Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Immunity ; 47(3): 481-497.e7, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930660

RESUMO

Transcriptional regulation during CD4+ T cell fate decisions enables their differentiation into distinct states, guiding immune responses toward antibody production via Tfh cells or inflammation by Teff cells. Tfh-Teff cell fate commitment is regulated by mutual antagonism between the transcription factors Bcl6 and Blimp-1. Here we examined how T cell receptor (TCR) signals establish and arbitrate Bcl6-Blimp-1 counter-antagonism. We found that the TCR-signal-induced transcription factor Irf4 is essential for the differentiation of Bcl6-expressing Tfh and Blimp-1-expressing Teff cells. Increased TCR signaling raised Irf4 amounts and promoted Teff cell fates at the expense of Tfh ones. Importantly, orthogonal induction of Irf4 expression redirected Tfh cell fate trajectories toward those of Teff. Mechanistically, we linked greater Irf4 abundance with its recruitment toward low-affinity binding sites within Teff cell cis-regulatory elements, including those of Prdm1. We propose that the Irf4 locus functions as the "reader" of TCR signal strength, and in turn, concentration-dependent activity of Irf4 "writes" T helper fate choice.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fatores Reguladores de Interferon/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Antígenos/imunologia , Sítios de Ligação , Diferenciação Celular/imunologia , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Imunização , Fatores Reguladores de Interferon/genética , Interleucina-2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Motivos de Nucleotídeos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/citologia
2.
Cytotherapy ; 26(9): 1026-1032, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38819365

RESUMO

BACKGROUND AIMS: The success of chimeric antigen receptor (CAR) T-cell therapy in treating B-cell malignancies has led to the evaluation of CAR T-cells targeting a variety of other malignancies. Although the efficacy of CAR T-cells is enhanced when administered post-lymphodepleting chemotherapy, this can trigger bone marrow suppression and sustained cytopenia after CD19.CAR T-cell therapy. Additionally, systemic inflammation associated with CAR T-cell activity may contribute to myelosuppression. Cytopenias, such as neutropenia and thrombocytopenia, elevate the risk of severe infections and bleeding, respectively. However, data on the incidence of prolonged cytopenias after immune effector therapy in the solid tumor context remain limited. OBJECTIVE: We compared the incidence of prolonged cytopenias after immune effector therapy including genetically modified T-cells, virus-specific T-cells (VSTs) and NKT-cells, as well non-gene-modified VSTs for leukemia, lymphoma, and solid tumors (ST) to identify associated risk factors. METHODS: A retrospective analysis was conducted of 112 pediatric and adult patients with relapsed and/or refractory cancers who received lymphodepleting chemotherapy followed by immune effector therapy. Patients treated with 13 distinct immune effector cell therapies through 11 single-center clinical trials and 2 commercial products over a 6-year period were categorized into 3 types of malignancies: leukemia, lymphoma and ST. We obtained baseline patient characteristics and adverse events data for each participant, and tracked neutrophil and platelet counts following lymphodepletion. RESULTS: Of 112 patients, 104 (92.9%) experienced cytopenias and 88 (79%) experienced severe cytopenias. Patients with leukemia experienced significantly longer durations of severe neutropenia (median duration of 14 days) compared with patients with lymphoma (7 days) or ST (11 days) (P = 0.002). Patients with leukemia also had a higher incidence of severe thrombocytopenia (74.1%), compared with lymphoma (46%, P = 0.03) and ST (14.3%, P < 0.0001). Prolonged cytopenias were significantly associated with disease type (63% of patients with leukemia, 44% of patients with lymphoma, and 22.9% of patients with ST, P = 0.006), prior hematopoietic stem cell transplant (HSCT) (66.7% with prior HSCT versus 38.3% without prior HSCT, P = 0.039), and development of immune effector cell-associated neurotoxicity syndrome (ICANS) (75% with ICANS versus 38% without ICANS, P = 0.027). There was no significant association between prolonged cytopenias and cytokine release syndrome. CONCLUSIONS: Immune effector recipients often experience significant cytopenias due to marrow suppression following lymphodepletion regardless of disease, but prolonged severe cytopenias are significantly less common after treatment of patients with lymphoma and solid tumors.


Assuntos
Imunoterapia Adotiva , Leucemia , Linfoma , Humanos , Masculino , Feminino , Adulto , Leucemia/terapia , Leucemia/imunologia , Leucemia/complicações , Criança , Pessoa de Meia-Idade , Linfoma/terapia , Linfoma/imunologia , Linfoma/complicações , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Adolescente , Trombocitopenia/terapia , Trombocitopenia/etiologia , Trombocitopenia/imunologia , Estudos Retrospectivos , Idoso , Neutropenia/imunologia , Neutropenia/etiologia , Neutropenia/terapia , Pré-Escolar , Depleção Linfocítica , Adulto Jovem , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Citopenia
3.
Mol Cancer ; 22(1): 201, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071322

RESUMO

Autophagy is an essential cellular homeostasis pathway initiated by multiple stimuli ranging from nutrient deprivation to viral infection, playing a key role in human health and disease. At present, a growing number of evidence suggests a role of autophagy as a primitive innate immune form of defense for eukaryotic cells, interacting with components of innate immune signaling pathways and regulating thymic selection, antigen presentation, cytokine production and T/NK cell homeostasis. In cancer, autophagy is intimately involved in the immunological control of tumor progression and response to therapy. However, very little is known about the role and impact of autophagy in T and NK cells, the main players in the active fight against infections and tumors. Important questions are emerging: what role does autophagy play on T/NK cells? Could its modulation lead to any advantages? Could specific targeting of autophagy on tumor cells (blocking) and T/NK cells (activation) be a new intervention strategy? In this review, we debate preclinical studies that have identified autophagy as a key regulator of immune responses by modulating the functions of different immune cells and discuss the redundancy or diversity among the subpopulations of both T and NK cells in physiologic context and in cancer.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Células Matadoras Naturais , Linfócitos T , Neoplasias/terapia , Autofagia
4.
Med Microbiol Immunol ; 212(2): 153-163, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35364731

RESUMO

Conflicting hallmarks are attributed to cytomegalovirus (CMV) infections. CMVs are viewed as being master tacticians in "immune evasion" by subverting essentially all pathways of innate and adaptive immunity. On the other hand, CMV disease is undeniably restricted to the immunologically immature or immunocompromised host, whereas an intact immune system prevents virus spread, cytopathogenic tissue infection, and thus pathological organ manifestations. Therefore, the popular term "immune evasion" is apparently incongruous with the control of CMV infections in the immunocompetent human host as well as in experimental non-human primate and rodent models. Here, we review recent work from the mouse model that resolves this obvious discrepancy for the example of the virus-specific CD8 T-cell response. Immune evasion proteins encoded by murine CMV (mCMV) interfere with the cell surface trafficking of antigenic peptide-loaded MHC class-I (pMHC-I) complexes and thereby reduce their numbers available for interaction with T-cell receptors of CD8 T cells; but this inhibition is incomplete. As a consequence, while CD8 T cells with low interaction avidity fail to receive sufficient signaling for triggering their antiviral effector function in the presence of immune evasion proteins in infected cells, a few pMHC-I complexes that escape to the cell surface are sufficient for sensitizing high-avidity CD8 T cells. It is thus proposed that the function of immune evasion proteins is to raise the avidity threshold for activation, so that in the net result, only high-avidity cells can protect. An example showing that immune evasion proteins can make the difference between life and death is the lacking control of infection in a mouse model of MHC-I histoincompatible hematopoietic cell transplantation (allogeneic-HCT). In this model, only low-avidity CD8 T cells become reconstituted by HCT and almost all infected HCT recipients die of multiple-organ CMV disease when immune evasion proteins are expressed. In contrast, lowering the avidity threshold for antigen recognition by deletion of immune evasion proteins allowed control of infection and rescued from death.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Camundongos , Animais , Humanos , Citomegalovirus , Linfócitos T CD8-Positivos , Modelos Animais de Doenças
5.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675037

RESUMO

Regulatory T cells (Tregs) play an important role in maintaining immune tolerance and homeostasis by modulating how the immune system is activated. Several studies have documented the critical role of Tregs in suppressing the functions of effector T cells and antigen-presenting cells. Under certain conditions, Tregs can lose their suppressive capability, leading to a compromised immune system. For example, mutations in the Treg transcription factor, Forkhead box P3 (FOXP3), can drive the development of autoimmune diseases in multiple organs within the body. Furthermore, mutations leading to a reduction in the numbers of Tregs or a change in their function facilitate autoimmunity, whereas an overabundance can inhibit anti-tumor and anti-pathogen immunity. This review discusses the characteristics of Tregs and their mechanism of action in select autoimmune skin diseases, transplantation, and skin cancer. We also examine the potential of Tregs-based cellular therapies in autoimmunity.


Assuntos
Doenças Autoimunes , Dermatopatias , Neoplasias Cutâneas , Humanos , Linfócitos T Reguladores , Doenças Autoimunes/etiologia , Doenças Autoimunes/terapia , Autoimunidade , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/terapia , Dermatopatias/etiologia , Dermatopatias/terapia , Fatores de Transcrição Forkhead
6.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 827-832, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37927025

RESUMO

Bronchial asthma is a heterogeneous chronic inflammatory disease involving multiple immune cells and structural cells.It is characterized by airflow limitation,airway hyperresponsiveness,and airway remodeling,with complex pathogenesis.In recent years,the research on exosomes has developed rapidly.Exosomes are small vesicles secreted by a variety of cells and are naturally found in various biological fluids,with stability and biocompatibility.Exosomes from different cells are involved in pathophysiological processes such as airway inflammation,remodeling,and hyperresponsiveness through specific mechanisms and play a regulatory role in multiple links in bronchial asthma.This review focuses on the role of exosomes from different cells in the pathogenesis of bronchial asthma.


Assuntos
Asma , Exossomos , Humanos , Exossomos/patologia , Pulmão/patologia , Inflamação , Doença Crônica
7.
Cancer Sci ; 113(7): 2246-2257, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441749

RESUMO

Although ropeginterferon alfa-2b has recently been clinically applied to myeloproliferative neoplasms with promising results, its antitumor mechanism has not been thoroughly investigated. Using a leukemia model developed in immunocompetent mice, we evaluated the direct cytotoxic effects and indirect effects induced by ropeginterferon alfa-2b in tumor cells. Ropeginterferon alfa-2b therapy significantly prolonged the survival of mice bearing leukemia cells and led to long-term remission in some mice. Alternatively, conventional interferon-alpha treatment slightly extended the survival and all mice died. When ropeginterferon alfa-2b was administered to interferon-alpha receptor 1-knockout mice after the development of leukemia to verify the direct effect on the tumor, the survival of these mice was slightly prolonged; nevertheless, all of them died. In vivo CD4+ or CD8+ T-cell depletion resulted in a significant loss of therapeutic efficacy in mice. These results indicate that the host adoptive immunostimulatory effect of ropeginterferon alfa-2b is the dominant mechanism through which tumor cells are suppressed. Moreover, mice in long-term remission did not develop leukemia, even after tumor rechallenge. Rejection of rechallenge tumors was canceled only when both CD4+ and CD8+ T cells were removed in vivo, which indicates that each T-cell group functions independently in immunological memory. We show that ropeginterferon alfa-2b induces excellent antitumor immunomodulation in hosts. Our finding serves in devising therapeutic strategies with ropeginterferon alfa-2b.


Assuntos
Leucemia , Transtornos Mieloproliferativos , Neoplasias , Animais , Linfócitos T CD8-Positivos , Imunomodulação , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Leucemia/tratamento farmacológico , Camundongos , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
8.
Cancer Immunol Immunother ; 70(4): 909-921, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33037893

RESUMO

High-dose IL-2 induces cancer regression but its therapeutic use is limited due to high toxicities resulting from its broad cell targeting. In one strategy to overcome this limitation, IL-2 has been modified to selectively target the intermediate affinity IL-2R that broadly activates memory-phenotypic CD8+ T and NK cells, while minimizing Treg-associated tolerance. In this study, we modeled an alternative strategy to amplify tumor antigen-specific TCR transgenic CD8+ T cells through limited application of a long-acting IL-2 fusion protein, mIL-2/mCD25, which selectively targets the high-affinity IL-2R. Here, mice were vaccinated with a tumor antigen and high-dose mIL-2/mCD25 was applied to coincide with the induction of the high affinity IL-2R on tumor-specific T cells. A single high dose of mIL-2/mCD25, but not an equivalent amount of IL-2, amplified the frequency and function of tumor-reactive CD8+ T effector (Teff) and memory cells. These mIL-2/mCD25-dependent effects relied on distinctive requirements for TLR signals during priming of CD8+ tumor-specific T cells. The mIL-2/mCD25-amplified tumor-reactive effector and memory T cells supported long-lasting antitumor responses to B16-F10 melanoma. This regimen only transiently increased Tregs, yielding a favorable Teff-Treg ratio within the tumor microenvironment. Notably, mIL-2/mCD25 did not increase non-tumor-specific Teff or NK cells within tumors, further substantiating the specificity of mIL-2/mCD25 for tumor antigen-activated T cells. Thus, the selectivity and persistence of mIL-2/mCD25 in conjunction with a tumor vaccine supports antitumor immunity through a mechanism that is distinct from recombinant IL-2 or IL-2-based biologics that target the intermediate affinity IL-2R.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Subunidade alfa de Receptor de Interleucina-2/administração & dosagem , Interleucina-2/administração & dosagem , Células Matadoras Naturais/imunologia , Melanoma Experimental/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Linfócitos T Reguladores/imunologia , Animais , Antígenos de Neoplasias , Feminino , Humanos , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/imunologia , Transdução de Sinais , Microambiente Tumoral
9.
Cytokine ; 147: 155247, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873468

RESUMO

Leishmaniasis is an unresolved global health problem with a high socio-economic impact. Data generated in mouse models has revealed that the Th1 response, with IL-12, IFN-γ, TNF-α, and IL-2 as prominent cytokines, predominantly controls the disease progression. Premised on these findings, all examined vaccine formulations have been aimed at generating a long-lived memory Th1 response. However, all vaccine formulations with the exception of live Leishmania inoculation (leishmanization) have failed to sufficiently protect against sand fly delivered infection. It has been recently unraveled that sand fly dependent factors may compromise pre-existing Th1 memory. Further scrutinizing the immune response after leishmanization has uncovered the prominent role of early (within hours) and robust IFN-γ production (Th1 concomitant immunity) in controlling the sand fly delivered secondary infection. The response is dependent upon parasite persistence and subclinical ongoing primary infection. The immune correlates of concomitant immunity (Resident Memory T cells and Effector T subsets) mitigate the early effects of sand fly delivered infection and help to control the disease. In this review, we have described the early events after sand fly challenge and the role of Th1 concomitant immunity in the protective immune response in leishmanized resistant mouse model, although leishmanization is under debate for human use. Undoubtedly, the lessons we learn from leishmanization must be further implemented in alternative vaccine approaches.


Assuntos
Imunidade Adaptativa/imunologia , Interferon gama/imunologia , Leishmania major/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Cutânea/imunologia , Psychodidae/imunologia , Células Th1/imunologia , Animais , Humanos
10.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445459

RESUMO

An understanding of the immune mechanisms that lead to rejection versus tolerance of allogeneic pancreatic islet grafts is of paramount importance, as it facilitates the development of innovative methods to improve the transplant outcome. Here, we used our established intraocular islet transplant model to gain novel insight into changes in the local metabolome and proteome within the islet allograft's immediate microenvironment in association with immune-mediated rejection or tolerance. We performed integrated metabolomics and proteomics analyses in aqueous humor samples representative of the graft's microenvironment under each transplant outcome. The results showed that several free amino acids, small primary amines, and soluble proteins related to the Warburg effect were upregulated or downregulated in association with either outcome. In general, the observed shifts in the local metabolite and protein profiles in association with rejection were consistent with established pro-inflammatory metabolic pathways and those observed in association with tolerance were immune regulatory. Taken together, the current findings further support the potential of metabolic reprogramming of immune cells towards immune regulation through targeted pharmacological and dietary interventions against specific metabolic pathways that promote the Warburg effect to prevent the rejection of transplanted islets and promote their immune tolerance.


Assuntos
Rejeição de Enxerto/metabolismo , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Metabolômica , Proteômica , Tolerância ao Transplante , Aloenxertos , Animais , Rejeição de Enxerto/patologia , Células Secretoras de Insulina/patologia , Masculino , Camundongos
11.
Eur J Immunol ; 49(5): 694-708, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30883723

RESUMO

During acute viral infections in mice, IL-7Rα and KLRG1 together are used to distinguish the short-lived effector cells (SLEC; IL-7Rαlo KLRGhi ) from the precursors of persisting memory cells (MPEC; IL-7Rαhi KLRG1lo ). We here show that these markers can be used to define distinct subsets in the circulation and lymph nodes during the acute phase and in "steady state" in humans. In contrast to the T cells in the circulation, T cells derived from lymph nodes hardly contain any KLRG1-expressing cells. The four populations defined by IL-7Rα and KLRG1 differ markedly in transcription factor, granzyme and chemokine receptor expression. When studying renal transplant recipients experiencing a primary hCMV and EBV infection, we also found that after viral control, during latency, Ki-67-negative SLEC can be found in the peripheral blood in considerable numbers. Thus, combined analyses of IL-7Rα and KLRG1 expression on human herpes virus-specific CD8+ T cells can be used to separate functionally distinct subsets in humans. As a noncycling IL-7Rαlo KLRG1hi population is abundant in healthy humans, we conclude that this combination of markers not only defines short-lived effector cells during the acute response but also stable effector cells that are formed and remain present during latent herpes infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Expressão Gênica , Lectinas Tipo C/genética , Receptores Imunológicos/genética , Receptores de Interleucina-7/genética , Adulto , Citomegalovirus/imunologia , Perfilação da Expressão Gênica , Antígenos HLA/genética , Antígenos HLA/imunologia , Herpes Simples/imunologia , Herpes Simples/virologia , Humanos , Hospedeiro Imunocomprometido , Memória Imunológica , Imunofenotipagem , Lectinas Tipo C/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária , Pessoa de Meia-Idade , Receptores Imunológicos/metabolismo , Receptores de Interleucina-7/metabolismo , Simplexvirus/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
12.
Adv Exp Med Biol ; 1224: 35-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32036603

RESUMO

CD4+ T helper (TH) cells are key regulators in the tumour immune microenvironment (TIME), mediating the adaptive immunological response towards cancer, mainly through the activation of cytotoxic CD8+ T cells. After antigen recognition and proper co-stimulation, naïve TH cells are activated, undergo clonal expansion, and release cytokines that will define the differentiation of a specific effector TH cell subtype. These different subtypes have different functions, which can mediate both anti- and pro-tumour immunological responses. Here, we present the dual role of TH cells restraining or promoting the tumour, the factors controlling their homing and differentiation in the TIME, their influence on immunotherapy, and their use as prognostic indicators.


Assuntos
Neoplasias/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Microambiente Tumoral/imunologia , Animais , Citocinas/metabolismo , Humanos , Linfócitos T Citotóxicos/imunologia
13.
Int J Mol Sci ; 21(5)2020 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182655

RESUMO

Recent investigations reported that some subtypes from the Lund or The Cancer Genome Atlas (TCGA) classifications were most responsive to PD-L1 inhibitor treatment. However, the association between previously reported subtypes and immune checkpoint inhibitor (ICI) therapy responsiveness has been insufficiently explored. Despite these contributions, the ability to predict the clinical applicability of immune checkpoint inhibitor therapy in patients remains a major challenge. Here, we aimed to re-classify distinct subtypes focusing on ICI responsiveness using gene expression profiling in the IMvigor 210 cohort (n = 298). Based on the hierarchical clustering analysis, we divided advanced urothelial cancer patients into three subgroups. To confirm a prognostic impact, we performed survival analysis and estimated the prognostic value in the IMvigor 210 and TCGA cohort. The activation of CD8+ T effector cells was common for patients of classes 2 and 3 in the TCGA and IMvigor 210 cohort. Survival analysis showed that patients of class 3 in the TCGA cohort had a poor prognosis, while patients of class 3 showed considerably prolonged survival in the IMvigor 210 cohort. One of the distinct characteristics of patients in class 3 is the inactivation of the TGFß and YAP/TAZ pathways and activation of the cell cycle and DNA replication and DNA damage (DDR). Based on our identified transcriptional patterns and the clinical outcomes of advanced urothelial cancer patients, we constructed a schematic summary. When comparing clinical and transcriptome data, patients with downregulation of the TGFß and YAP/TAZ pathways and upregulation of the cell cycle and DDR may be more responsive to ICI therapy.


Assuntos
Imunoterapia/métodos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias Urológicas/genética , Neoplasias Urológicas/terapia , Antígenos CD8/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Análise por Conglomerados , Dano ao DNA/genética , Dano ao DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Humanos , Prognóstico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias Urológicas/imunologia
14.
Turk J Med Sci ; 50(SI-2): 1697-1706, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32178508

RESUMO

Background/aim: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been used for the treatment of various refractory solid tumors during the last two decades. After the demonstration of graft-versus-leukemia (GvL) effect in a leukemic murine model following allo-HSCT from other strains of mice, graft-versus-tumor (GvT) effect in a solid tumor after allo-HSCT has also been reported in a murine model in 1984. Several trials have reported the presence of a GvT effect in patients with various refractory solid tumors, including renal, ovarian and colon cancers, as well as soft tissue sarcomas [1]. The growing data on haploidentical transplants also indicate GvT effect in some pediatric refractory solid tumors. Novel immunotherapy-based treatment modalities aim at inducing an allo-reactivity against the metastatic solid tumor via a GvT effect. Recipient derived immune effector cells (RDICs) in the antitumor reactivity following allo-HSCT have also been considered as an emerging therapy for advanced refractory solid tumors. Conclusion: This review summarizes the background, rationale, and clinical results of immune-based strategies using GvT effect for the treatment of various metastatic and refractory solid tumors, as well as innovative approaches such as haploidentical HSCT, CAR-T cell therapies and tumor infiltrating lymphocytes (TIL).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Transplante Homólogo , Animais , Humanos , Camundongos , Neoplasias/fisiopatologia , Neoplasias/terapia
15.
Biol Blood Marrow Transplant ; 25(4): e121-e122, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30615980

RESUMO

In this issue of BBMT, a multicenter group of investigators convened by the American Society of Blood and Marrow Transplantation outlines new consensus definitions and grading systems for the most common toxicities associated with immune effector cell therapies, including cytokine release syndrome and the newly named immune cell-associated neurotoxicity syndrome.


Assuntos
Células Matadoras Naturais/metabolismo , Células Cultivadas , Humanos
16.
J Autoimmun ; 105: 102300, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31296356

RESUMO

Eos (lkzf4) is a member of the Ikaros family of transcription factors and is preferentially expressed in T-regulatory (Treg) cells. However, the role of Eos in Treg function is controversial. One study using siRNA knock down of Eos demonstrated that it was critical for Treg suppressor function. In contrast, Treg from mice with a global deficiency of Eos had normal Treg function in vitro and in vivo. To further dissect the function of Eos in Tregs, we generated mice with a conditional knock out of Eos in Treg cells (lkzf4fl/fl X Foxp3YFP-cre, Eos cKO). Deletion of Eos in Treg resulted in activation of CD4+Foxp3- and CD8+ T cells at the age of 3 months, cellular infiltration in non-lymphoid tissues, hyperglobulinemia, and anti-nuclear antibodies. While Tregs from Eos cKO mice displayed normal suppressive function in vitro, Eos cKO mice developed severe Experimental Autoimmune Encephalomyletis (EAE) following immunization with myelin oligodendrocyte glycoprotein (MOG) and Eos cKO Treg were unable to suppress Inflammatory Bowel Disease (IBD). Eos cKO mice had decreased growth of the transplantable murine adenocarcinoma MC38 tumor accompanied by enhanced IFN-γ/TNF-α production by CD8+ T cells in tumor draining lymph nodes. Mice with a global deficiency of Eos or a deficiency of Eos only in T cells developed autoimmunity at a much older age (12 months or 7-8 months, respectively). Taken together, Eos appears to play an essential role in multiple aspects of Treg suppressor function, but also plays an as yet unknown role in the function of CD4+Foxp3- and CD8+ T cells and potentially in non-T cells.


Assuntos
Autoimunidade/imunologia , Proteínas de Ligação a DNA/imunologia , Proteínas do Tecido Nervoso/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Encefalomielite Autoimune Experimental/imunologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Doenças Inflamatórias Intestinais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/imunologia
17.
FASEB J ; 32(9): 5063-5077, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29913558

RESUMO

mAbs have emerged as a promising strategy for the treatment of cancer. However, in several malignancies, no effective antitumor mAbs are yet available. Identifying therapeutic mAbs that recognize common tumor antigens could render the treatment widely applicable. Here, a human single-chain variable fragment (scFv) antibody library was sequentially affinity selected against a panel of human cancer cell lines and an antibody fragment (named MS5) that bound to solid and blood cancer cells was identified. The MS5 scFv was fused to the human IgG1 Fc domain to generate an antibody (MS5-Fc fusion) that induced antibody-dependent cellular cytotoxicity and phagocytosis of cancer cells by macrophages. In addition, the MS5-Fc antibody bound to primary leukemia cells and induced antibody-dependent cellular cytotoxicity. In the majority of analyzed cancer cells, the MS5-Fc antibody induced cell surface redistribution of the receptor complexes, but not internalization, thus maximizing the accessibility of the IgG1 Fc domain to immune effector cells. In vitro stability studies showed that the MS5-Fc antibody was stable after 6 d of incubation in human serum, retaining ∼60% of its initial intact form. After intravenous injections, the antibody localized into tumor tissues and inhibited the growth of 3 different human tumor xenografts (breast, lymphoma, and leukemia). These antitumor effects were associated with tumor infiltration by macrophages and NK cells. In the Ramos B-cell lymphoma xenograft model, the MS5-Fc antibody exhibited a comparable antitumor effect as rituximab, a chimeric anti-CD20 IgG1 mAb. These results indicate that human antibodies with pan-cancer abilities can be generated from phage display libraries, and that the engineered MS5-Fc antibody could be an attractive agent for further clinical investigation.-Sioud, M., Westby, P., Vasovic, V., Fløisand, Y., Peng, Q. Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies.


Assuntos
Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Anticorpos de Cadeia Única/farmacologia , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Immunol Invest ; 48(1): 79-95, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30239236

RESUMO

PURPOSE: Toll like receptor (TLR) engagement is primarily a function of the innate immune cells. The purpose of the study was to assess direct uptake of ODN 2216 in T helper cells and effects on cell proliferation and cytokine expression. METHODS: We isolated CD4+ CD25- T helper cells by magnetic sorting and studied the uptake of ODN 2216 using flow cytometry and confocal microscopy. We then studied the effect of ODN 2216 engagement on cell proliferation and cytokine expression using flow cytometry and gene expression of TLR9 signaling genes using real time RT-PCR. RESULTS: We made a chance observation that purified T helper cells from healthy individuals consistently bind to the TLR9 ligand ODN 2216. In PBMCs, on the other hand, 98% of monocytes preferentially bound to ODN 2216 FITC, indicating that they competed with the lymphocytes. We confirmed intracellular localization of ODN 2216 FITC as well as intracellular expression of TLR9 in Thelper cells. Furthermore, ODN 2216 FITC was also co-localized with the lysosomal membrane associated protein 1. The uptake of TLR9 ligand culminated in cellular proliferation, up-regulation of cytokines and increased mRNA expression of TLR9 and IRF7 in T helper cells, in the absence of antigen presenting cells. ODN 2216 uptake was inhibited by promethazine as well as by TLR9 antagonist. CONCLUSIONS: Our results show a direct engagement of TLR9 ligand in T helper cells and suggest involvement of TLR9 signalling in CD4+T cells, which may envisage novel targets for TLR inhibitors.


Assuntos
Proteínas de Membrana Lisossomal/metabolismo , Oligodesoxirribonucleotídeos/genética , Linfócitos T Auxiliares-Indutores/fisiologia , Receptor Toll-Like 9/metabolismo , Proliferação de Células , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Ativação Linfocitária , Microscopia Confocal , Ligação Proteica , Transporte Proteico , Transdução de Sinais/genética , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética
19.
Proc Natl Acad Sci U S A ; 113(27): 7608-13, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27330109

RESUMO

Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipid antigens and play critical roles in regulation of immune responses. Based on expression of the transcription factors (TFs) Tbet, Plzf, and Rorγt, iNKT cells have been classified in effector subsets that emerge in the thymus, namely, iNKT1, iNKT2, and iNKT17. Deficiency in the TF Bcl11b in double-positive (DP) thymocytes has been shown to cause absence of iNKT cells in the thymus and periphery due to defective self glycolipid processing and presentation by DP thymocytes and undefined intrinsic alterations in iNKT precursors. We used a model of cre-mediated postselection deletion of Bcl11b in iNKT cells to determine its intrinsic role in these cells. We found that Bcl11b is expressed equivalently in all three effector iNKT subsets, and its removal caused a reduction in the numbers of iNKT1 and iNKT2 cells, but not in the numbers of iNKT17 cells. Additionally, we show that Bcl11b sustains subset-specific cytokine production by iNKT1 and iNKT2 cells and restricts expression of iNKT17 genes in iNKT1 and iNKT2 subsets, overall restraining the iNKT17 program in iNKT cells. The total numbers of iNKT cells were reduced in the absence of Bcl11b both in the thymus and periphery, associated with the decrease in iNKT1 and iNKT2 cell numbers and decrease in survival, related to changes in survival/apoptosis genes. Thus, these results extend our understanding of the role of Bcl11b in iNKT cells beyond their selection and demonstrate that Bcl11b is a key regulator of iNKT effector subsets, their function, identity, and survival.


Assuntos
Células T Matadoras Naturais/fisiologia , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Citocinas/metabolismo , Regulação da Expressão Gênica , Camundongos , Neuropilina-1/metabolismo , Timo/imunologia
20.
Transfus Apher Sci ; 57(5): 614-618, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30385106

RESUMO

Apheresis procedures are standard of care for a wide range of indications in children, collection of hematopoietic stem cells being the most frequent one. With increasing numbers of hematopoietic stem cell transplants, advances in graft manipulation techniques and the development of innovative therapies using immune effector cells and gene therapy, apheresis within the pediatric population is growing in demand. While young children have higher circulating white blood cell counts and robustly mobilize hematopoietic stem cells, apheresis machines were designed for use within the adult population and apheresis procedures in children, particularly small children, can be more challenging as vascular access, collection techniques and impact of extracorporeal volumes increase the rate of adverse events. In this article we review topics of particular relevance to hematopoietic stem cell and immune effector cell collections in small children.


Assuntos
Remoção de Componentes Sanguíneos/métodos , Células-Tronco Hematopoéticas/imunologia , Criança , Pré-Escolar , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA