-518, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273812

RESUMO

Gefitinib is an effective treatment for patients with locally advanced non-small cell lung cancer. However, it is associated with cardiotoxicity that can limit its clinical use. Liraglutide, a glucagon-like peptide 1 receptor agonist, showed potent cardioprotective effects with the mechanism is yet to be elucidated. Therefore, this study aimed to determine the efficiency of liraglutide in protecting the heart from damage induced by gefitinib. Adult male Wistar rats were randomly divided into control group, liraglutide group (200 µg/kg by i.p. injection), gefitinib group (30 mg/kg orally) and liraglutide plus gefitinib group. After 28 days, blood and tissue samples were collected for histopathological, biochemical, gene and protein analysis. We demonstrated that gefitinib treatment (30 mg/kg) resulted in cardiac damage as evidenced by histopathological studies. Furthermore, serum Creatine kinase-MB (CK-MB), N-terminal pro B-type natriuretic peptide (NT-proBNP) and cardiac Troponin-I (cTnI) were markedly elevated in gefitinib group. Pretreatment with liraglutide (200 µg/kg), however, restored the elevation in serum markers and diminished gefitinib-induced cardiac damage. Moreover, liraglutide improved the gene and protein levels of anti-oxidant (superoxide dismutase) and decreased the oxidative stress marker (NF-κB). Mechanistically, liraglutide offered protection through upregulation of the survival kinases (ERK1/2 and Akt) and downregulation of stress-activated kinases (JNK and P38). In this study, we provide evidence that liraglutide protects the heart from gefitinib-induced cardiac damage through its anti-oxidant property and through the activation of survival kinases.

4.
Biochem Biophys Rep ; 34: 101436, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36824069

RESUMO

Erb-b2 receptor tyrosine kinase 2 (ErbB2) is an oncogene that frequently overexpressed in a subset of cancers. Anti-ErbB2 therapies have been developed to treat these types of cancers. However, less is known about how anti-ErbB2 drugs affect the trafficking and degradation of ErbB2. We demonstrate that the reversible and irreversible tyrosine kinase inhibitors (TKIs) differentially modulate the subcellular trafficking and downregulation of ErbB2. Only the irreversible TKIs can induce the loss of ErbB2 expression, which is not dependent on proteasome or lysosome. The irreversible TKIs promote ErbB2 endocytosis from plasma membrane and enhance the ErbB2 accumulation at endosomes. The endocytosis of ErbB2 is mediated by a dynamin-dependent but clathrin-independent mechanism. Blocking of ErbB2 endocytosis can impair the TKI-induced ErbB2 downregulation.

5.
Food Chem X ; 13: 100222, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35498998

RESUMO

Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a ß-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.

6.
Mater Today Bio ; 14: 100223, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243298

RESUMO

Inflammatory arthritis is a major cause of disability in the elderly. This condition causes joint pain, loss of function, and deterioration of quality of life, mainly due to osteoarthritis (OA) and rheumatoid arthritis (RA). Currently, available treatment options for inflammatory arthritis include anti-inflammatory medications administered via oral, topical, or intra-articular routes, surgery, and physical rehabilitation. Novel alternative approaches to managing inflammatory arthritis, so far, remain the grand challenge owing to catastrophic financial burden and insignificant therapeutic benefit. In the view of non-targeted systemic cytotoxicity and limited bioavailability of drug therapies, a major concern is to establish stimuli-responsive drug delivery systems using nanomaterials with on-off switching potential for biomedical applications. This review summarizes the advanced applications of triggerable nanomaterials dependent on various internal stimuli (including reduction-oxidation (redox), pH, and enzymes) and external stimuli (including temperature, ultrasound (US), magnetic, photo, voltage, and mechanical friction). The review also explores the progress and challenges with the use of stimuli-responsive nanomaterials to manage inflammatory arthritis based on pathological changes, including cartilage degeneration, synovitis, and subchondral bone destruction. Exposure to appropriate stimuli induced by such histopathological alterations can trigger the release of therapeutic medications, imperative in the joint-targeted treatment of inflammatory arthritis.

7.
Biochem Biophys Rep ; 27: 101049, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34195388

RESUMO

Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice.

8.
JACC Basic Transl Sci ; 3(6): 861-870, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30623145

RESUMO

The clinical use of doxorubicin in cancer is limited by cardiotoxic effects that can lead to heart failure. Whereas earlier work focused on the direct impact of doxorubicin on cardiomyocytes, recent studies have turned to the endothelium, because doxorubicin-damaged endothelial cells can trigger the development and progression of cardiomyopathy by decreasing the release and activity of key endothelial factors and inducing endothelial cell death. Thus, the endothelium represents a novel target for improving the detection, management, and prevention of doxorubicin-induced cardiomyopathy.

9.
Cell Mol Gastroenterol Hepatol ; 1(4): 395-405, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28210689

RESUMO

BACKGROUND & AIMS: Dietary factors are likely an important determinant of gallstone development, and difficulty in adapting to lithogenic diets may predispose individuals to gallstone formation. Identification of the critical early diet-dependent metabolic markers of adaptability is urgently needed to prevent gallstone development. We focus on the interaction between diet and genes, and the resulting potential to influence gallstone risk by dietary modification. METHODS: Expression levels of hepatic protein kinase C (PKC) isoforms were determined in lithogenic diet-fed mice, and the relationship of hepatic cholesterol content and PKCß expression and the effect of hepatic PKCß overexpression on intracellular signaling pathways were analyzed. RESULTS: Lithogenic diet feeding resulted in a striking induction of hepatic PKCß and PKCδ mRNA and protein levels, which preceded the appearance of biliary cholesterol crystals. Unlike PKCß deficiency, global PKCδ deficiency did not influence lithogenic diet-induced gallstone formation. Interestingly, a deficiency of apolipoprotein E abrogated the diet-induced hepatic PKCß expression, whereas a deficiency of liver X receptor-α further potentiated the induction, suggesting a potential link between the degree of hepatic PKCß induction and the intracellular cholesterol content. Furthermore, our results suggest that PKCß is a physiologic repressor of ileum basal fibroblast growth factor 15 (FGF15) expression and activity of hepatic proto-oncogene serine/threonine-protein kinase Raf-1/mitogen-activated protein (MAP) kinase kinase/extracellular signal-regulated kinases 1/2 (Raf-1/MEK/ERK1/2) cascade proteins, and the complex interactions between these pathways may determine the degree of hepatic ERK1/2 activation, a potent suppressor of cholesterol 7α-hydroxylase and sterol 12α-hydroxylase expression. We found that PKCß regulated Raf-1 activity by modulating the inhibitory Raf-1Ser259 phosphorylation. CONCLUSIONS: Our results demonstrate a novel interaction between the hepatic PKCß/Raf-1 regulatory axis and ileum PKCß/FGF15/ERK axis, which could modulate the bile lithogenecity of dietary lipids. The data presented are consistent with a two-pronged mechanism by which intestine and liver PKCß signaling converges on the liver ERK1/2 pathway to control the hepatic adaptive response to a lithogenic diet. Elucidating the impact and the underlying mechanism(s) of PKCß action could help us understand how different types of dietary fat modify the risk of gallstone formation, information that could help to identify novel targets for therapeutic approaches to combat this disease.

10.
Acta Pharm Sin B ; 5(2): 93-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26579433

RESUMO

The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs) are ligands of farnesoid X receptor (FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.

11.
Acta Pharm Sin B ; 5(6): 506-19, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26713267

RESUMO

Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.

12.
Cell Adh Migr ; 9(1-2): 34-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793574

RESUMO

Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an "oncofetal" protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease.


Assuntos
Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica/fisiologia , Tenascina/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia
13.
FEBS Open Bio ; 4: 746-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25349779

RESUMO

Smoking is a risk factor for lung diseases, including chronic obstructive pulmonary disease and lung cancer. However, the molecular mechanisms mediating the progression of these diseases remain unclear. Therefore, we sought to identify signaling pathways activated by tobacco-smoke exposure, by analyzing nuclear phosphoprotein expression using phosphoproteomic analysis of lung tissue from mice exposed to tobacco smoke. Sixteen mice were exposed to tobacco smoke for 1 or 7 days, and the expression of phosphorylated peptides was analyzed by mass spectrometry. A total of 253 phosphoproteins were identified, including FACT complex subunit SPT16 in the 1-day exposure group, keratin type 1 cytoskeletal 18 (K18), and adipocyte fatty acid-binding protein, in the 7-day exposure group, and peroxiredoxin-1 (OSF3) and spectrin ß chain brain 1 (SPTBN1), in both groups. Semi-quantitative analysis of the identified phosphoproteins revealed that 33 proteins were significantly differentially expressed between the control and exposed groups. The identified phosphoproteins were classified according to their biological functions. We found that the identified proteins were related to inflammation, regeneration, repair, proliferation, differentiation, morphogenesis, and response to stress and nicotine. In conclusion, we identified proteins, including OSF3 and SPTBN1, as candidate tobacco smoke-exposure markers; our results provide insights into the mechanisms of tobacco smoke-induced diseases.

14.
Redox Biol ; 1: 319-31, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24024167

RESUMO

4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia. This review examines the known production, metabolism and consequences of HNE synthesis within vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic reticulum function and their association with various vascular pathologies.


Assuntos
Aldeídos/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Saúde , Músculo Liso/metabolismo , Músculo Liso/patologia , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Endotélio Vascular/citologia , Humanos , Mitocôndrias/metabolismo , Músculo Liso/citologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA