Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(5): e2307065121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266048

RESUMO

River ecosystem function depends on flow regimes that are increasingly modified by changes in climate, land use, water extraction, and flow regulation. Given the wide range of variation in flow regime modifications and autotrophic communities in rivers, it has been challenging to predict which rivers will be more resilient to flow disturbances. To better understand how river productivity is disturbed by and recovers from high-flow disturbance events, we used a continental-scale dataset of daily gross primary production time series from 143 rivers to estimate growth of autotrophic biomass and ecologically relevant flow disturbance thresholds using a modified population model. We compared biomass recovery rates across hydroclimatic gradients and catchment characteristics to evaluate macroscale controls on ecosystem recovery. Estimated biomass accrual (i.e., recovery) was fastest in wider rivers with less regulated flow regimes and more frequent instances of biomass removal during high flows. Although disturbance flow thresholds routinely fell below the estimated bankfull flood (i.e., the 2-y flood), a direct comparison of disturbance flows estimated by our biomass model and a geomorphic model revealed that biomass disturbance thresholds were usually greater than bed disturbance thresholds. We suggest that primary producers in rivers vary widely in their capacity to recover following flow disturbances, and multiple, interacting macroscale factors control productivity recovery rates, although river width had the strongest overall effect. Biomass disturbance flow thresholds varied as a function of geomorphology, highlighting the need for data such as bed slope and grain size to predict how river ecosystems will respond to changing flow regimes.


Assuntos
Ecossistema , Inundações , Rios , Biomassa , Clima
2.
Glob Chang Biol ; 30(1): e17022, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962234

RESUMO

The ascent of water from the soil to the leaves of vascular plants, described by the study of plant hydraulics, regulates ecosystem responses to environmental forcing and recovery from stress periods. Several approaches to model plant hydraulics have been proposed. In this study, we introduce four different versions of plant hydraulics representations in the terrestrial biosphere model T&C to understand the significance of plant hydraulics to ecosystem functioning. We tested representations of plant hydraulics, investigating plant water capacitance, and long-term xylem damages following drought. The four models we tested were a combination of representations including or neglecting capacitance and including or neglecting xylem damage legacies. Using the models at six case studies spanning semiarid to tropical ecosystems, we quantify how plant xylem flow, plant water storage and long-term xylem damage can modulate overall water and carbon dynamics across multiple time scales. We show that as drought develops, models with plant hydraulics predict a slower onset of plant water stress, and a diurnal variability of water and carbon fluxes closer to observations. Plant water storage was found to be particularly important for the diurnal dynamics of water and carbon fluxes, with models that include plant water capacitance yielding better results. Models including permanent damage to conducting plant tissues show an additional significant drought legacy effect, limiting plant productivity during the recovery phase following major droughts. However, when considering ecosystem responses to the observed climate variability, plant hydraulic modules alone cannot significantly improve the overall model performance, even though they reproduce more realistic water and carbon dynamics. This opens new avenues for model development, explicitly linking plant hydraulics with additional ecosystem processes, such as plant phenology and improved carbon allocation algorithms.


Assuntos
Ecossistema , Plantas , Folhas de Planta/fisiologia , Secas , Xilema , Carbono
3.
Environ Res ; 216(Pt 1): 114456, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181891

RESUMO

In 1999, a tidal wetland located along the St. Lawrence River close to Ste. Croix de Lotbinière (Quebec, Eastern Canada) was the site of an experimental oil spill. Test plots were established and subjected to an experimental crude oil spill to evaluate natural attenuation, nutrient amendment and vegetation cropping as countermeasures. In 2020, this study re-visited the test plots to investigate residual oil and habitat recovery. Only concentrations of mid-chain length n-alkanes (C10-C36), but not of polycyclic aromatic hydrocarbons (PAHs), were significantly above detection limit, and were detected in both test plot and control sediments. Hydrocarbon, total organic carbon, nitrogen and phosphate contents did not differ significantly between test plot and control sediments. Microbial analyses did not detect significant differences in microbial load, microbial diversity or microbial community composition between test plot and control sediments. Key genes for the aerobic and anaerobic degradation of n-alkanes as well as for the aerobic degradation of PAHs were detected in all sediment samples. Associated gene abundances did not differ significantly between test plot and control sediments. This study shows that oil-exposed test plot sediments of the Ste. Croix wetland can be considered completely recovered after 21 years irrespective of the performed countermeasure.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Rios , Áreas Alagadas , Petróleo/análise , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Monitoramento Ambiental
4.
J Environ Manage ; 326(Pt B): 116756, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423408

RESUMO

Drought is a major driver of interannual variability in the gross primary productivity (GPP) of global terrestrial ecosystems, and drought recovery time has been widely used to assess ecosystem responses to drought. However, the response of the carbon-water coupled cycle to drought, especially changes in the correlation between drought intensity and carbon-water coupling throughout the recovery time, remains unclear. In this study, the Yellow River Basin (YRB) located mostly in drylands was the study area. We assessed the correlation between the standardized water vapour pressure deficit (VPD) and the water use efficiency of ecosystems (WUEe) and water use efficiency of canopies (WUEc) every month with the drought recovery time of GPP. We found that the drought intensity in the middle reach of the YRB (MYRB) was greater and the drought recovery time was longer than those in the upper reach (UYRB) and lower reach (LYRB) during the period from 2003 to 2017. In terms of the correlation between drought intensity and carbon-water coupling, the greater the VPD was, the lower the WUEc. In addition, the correlation of WUEc with VPD was higher than that of WUEe in most areas of the YRB, especially in the LYRB. On the watershed level, the correlation between the two types of WUE and VPD increased gradually with the recovery time, while the correlation between WUEc and VPD (mostly negative) changed more than the correlation between WUEe and VPD (mostly positive). Therefore, the response of WUEc to meteorological drought should be given more attention, especially during the middle and late stages of drought, since it exhibited an opposite signal compared to that of WUEe during drought recovery.


Assuntos
Secas , Ecossistema , Pressão de Vapor , Rios , Carbono
5.
Conserv Biol ; 36(4): e13892, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35171538

RESUMO

Conservation translocation is a common method for species recovery, for which one increasingly frequent objective is restoring lost ecological functions to promote ecosystem recovery. However, few conservation translocation programs explicitly state or monitor function as an objective, limiting the ability to test assumptions, learn from past efforts, and improve management. We evaluated whether translocations of hihi (Notiomystis cincta), a threatened New Zealand passerine, achieved their implicit objective of restoring lost pollination function. Through a pollinator-exclusion experiment, we quantified, with log response ratios (lnR), the effects of birds on fruit set and seed quality in hangehange (Geniostoma ligustrifolium), a native flowering shrub. We isolated the contributions of hihi by making comparisons across sites with and without hihi. Birds improved fruit set more at sites without hihi (lnR = 1.27) than sites with hihi (lnR = 0.50), suggesting other avian pollinators compensated for and even exceeded hihi contributions to fruit set. Although birds improved seed germination only at hihi sites (lnR = 0.22-0.41), plants at sites without hihi had germination rates similar to hihi sites because they produced 26% more filled seeds, regardless of pollination condition. Therefore, although our results showed hihi improved seed quality, they also highlighted the complexity of ecological functions. When an important species is lost, ecosystems may be able to achieve similar function through different means. Our results underscore the importance of stating and monitoring the ecological benefits of conservation translocations when functional restoration is a motivation to ensure these programs are achieving their objectives.


Evaluación del Éxito de la Restauración Funcional Posterior a la Reintroducción de un Ave Polinizadora Desaparecida Resumen La reubicación para la conservación es un método común para la recuperación de especies en el cual un objetivo cada vez más frecuente es la restauración de las funciones ecológicas que se perdieron para promover la recuperación del ecosistema. Sin embargo, pocos programas de reubicación para la conservación establecen o monitorean explícitamente a la función como un objetivo, lo que limita la posibilidad de comprobar suposiciones, aprender de esfuerzos anteriores y mejorar la gestión. Analizamos si las reubicaciones de hihi (Notiomystis cincta), un ave paseriforme amenazada de Nueva Zelanda, lograron el objetivo implícito de restaurar la desaparecida función de polinización. Mediante un experimento de exclusión del polinizador, cuantificamos con relaciones de respuesta logarítmica (lnR) los efectos de las aves sobre el conjunto de frutos y la calidad de la semilla del arbusto floral nativo Geniostoma ligustrifolium. Aislamos las contribuciones del hihi cuando comparamos entre sitios con y sin su presencia. Las aves favorecieron más al conjunto de frutos en sitios sin hihi (lnR = 1.27) que en los sitios con hihi (lnR = 0.50), lo que sugiere que otras aves polinizadoras compensaron y excedieron las contribuciones del hihi al conjunto de frutos. Aunque las aves aumentaron la germinación de semillas sólo en sitios con hihi (lnR = 0.22-0.41), las plantas en los sitios sin hihi tuvieron tasas de germinación similares a los sitios con hihi porque produjeron 26% más de semillas completas sin importar la condición de la polinización. Por lo tanto, aunque nuestros resultados mostraron mejoras en la calidad de la semilla a causa del hihi, también resaltaron la complejidad de las funciones ecológicas. Cuando desaparece una especie importante, puede que los ecosistemas logren una función similar por medio de diferentes métodos. Nuestros resultados hacen hincapié en la importancia que tiene establecer y monitorear los beneficios ecológicos de las reubicaciones para la conservación cuando la restauración es motivo para asegurar que estos programas están logrando sus objetivos.


Assuntos
Aves , Conservação dos Recursos Naturais , Ecossistema , Polinização , Animais , Nova Zelândia , Plantas
6.
Ecol Lett ; 24(1): 94-101, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33079483

RESUMO

Incremental increases in a driver variable, such as nutrients or detritus, can trigger abrupt shifts in aquatic ecosystems that may exhibit hysteretic dynamics and a slow return to the initial state. A model system for understanding these dynamics is the microbial assemblage that inhabits the cup-shaped leaves of the pitcher plant Sarracenia purpurea. With enrichment of organic matter, this system flips within three days from an oxygen-rich state to an oxygen-poor state. In a replicated greenhouse experiment, we enriched pitcher-plant leaves at different rates with bovine serum albumin (BSA), a molecular substitute for detritus. Changes in dissolved oxygen (DO) and undigested BSA concentration were monitored during enrichment and recovery phases. With increasing enrichment rates, the dynamics ranged from clockwise hysteresis (low), to environmental tracking (medium), to novel counter-clockwise hysteresis (high). These experiments demonstrate that detrital enrichment rate can modulate a diversity of hysteretic responses within a single aquatic ecosystem, and suggest different management strategies may be needed to mitigate the effects of high vs. low rates of detrital enrichment.


Assuntos
Ecossistema , Sarraceniaceae , Modelos Biológicos , Folhas de Planta
7.
Glob Chang Biol ; 27(17): 4196-4206, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34101948

RESUMO

A consensus about the fire-related soil carbon (C) and nitrogen (N) impacts that determine soil health and ecosystem services at the global scale remains elusive. Here, we conducted a global meta-analysis of 3173 observations with 1444, 1334, 228, and 167 observations for soil C, N, pyrogenic C (PyC), and the percent of PyC to total organic C (PyC/TOC) from 296 field studies. Results showed that fire significantly decreased soil C (-15.2%) and N (-14.6%) but increased soil PyC (40.6%) and PyC/TOC (30.3%). Stronger negative fire impacts on soil C and N were found in tropical and temperate climates than in Mediterranean and subtropical climates; stronger effects were found in forest ecosystems than in non-forest ecosystems. Wildfire and high-severity fire led to greater soil C and N losses than prescribed and low-severity fires, respectively, while they promoted greater increases in soil PyC and PyC/TOC than prescribed and low-severity fires, respectively. However, soil C and N recovered to control levels approximately 10 years after fire, which is a shorter period than previously determined. These results suggest that fire-induced PyC production should be accounted for in the C budget under global change. These results will improve our knowledge of the spatiotemporal variability of fire effects on soil C and N storage and have implications for fire management and ecosystem recovery.


Assuntos
Incêndios , Solo , Carbono , Ecossistema , Florestas , Nitrogênio
8.
Ecol Appl ; 30(7): e02151, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32342581

RESUMO

Restoration and rehabilitation are globally implemented to improve ecosystem condition but often without tracking treatment expenditures relative to ecological outcomes. We evaluated the cost-effectiveness of widely conducted woody plant and herbaceous invasive plant removals and seeding treatments in drylands of the western United States from 2004 to 2018 to determine how land managers can optimize efforts. Woody plant cover decreased at a similar rate per dollar spent regardless of vegetation removal type, and the dominant invasive species was reduced by herbicide application. Relatively inexpensive herbicide application also had a large positive effect on seeded perennial grass cover that was enhanced by additional cost; while expensive woody mastication treatments had little effect regardless of additional cost. High seed cost was driven by including a large proportion of native species in seed mixes, and combined with high seeding cost, promoted a short-term (2-3 yr) gain in perennial forb cover and species richness. In contrast, seeding and seed mix cost had no bearing on seeded perennial grass cover, in part, because relatively cheap nonnative seeded species rapidly increased in cover. Our results suggest the differential benefits of commonly implemented treatments aimed at reducing wildfire risk, improving wildlife habitat and forage, and reducing erosion. Given the growing need and cost of restoration and rehabilitation, we raise the importance of specifying treatment budgets and objectives, coupled with effectiveness monitoring, to improve future outcomes.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Análise Custo-Benefício , Espécies Introduzidas , Resultado do Tratamento , Estados Unidos
9.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190315, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981429

RESUMO

Ammonia and ammonium have received less attention than other forms of air pollution, with limited progress in controlling emissions at UK, European and global scales. By contrast, these compounds have been of significant past interest to science and society, the recollection of which can inform future strategies. Sal ammoniac (nushadir, nao sha) is found to have been extremely valuable in long-distance trade (ca AD 600-1150) from Egypt and China, where 6-8 kg N could purchase a human life, while air pollution associated with nushadir collection was attributed to this nitrogen form. Ammonia was one of the keys to alchemy-seen as an early experimental mesocosm to understand the world-and later became of interest as 'alkaline air' within the eighteenth century development of pneumatic chemistry. The same economic, chemical and environmental properties are found to make ammonia and ammonium of huge relevance today. Successful control of acidifying SO2 and NOx emissions leaves atmospheric NH3 in excess in many areas, contributing to particulate matter (PM2.5) formation, while leading to a new significance of alkaline air, with adverse impacts on natural ecosystems. Investigations of epiphytic lichens and bog ecosystems show how the alkalinity effect of NH3 may explain its having three to five times the adverse effect of ammonium and nitrate, respectively. It is concluded that future air pollution policy should no longer neglect ammonia. Progress is likely to be mobilized by emphasizing the lost economic value of global N emissions ($200 billion yr-1), as part of developing the circular economy for sustainable nitrogen management. This article is part of a discussion meeting issue 'Air quality, past present and future'.

10.
Ecol Appl ; 29(3): e01846, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30835909

RESUMO

Overabundant native animals cause a variety of human-wildlife conflicts that can require management to reduce their social, environmental, or economic impacts. Culling is an intuitively attractive management response to overabundance, but poor monitoring of results and costs means that evidence for successful outcomes is often lacking. Furthermore, many culls worldwide have been ineffective or counterproductive due to ecological release mechanisms or compensatory responses by the overabundant species. We completed a controlled, replicated, costed, and rigorously monitored experimental cull of the endemic Australian honeyeater, the Noisy Miner (Manorina melanocephala). Aggressive exclusion of birds from remnant woodland patches by overabundant Noisy Miners is listed as a Key Threatening Process under Australian conservation legislation due to its impacts on threatened birds. The problem is particularly prevalent in the highly modified agricultural landscapes of eastern Australia. The species impacts avian assemblages at low densities (0.6-0.8 birds/ha) and at a subcontinental scale (>1 million km2 ). Some ecologists recommend culling as the only management response capable of timely reversal of declines of threatened small woodland birds. We monitored Noisy Miner abundance before and for 12 months after a culling program and found that immediate recolonization from the surrounding landscape negated the impact of the cull. We hypothesize that this is due to a vacuum effect; whereby, birds resident in more marginal habitat around treatment patches move into the vacant territory post-cull. Modeled mean abundance of Noisy Miners declined by 22% in treatment sites compared to an increase of 4% in control sites in the post-cull period. Abundance in all sites, however, remained three to five times higher than published ecological impact thresholds. Return on investment analysis indicated no relationship between culling effort and reduction in Noisy Miner abundance. We conclude that culling at a patch scale is not an efficient method of reducing Noisy Miner abundance to levels unlikely to impact threatened woodland birds in the highly modified study landscape, despite estimated costs 18 times lower than another potential management response of revegetation. Our study highlights the importance of building empirical evidence before intuitively attractive but not necessarily ecologically effective management responses are applied more widely.


Assuntos
Ecossistema , Passeriformes , Animais , Austrália , Ecologia , Florestas , Humanos
11.
Conserv Biol ; 33(2): 351-360, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30004134

RESUMO

Unpredictable or variable ecosystem recovery from disturbance presents a challenge to conservation, particularly as the scale of human disturbance continues to increase. Theory suggests land-cover and disturbance characteristics affect recovery, but individual studies of disturbance and recovery frequently struggle to uncover generalizable patterns because of high levels of site-specific variation. To understand how land-cover, disturbance type, and disturbance duration influence ecosystem recovery, we used studies documenting recovery of 50 streams to perform a global meta-analysis of stream recovery from disturbances that affect water quality (e.g., oil spill, fire, wastewater). We extracted upstream natural and urban land-cover percentages for each site and performed model selection and averaging to identify influences on recovery completeness. Most streams improved following the end of a disturbance (median 240% of disturbed condition) but did not recover fully to baseline predisturbance condition within the studied period (median study period 2 years; median recovery 60% of baseline). Scale of disturbance in time and space did not predict recovery, but sites with higher percentages of upstream natural land cover had less complete recovery relative to sites with more urban or agricultural cover, possibly due to higher baseline conditions in these streams. Our findings suggest impacts to systems with low anthropogenic stress may be more irreversible than impacts to already modified systems. We call for more long-term evaluations of ecosystem response to disturbance and the inclusion of regional references and predisturbance reference conditions for comparison. A more thorough understanding of the role of the surrounding landscape in shaping stream response to disturbance can help managers calibrate expectations for recovery and prioritize protection.


Meta-Análisis de los Efectos de la Cobertura Río-Arriba sobre la Restauración de Arroyos Resumen La restauración impredecible o variable de un ecosistema después de una perturbación presenta un reto para la conservación, particularmente conforme la escala de perturbaciones humanas continúa incrementando. La teoría sugiere que la cobertura de suelo y las características de la perturbación afectan a la restauración pero los estudios individuales sobre las perturbaciones y las restauraciones constantemente luchan por descubrir patrones generalizables debido a los niveles altos de variación específica en el sitio. Usamos estudios que documentan la restauración de 50 arroyos para realizar un meta-análisis global de la restauración de arroyos después de perturbaciones que afectaron la calidad del agua (p. ej.: derrames de petróleo, incendios, aguas negras) y así entender cómo la cobertura de suelo, el tipo de perturbación, y la duración de la perturbación influyen sobre la restauración del ecosistema. Extrajimos porcentajes de la cobertura natural y urbana de suelo río-arriba para cada sitio y realizamos una selección y promedio de modelos para identificar las influencias sobre la completitud de la restauración. La mayoría de los arroyos mejoraron después de que terminó la perturbación (mediana del 240% de la condición perturbada) pero no se recuperó completamente hasta la línea base de condiciones previas a la perturbación dentro del periodo estudiado (mediana del periodo de estudio: dos años; mediana de la restauración 60% de la línea base). La escala de perturbación en el tiempo y en el espacio no pronosticó la restauración, pero los sitios con porcentajes más altos de cobertura natural de suelo río-arriba tuvieron una restauración menos completa en relación con los sitios con una cobertura más urbana o agrícola, posiblemente debido a las condiciones más altas de línea base en estos arroyos. Nuestros hallazgos sugieren que los impactos sobre los sistemas con un bajo estrés antropogénico pueden ser más irreversibles que los impactos sobre sistemas que ya han sido modificados. Hacemos un llamado por más evaluaciones a largo plazo de la respuesta de los ecosistemas ante las perturbaciones y por la inclusión de referencias regionales y condiciones previas a la perturbación como referencia para realizar comparaciones. Un entendimiento más a fondo del papel del paisaje circundante en la formación de la respuesta de los arroyos ante las perturbaciones puede ayudar a los administradores a calibrar expectativas para la restauración y a priorizar la protección.


Assuntos
Ecossistema , Rios , Agricultura , Conservação dos Recursos Naturais , Humanos , Qualidade da Água
12.
J Basic Microbiol ; 59(10): 992-1003, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410872

RESUMO

Revegetation accelerates the recovery of degraded lands. Different microbial trophic groups underpin this acceleration from the aspects of soil structure stabilization, nutrient accumulation, and ecosystem functions. However, little is known about how revegetation influences the community and biodiversity of different soil microbial trophic groups. Here, six revegetation treatments with different plantings of plant species were established at an excavation pit in the Qinghai-Tibetan Plateau. Communities of plant, bacteria, and several key soil fungal groups were investigated after 12 years of revegetation. Plant and all microbial trophic group compositions were markedly influenced by revegetation treatments. Total fungal and pathogenic fungal compositions were not significantly predicted by any factor of plant and soil, but arbuscular mycorrhizal fungal composition could be mainly predicted by plant composition and plant P content. Bacterial composition was mainly determined by soil total N, organic carbon concentration, and moisture content; and saprotrophic fungal composition was mainly determined by soil organic carbon. Soil pH was the strongest factor to predict bacterial metabolic functions. Our findings highlight that even the differences of microbial compositions were because of different revegetation treatments, but each trophic microbial composition had different relations with plant and/or soil; especially, the bacterial community and metabolic functions and saprotrophic fungal community were more correlated with soil properties rather than plant community or characteristics per se.


Assuntos
Recuperação e Remediação Ambiental , Pradaria , Plantas/classificação , Microbiologia do Solo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/análise , Carbono/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Micorrizas/classificação , Micorrizas/isolamento & purificação , Micorrizas/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Fosfatos/análise , Fosfatos/metabolismo , Plantas/química , Plantas/metabolismo , Plantas/microbiologia , Solo/química , Tibet
13.
Ecol Appl ; 28(7): 1762-1772, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30179279

RESUMO

The realization that anthropogenic nitrogen (N) deposition is causing significant environmental change in many ecosystems has led to lower emissions of reactive N and deposition rates in many regions. However, the impacts of N deposition on terrestrial ecosystems can be long lasting, with significant inertia in the return of the biota and biogeochemical processes to baseline levels. To better understand patterns of recovery and the factors that may contribute to slow or no responses following declines in N deposition, we followed plant species composition, microbial abundance, N cycling rates, soil pH, and pools of NO3- and extractable cations in an impacted alpine ecosystem following cessation of 12-yr experiment increasing N deposition rates by 0, 20, 40, and 60 kg N·ha-1 ·yr-1 . Simulated N deposition had resulted in a tripling in the cover of the nitrophilic species Carex rupestris, while the dominant sedge Kobresia myosuroides had decreased by more than half at the highest N input level. In addition, nitrification rates were elevated, soil extractable magnesium (Mg2+ ) and pH decreased, and aluminum (Al3+ ) and manganese (Mn2+ ) were elevated at the highest N treatment inputs. Over the nine years following cessation of N additions to the impacted plots, only the cover of the nitrophilic C. rupestris showed any recovery to prior levels. Abundances of both bacteria and fungi were lower with N addition in both treatment and recovery plots. Rates of nitrification and pools of NO3- remained elevated in the recovery plots, likely contributing to the lack of biotic response to the cessation of N inputs. In addition, nutrient base cations (Ca2+ and Mg2+ ) and soil pH remained depressed, and the toxic metal cations (Al3+ and Mn2+ ) remained elevated in recovery plots, also potentially influencing biotic recovery. These results emphasize the importance of considering long-term environmental impacts of N deposition associated with legacy effects, such as elevated N cycling and losses of base cations, in determining environmental standards such as the metrics used for critical loads.


Assuntos
Conservação dos Recursos Naturais , Cyperaceae/fisiologia , Pradaria , Ciclo do Nitrogênio , Solo/química , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Microbiologia do Solo
14.
Ecol Appl ; 27(8): 2249-2261, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28782919

RESUMO

Assessing biological recovery in damaged aquatic environments requires the consideration of multiple spatial and temporal scales. Past research has focused on assessing lake recovery from atmospheric or catchment disturbance at regional or catchment levels. Studies have also rarely considered the influences of adjacent terrestrial characteristics on within-lake habitats, such as subcatchment delta confluences. We used Hyalella azteca, a ubiquitous freshwater amphipod, as a sensitive indicator to assess the importance of local subcatchment scale factors in the context of multiscale lake recovery within the metal mining region of Sudbury, Canada following a period of major reductions in atmospheric pollution. At the regional scale, data from repeated surveys of 40 lakes showed higher probabilities of H. azteca occurrence with higher lake water conductivity, alkalinity, and pH and lower metal concentrations. The importance of metals decreased through time and the importance of higher conductivity, alkalinity, and pH increased. At the subcatchment scale, a subset of six lakes sampled across a colonization gradient revealed higher H. azteca abundances at subcatchment delta sites than non-delta sites in early colonization stages, and that abundance at delta sites was correlated with both within-lake habitat and terrestrial subcatchment characteristics. For example, wetland cover reduced the strength of positive associations between H. azteca abundance and macrophyte density. A single lake from this subset also revealed higher abundances at delta sites associated with higher concentrations of terrestrial organic matter and larger subcatchments. Our results demonstrate that factors affecting recovery can change with the scale of study, and that managing terrestrial-aquatic linkages is important for facilitating recovery processes within damaged lake ecosystems.


Assuntos
Anfípodes/fisiologia , Conservação dos Recursos Naturais , Lagos/química , Animais , Metais/análise , Ontário , Densidade Demográfica , Poluentes Químicos da Água/análise
15.
J Environ Manage ; 204(Pt 1): 486-493, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28930693

RESUMO

Military Training Areas (MTAs) cover at least 2 percent of the Earth's terrestrial surface and occur in all major biomes. These areas are potentially important for biodiversity conservation. The greatest challenge in managing MTAs is balancing the disturbance associated with military training and environmental values. These challenges are unique as no other land use is managed for these types of anthropogenic disturbances in a natural setting. We investigated how military training-related disturbance is best managed on MTAs. Specifically, we explored management options to maximise the amount of military training that can be undertaken on a MTA while minimising the amount of environmental disturbance. MTAs comprise of a number of ranges designed to facilitate different types of military training. We simulated military training-related environmental disturbance at different range usage rates under a typical range rotation use strategy, and compared the results to estimated ecosystem recovery rates from training activities. We found that even at relatively low simulated usage rates, random allocation and random spatial use of training ranges within an MTA resulted in environmental degradation under realistic ecological recovery rates. To avoid large scale environmental degradation, we developed a decision-making tool that details the best method for managing training-related disturbance by determining how training activities can be allocated to training ranges.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Militares/educação , Ecologia , Ecossistema
16.
Oecologia ; 182(1): 231-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27167224

RESUMO

Despite widespread degradation, some coastal ecosystems display remarkable resilience. For seagrasses, a century-old paradigm has implicated macroalgal blooms stimulated by anthropogenic nutrient, loading as a primary driver of seagrass decline, yet relatively little attention has been given to drivers of seagrass resilience. In Elkhorn Slough, CA, an estuarine system characterized by extreme anthropogenic nutrient loading and macroalgal (Ulva spp.) blooms, seagrass (Zostera marina) beds have recovered concurrent with colonization of the estuary by top predators, sea otters (Enhydra lutris). Here, we follow up on the results of a previous experiment at the seagrass interior, showing how sea otters can generate a trophic cascade that promotes seagrass. We conducted an experiment and constructed structural equation models to determine how sea otters, through a trophic cascade, might affect the edge of seagrass beds where expansion occurs. We found that at the edge, sea otters promoted both seagrass and ephemeral macroalgae, with the latter contributing beneficial grazers to the seagrass. The surprising results that sea otters promote two potentially competing vegetation types, and a grazer assemblage at their boundary provides a mechanism by which seagrasses can expand in eutrophic environments, and contributes to a growing body of literature demonstrating that ephemeral macroalgae are not always negatively associated with seagrass. Our results highlight the potential for top predator recovery to enhance ecosystem resilience to anthropogenic alterations through several cascading mechanisms.


Assuntos
Ecossistema , Zosteraceae , Animais , Estuários , Lontras , Alga Marinha
17.
Sci Total Environ ; 912: 169039, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056660

RESUMO

Freshwaters are considered to be the most vulnerable ecosystems facing biological invasions, and the red swamp crayfish (Procambarus clarkii) is one of the most widespread aquatic invasive species in the world. P. clarkii has negative impacts on water quality in the lakes that it invades by, for instance, increasing their turbidity and nutrient concentrations and reducing macrophyte biomass. However, native taxa such as snails and mussels could potentially help to maintain a clear-water status in lakes by grazing on periphyton or by phytoplankton filtration. To examine the potential negative effects of P. clarkii on the clear-water state in lakes dominated by the macrophyte Vallisneria denseserrulata and the potential for native species to buffer these effects, we tested the crayfish impact in the absence and presence of the snail Bellamya aeruginosa and the mussel Sinanodonta woodiana at different biomasses. In the presence of crayfish, total suspended solids, total phosphorus, and chlorophyll a concentrations significantly increased compared to the control treatments without crayfish. However, when crayfish coexisted with snails or mussels, these three environmental variables all decreased in concentration compared to the crayfish-only treatment. Low (500 g/m2) and high (1500 g/m2) snail or mussel biomass had similar buffering effects. Macrophyte biomass in the crayfish and high mussel biomass treatment was 43 % higher than in the crayfish-only treatment. Native molluscs therefore alleviated the negative effects of crayfish on lake water quality and promoted native macrophyte growth. We conclude that a thriving native mollusc community may help in maintaining the clear-water state in lakes following crayfish invasion.


Assuntos
Astacoidea , Ecossistema , Animais , Clorofila A , Qualidade da Água , Biomassa , Lagos , Caramujos
18.
Sci Total Environ ; 943: 173669, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38839005

RESUMO

A multitude of anthropogenic stressors impact biological communities and ecosystem processes in urban streams. Prominent among them are salinization, increased temperature, and altered flow regimes, all of which can affect microbial decomposer communities and litter decomposition, a fundamental ecosystem process in streams. Impairments caused by these stressors individually or in combination and recovery of communities and ecosystem processes after release from these stressors are not well understood. To improve our understanding of multiple stressors impacts we performed an outdoor stream mesocosm experiment with 64 experimental units to assess the response of microbial litter decomposers and decomposition. The three stressors we applied in a full-factorial design were increased salinity (NaCl addition, 0.53 mS cm-1 above ambient), elevated temperature (3.5 °C above ambient), and reduced flow velocity (3.5 vs 14.2 cm s-1). After two weeks of stressor exposure (first sampling) and two subsequent weeks of recovery (second sampling), we determined leaf-associated microbial respiration, fungal biomass, and the sporulation activity and community composition of aquatic hyphomycetes in addition to decomposition rates of black alder (Alnus glutinosa) leaves confined in fine-mesh litter bags. Microbial colonization of the litter was accompanied by significant mass loss in all mesocosms. However, there was little indication that mass loss, microbial respiration, fungal biomass, sporulation rate or community composition of aquatic hyphomycetes was strongly affected by either single stressors or their interactions. Two exceptions were temperature effects on sporulation and decomposition rate. Similarly, no notable differences among mesocosms were observed after the recovery phase. These results suggest that microbial decomposers and leaf litter decomposition are either barely impaired by exposure to the tested stressors at the levels applied in our experiment, or that communities in restored urban streams are well adapted to cope with these stressor levels.


Assuntos
Rios , Salinidade , Rios/química , Rios/microbiologia , Biodegradação Ambiental , Ecossistema , Folhas de Planta , Alnus , Temperatura , Monitoramento Ambiental
19.
PeerJ ; 11: e16115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025748

RESUMO

Mass bleaching events and local anthropogenic influences have changed the benthic communities of many coral reefs with pronounced spatial differences that are linked to resilience patterns. The Gulf of Thailand is an under-investigated region with only few existing datasets containing long-term developments of coral reef communities using the same method at fixed sites. We thus analyzed benthic community data from seven reefs surrounding the island of Koh Phangan collected between 2014 and 2022. Findings revealed that the average live hard coral cover around Koh Phangan increased from 37% to 55% over the observation period, while turf algae cover decreased from 52% to 29%, indicating some recovery of local reefs. This corresponds to a mean increased rate of coral cover by 2.2% per year. The increase in live hard coral cover was mainly driven by plate-like corals, which quadrupled in proportion over the last decade from 7% to 28% while branching corals decreased in proportion from 9% to 2%. Furthermore, the hard coral genus richness increased, indicating an increased hard coral diversity. While in other reefs, increasing live hard coral cover is often attributed to fast-growing, branching coral species, considered more susceptible to bleaching and other disturbances, the reefs around Koh Phangan recovered mainly via growth of plate-like corals, particularly of the genus Montipora. Although plate-like morphologies are not necessarily more bleaching tolerant, they are important for supporting reef fish abundance and structural complexity on reefs, aiding reef recovery and sturdiness. Hence, our findings indicate that the intensity of local stressors around Kho Phangan allows reef recovery driven by some hard coral species.


Assuntos
Antozoários , Animais , Tailândia , Recifes de Corais , Peixes
20.
Ecol Evol ; 13(5): e10086, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206687

RESUMO

Changes in fire regime of boreal forests in response to climate warming are expected to impact postfire recovery. However, quantitative data on how managed forests sustain and recover from recent fire disturbance are limited.Two years after a large wildfire in managed even-aged boreal forests in Sweden, we investigated how recovery of aboveground and belowground communities, that is, understory vegetation and soil microbial and faunal communities, responded to variation in the severity of soil (i.e., consumption of soil organic matter) and canopy fires (i.e., tree mortality).While fire overall enhanced diversity of understory vegetation through colonization of fire adapted plant species, it reduced the abundance and diversity of soil biota. We observed contrasting effects of tree- and soil-related fire severity on survival and recovery of understory vegetation and soil biological communities. Severe fires that killed overstory Pinus sylvestris promoted a successional stage dominated by the mosses Ceratodon purpureus and Polytrichum juniperinum, but reduced regeneration of tree seedlings and disfavored the ericaceous dwarf-shrub Vaccinium vitis-idaea and the grass Deschampsia flexuosa. Moreover, high tree mortality from fire reduced fungal biomass and changed fungal community composition, in particular that of ectomycorrhizal fungi, and reduced the fungivorous soil Oribatida. In contrast, soil-related fire severity had little impact on vegetation composition, fungal communities, and soil animals. Bacterial communities responded to both tree- and soil-related fire severity. Synthesis: Our results 2 years postfire suggest that a change in fire regime from a historically low-severity ground fire regime, with fires that mainly burns into the soil organic layer, to a stand-replacing fire regime with a high degree of tree mortality, as may be expected with climate change, is likely to impact the short-term recovery of stand structure and above- and belowground species composition of even-aged P. sylvestris boreal forests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA