Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Theor Biol ; 577: 111654, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-37984587

RESUMO

Population-suppressing gene drives may be capable of extinguishing wild populations, with proposed applications in conservation, agriculture, and public health. However, unintended and potentially disastrous consequences of release of drive-engineered individuals are extremely difficult to predict. We propose a model for the dynamics of a sex ratio-biasing drive, and using simulations, we show that failure of the suppression drive is often a natural outcome due to stochastic and spatial effects. We further demonstrate rock-paper-scissors dynamics among wild-type, drive-infected, and extinct populations that can persist for arbitrarily long times. Gene drive-mediated extinction of wild populations entails critical complications that lurk far beyond the reach of laboratory-based studies. Our findings help in addressing these challenges.


Assuntos
Desastres , Tecnologia de Impulso Genético , Humanos , Dinâmica Populacional
2.
Biofouling ; 40(2): 223-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38526167

RESUMO

Concrete infrastructure in coastal waters is increasing. While adding complex habitat and manipulating concrete mixtures to enhance biodiversity have been studied, field investigations of sub-millimetre-scale complexity and substrate colour are lacking. Here, the interacting effects of 'colour' (white, grey, black) and 'microtexture' (smooth, 0.5 mm texture) on colonisation were assessed at three sites in Australia. In Townsville, no effects of colour or microtexture were observed. In Sydney, spirorbid polychaetes occupied more space on smooth than textured tiles, but there was no effect of microtexture on serpulid polychaetes, bryozoans and algae. In Melbourne, barnacles were more abundant on black than white tiles, while serpulid polychaetes showed opposite patterns and ascidians did not vary with treatments. These results suggest that microtexture and colour can facilitate colonisation of some taxa. The context-dependency of the results shows that inclusion of these factors into marine infrastructure designs needs to be carefully considered.


Assuntos
Biofilmes , Estuários , Animais , Cor , Austrália , Ecossistema , Biodiversidade
3.
Int J Phytoremediation ; 26(12): 1942-1951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900190

RESUMO

Plant growth on mine wastes is restricted by the lack of water, nutrients, phytotoxic responses and the absence of a seedbank. In a mesocosm study, we addressed the establishment of vegetation on metalliferous mine wastes from two seed mixtures. Besides the composition of the vegetation and the increase in plant cover and biomass over time, we studied concentrations of heavy metals in the shoot and analyzed the quantity of throughflow, its pH and EC to follow pollutant discharge. We hypothesized that the types of mine wastes and sown grasslands will affect species composition and the formation of a protective plant cover. Our platform was well-suited to study build-up and succession of a vegetation layer and its potential to stabilize mine wastes. However, the establishing community was less diverse than expected. The dilution of wastes increased species number and biomass, and we found a reduction of material discharge with increasing vegetation cover. Over time, drainage was reduced, while pH of the throughflow did not change. However, it was higher under the addition of greywater. Interestingly, the use of greywater led to a higher biomass in one mixture and slight changes in the chemistry of the throughflow and the plant matter.


Here, we present an integrative method to test the greening potentials of mine wastes. In the mesocosm approach different mine wastes, additives and seed mixtures can be screened and the potential of the establishing vegetation to reduce drainage and runoff may be addressed at the same time. Furthermore, analyses of pollutants in plants, soil substrates and drainage waters serve to study the phytoextraction and phytostabilization potentials of the established vegetation and their ecological services.


Assuntos
Biodegradação Ambiental , Pradaria , Metais Pesados , Mineração , Metais Pesados/análise , Biomassa , Poluentes do Solo/análise , Resíduos Industriais
4.
J Environ Manage ; 366: 121635, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971067

RESUMO

Combatting land damage has become a global priority, and China has adopted a series of ecological engineering measures, especially in the agro-pastoral area with fragile ecological environment. The effectiveness of ecological engineering construction (EEC), from a comprehensive recognition encompassing its quality, quantity, and function, has remained largely unknown. To this end, Zhangbei County, a typical agro-pastoral ecotone of northern China, was chosen as our focal area. After summarizing the timelines, aims and results of the EEC during various periods in Zhangbei, the linear spectral mixture analysis was employed to process Landsat 5 TM images in 2000 and 2010, as well as Landsat 8 OLI images in 2020. Then, a comprehensive evaluation framework of EEC was established from the perspective of "quantity-quality-function", and the ecological effectiveness of EEC was evaluated from 2000 to 2020 in Zhangbei. Results revealed that EEC played a critical role in enhancing quantity, quality and function, in spite of that, there were still numerous regions showing varying degrees of degradation in terms of these aspects. Then, by extending the three-dimensional cube as the theoretical basis for the zoning management of EEC, we merged four zones according to the space matching relationship among quantity, quality and function of EEC, namely, Ecological conservation area, Ecological improvement area, Ecological restoration area and Ecological remodeling zone. More targeted ecological measures were required for specific matching relationship among quantity, quality and function of EEC. This study is expected to present an empirical case for assessing the ecological effectiveness of EEC in areas or countries with similar restoration demand and support regional management.


Assuntos
Conservação dos Recursos Naturais , Ecologia , China , Agricultura , Ecossistema , Engenharia
5.
Biofouling ; 39(1): 80-93, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912169

RESUMO

Marine artificial structures often support lower native species diversity and more non-indigenous species (NIS), but adding complex habitat and using bioreceptive materials have the potential to mitigate these impacts. Here, the interacting effects of structural complexity (flat, complex with pits) and concrete mixture (standard, or with oyster shell or vermiculite aggregate) on recruitment were assessed at two intertidal levels at an urban site. Complex tiles had less green algal cover, oyster shell mixtures had less brown (Ralfsia sp.) algal cover. At a low tidal elevation, the non-indigenous ascidian Styela plicata dominated complex tiles. Additionally, mixtures with oyster shell supported higher total cover of sessile species, and a higher cover of S. plicata. There were no effects of complexity or mixture on biofilm communities and native and NIS richness. Overall, these results suggest that habitat complexity and some bioreceptive materials may facilitate colonisation by a dominant invertebrate invader on artificial structures.


Assuntos
Urocordados , Animais , Biofilmes , Ecossistema , Invertebrados
6.
J Environ Manage ; 325(Pt B): 116576, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308965

RESUMO

Ecological engineering is an important measure to promote ecosystem adaptation and restoration to deal with environmental change and human disturbance. To assess the effectiveness of ecological construction and analyze the influencing factors of ecosystem changes in the Qinghai-Tibet Plateau (QTP), this study detected the spatial changes and dynamic hotspots of vegetation ecosystems in the ecological construction regions of the QTP (QTPE) and regions without ecological construction (QTPWE) using hot spot analysis and comprehensive dynamic degree model. Then the random forest (RF) model and geographical weighted regression model were used to study the degree and spatial heterogeneity of impacts of climate and human activities on normalized difference vegetation index (NDVI). Results showed that the vegetation restoration of the QTPE was obvious during 2001-2018 as the area of the increasing NDVI accounted for 74.15%. In addition, the effects of climate and human activities on NDVI of vegetation ecosystem showed significant spatial heterogeneity. The RF model showed that population density was the most significant factor affecting ecosystem vegetation in the QTPE, and its relative importance was between 26.1-32.6%, followed by downward shortwave radiation (7.9-16.8%). However, climate factors still had the greatest impact in the QTPWE, with the relative importance of precipitation and temperature being 45% and 15%, respectively. These findings provide a scientific basis for the restoration and management of vegetation on the QTP, and are of great significance for the deployment of future ecological engineering projects.


Assuntos
Mudança Climática , Ecossistema , Humanos , Tibet , Monitoramento Ambiental , Clima , Temperatura , China
7.
J Environ Manage ; 331: 117183, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634425

RESUMO

Nature-based solutions (NbS) can be beneficial to help human communities build resilience to climate change by managing and mitigating related hydro-meteorological hazards (HMHs). Substantial research has been carried out in the past on the detection and assessment of HMHs and their derived risks. Yet, knowledge on the performance and functioning of NbS to address these hazards is severely lacking. The latter is exacerbated by the lack of practical and viable approaches that would help identify and select NbS for specific problems. The EU-funded OPERANDUM project established seven Open-Air Laboratories (OALs) across Europe to co-develop, test, and generate an evidence base from innovative NbS deployed to address HMHs such as flooding, droughts, landslides, erosion, and eutrophication. Herein, we detail the original approaches that each OAL followed in the process of identifying and selecting NbS for specific hazards with the aim of proposing a novel, generic framework for selecting NbS. We found that the process of selecting NBS was overall complex and context-specific in all the OALs, and it comprised 26 steps distributed across three stages: (i) Problem recognition, (ii) NbS identification, and (iii) NbS selection. We also identified over 20 selection criteria which, in most cases, were shared across OALs and were chiefly related to sustainability aspects. All the identified NbS were related to the regulation of the water cycle, and they were mostly chosen according to three main factors: (i) hazard type, (ii) hazard scale, and (iii) OAL size. We noticed that OALs exposed to landslides and erosion selected NbS capable to manage water budgets within the soil compartment at the local or landscape scale, while OALs exposed to floods, droughts, and eutrophication selected approaches to managing water transport and storage at the catchment scale. We successfully portrayed a synthesis of the stages and steps followed in the OALs' NbS selection process in a framework. The framework, which reflects the experiences of the stakeholders involved, is inclusive and integrated, and it can serve as a basis to inform NbS selection processes whilst facilitating the organisation of diverse stakeholders working towards finding solutions to natural hazards. We animate the future development of the proposed framework by integrating financial viability steps. We also encourage studies looking into the implementation of the proposed framework through quantitative approaches integrating multi-criteria analyses.


Assuntos
Ecossistema , Laboratórios , Humanos , Europa (Continente) , Inundações , Secas
8.
J Environ Manage ; 331: 117310, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682277

RESUMO

Hybrid living shorelines use a combination of engineered structures with natural ecosystems to achieve coastal protection and habitat restoration outcomes, with added co-benefits such as carbon sequestration. Rock fillets constructed along eroding estuarine banks are designed to accumulate sediment, establish mangroves, and stabilise the shoreline. There is, however, a lack of data to support whether rock fillets are achieving these goals. We used a chronosequence of rock fillets to determine their effect on mangrove development, bank stabilisation and carbon sequestration in four estuaries in New South Wales, Australia. Aboveground biomass and adult density increased with age of rock fillets, and mangrove structure was similar to a natural fringing mangrove after 15 years. The rock fillets accumulated sediment, which reduced the eroded estuary bank height, however, little effect of the fillets on bank slope was observed. Sediment carbon stocks were not different between rock fillets, eroding estuary banks and natural fringing mangroves. Rock fillet design had a significant effect on mangrove structure and coastal protection function, with greater wave transmission through lower rock fillets, suggesting design optimisation is needed. As the construction cost of the rock fillets was equal or less than traditional rock revetments, where suitable they present a more economic and environmentally sustainable solution to estuarine erosion management.


Assuntos
Ecossistema , Áreas Alagadas , Carbono/química , Biomassa , Austrália
9.
J Theor Biol ; 534: 110945, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34717935

RESUMO

Having control over species abundances and community resilience is of great interest for experimental, agricultural, industrial and conservation purposes. Here, we theoretically explore the possibility of manipulating ecological communities by modifying pairwise interactions. Specifically, we establish which interaction values should be modified, and by how much, in order to alter the composition or resilience of a community towards a favorable direction. While doing so, we also take into account the experimental difficulties in making such modifications by including in our optimization process, a cost parameter, which penalizes large modifications. In addition to prescribing what changes should be made to interspecies interactions given some modification cost, our approach also serves to establish the limits of community control, i.e. how well can one approach an ecological goal at best, even when not constrained by cost.


Assuntos
Biota , Modelos Biológicos , Ecossistema
10.
Ecol Appl ; : e2740, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36102220

RESUMO

Plant invasions profoundly impact both natural and managed ecosystems, and removal of the invasive plants addresses only part of the problem of restoring impacted areas. The rehabilitation of diverse communities and their ecosystem functions following removal of invasive plants is an important goal of ecological restoration. Arthropod assemblages and trophic interactions are important indicators of the success of restoration, but they have largely been overlooked in saltmarshes. We determined how arthropod assemblages and trophic interactions changed with the invasion of the exotic plant Spartina alterniflora and with the restoration of the native plant Phragmites australis following Spartina removal in a Chinese saltmarsh. We investigated multiple biotic and abiotic variables to gain insight into the factors underlying the changes in arthropod assemblages and trophic structure. We found that although Spartina invasion had changed arthropod diversity, community structure, feeding-guild composition, and the diets of arthropod natural enemies in the saltmarsh, these changes could be reversed by the restoration of native Phragmites vegetation following removal of the invader. The variation in arthropod assemblages and trophic structure were critically associated with four biotic and abiotic variables (aboveground biomass, plant density, leaf N, and soil salinity). Our findings demonstrate the positive effects of controlling invasive plants on biodiversity and nutrient cycling and provide a foundation for assessing the efficacy of ecological restoration projects in saltmarshes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA