Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Exp Bot ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171373

RESUMO

The distribution of chlorophylls in eggplant (Solanum melongena) peel exhibits either a uniform pattern or an irregular green netting. The latter, manifested as a gradient of dark green netting intensified in the proximal part of the fruit on a pale green background, is common in wild relatives and some eggplant landraces. Despite the selection of uniform chlorophylls during domestication, the netting pattern contributes to a greater diversity of fruit colours. Here, we have used over 2,300 individuals from different populations, including a multi-parental MAGIC population for candidate genomic region identification, an F2 population for BSA-Seq, and advanced backcrosses for edges-to-core fine-mapping, to identify SmGLK2 gene as responsible for the irregular netting in eggplant fruits. We have also analysed the gene sequence of 178 S. melongena accessions and 22 wild relative species for tracing the evolutionary changes that the gene has undergone during domestication. Three different mutations were identified leading to the absence of netting. The main causative indel induces a premature stop codon disrupting the protein conformation and function, which was confirmed by western blotting analysis and confocal microscopy observations. SmGLK2 has a major role in regulating chlorophyll biosynthesis in eggplant fruit peel.

2.
Plant Cell Rep ; 43(5): 114, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587681

RESUMO

KEY MESSAGE: SmZHDs was highly expressed in anthocyanin-rich parts of eggplant. SmZHD12 can activate the expression of SmCHS, SmANS, SmDFR and SmF3H. Overexpression of SmZHD12 promotes anthocyanin biosynthesis in Arabidopsis. The Zinc finger-homeodomain (ZHD) proteins family genes are known to play a significant role in plant development and physiological processes. However, the evolutionary history and function of the ZHD gene family in eggplant remain largely unexplored. This study categorizes a total of 15 SmZHD genes into SmMIF and SmZHD subfamilies based on conserved domains. The phylogeny, gene structure, conserved motifs, promoter elements, and chromosomal locations of the SmZHD genes were comprehensively analyzed. Tissue expression profiles indicate that the majority of SmZHD genes are expressed in anthocyanin-rich areas. qRT-PCR assays revealed distinct expression patterns of SmZHD genes in response to various treatments, indicating their potential involvement in multiple signaling pathways. Analysis of transcriptomic data from light-treated eggplant peel identified SmZHD12 as the most light-responsive gene among the 15 SmZHD genes. Consequently, this study provides further evidence that SmZHD12 facilitates anthocyanin accumulation in Arabidopsis leaves by upregulating the expression of anthocyanin biosynthesis structural genes, as confirmed by dual-luciferase assays and Arabidopsis genetic transformation. Our study will lay a solid foundation for the in-depth study of the involvement of SmZHD genes in the regulation of anthocyanin biosynthesis.


Assuntos
Arabidopsis , Solanum melongena , Solanum melongena/genética , Antocianinas , Arabidopsis/genética , Evolução Biológica , Perfilação da Expressão Gênica
3.
BMC Plant Biol ; 23(1): 5, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597026

RESUMO

BACKGROUND: Fruit flesh colour is not only an important commodity attribute of eggplant but is also closely related to maturity. However, very little is known about its formation mechanism in eggplant. RESULTS: Two inbred lines of eggplant, green 'NC7' and white 'BL', were used in this study to explain the differences in flesh colour. Transcriptome sequencing results revealed a total of 3304 differentially expressed genes (DEGs) in NC7 vs. BL. Of the DEGs obtained, 2050 were higher and 1254 were lower in BL. These DEGs were annotated to 126 pathways, where porphyrin and chlorophyll metabolism, flavonoid biosynthesis, and photosynthesis-antenna proteins play vital roles in the colour formation of eggplant flesh. At the same time, Gene Ontology (GO) enrichment significance analysis showed that a large number of unigenes involved in the formation of chloroplast structure were lower in BL, which indicated that the formation of chloroplasts in white-fleshed eggplant was blocked. This was confirmed by transmission electron microscopy (TEM), which found only leucoplasts but no chloroplasts in the flesh cells of white-fleshed eggplant. Several genes encoding ERF and bHLH transcription factors were predicted to participate in the regulation of chlorophyll biosynthetic genes. CONCLUSIONS: The results of this study indicated that differences in the gene expression of the chlorophyll metabolic pathway were the main cause of the different flesh colour formations. These findings will increase our understanding of the genetic basis in eggplant flesh colors formation mechanism.


Assuntos
Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Transcriptoma , Cor , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Cell Rep ; 42(2): 321-336, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36645438

RESUMO

KEY MESSAGE: Comparative transcriptome analysis of early fruits of long and round eggplants, SmOVATE5, is involved in regulating fruit development. Eggplant, a solanaceous crop that has undergone a long period of domestication, is one of the most important vegetables worldwide. The shape of its fruit is an important agronomic trait and consumers in different regions have different preferences. However, a limited understanding of the molecular mechanisms regulating fruit development and shape has hindered eggplant breeding. In this study, we performed morphological observations and transcriptome analysis of long- and round-fruited eggplant genotypes to understand the molecular regulation during the early development of different fruit shapes. Morphological studies revealed that the two varieties already exhibited distinctly different phenotypes at the initial stage of fruit development before flowering, with rapid fruit enlargement beginning on the sixth day after flowering. Comparative transcriptome analysis identified phytohormone-related genes that were significantly upregulated on the day of flowering, indicating they may be involved in regulating the initial stages of fruit development. Notably, SmARF1 showed a sustained upregulation pattern in both varieties, suggesting that it may promote eggplant fruit growth. In addition, several differentially expressed genes of the SUN, YABBY, and OVATE families are potentially involved in the regulation of fruit development or fruit shape. We demonstrated that the SmOVATE5 gene has a negative regulatory function suppressing plant growth and development. In conclusion, this study provides new insights into the molecular regulatory mechanisms of eggplant fruit development, and the genes identified may provide valuable references for different fruit shape breeding programs.


Assuntos
Solanum melongena , Transcriptoma , Transcriptoma/genética , Solanum melongena/genética , Frutas/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica
5.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069301

RESUMO

Salinity is an important abiotic stress, damaging plant tissues by causing a burst of reactive oxygen species (ROS). Catalase (CAT) enzyme coded by Catalase (CAT) genes are potent in reducing harmful ROS and hydrogen peroxide (H2O2) produced. Herein, we performed bioinformatics and functional characterization of four SmCAT genes, retrieved from the eggplant genome database. Evolutionary analysis CAT genes revealed that they are divided into subgroups I and II. The RT-qPCR analysis of SmCAT displayed a differential expression pattern in response to abiotic stresses. All the CAT proteins of eggplant were localized in the peroxisome, except for SmCAT4, which localized in the cytomembrane and nucleus. Silencing of SmCAT4 compromised the tolerance of eggplant to salt stress. Suppressed expression levels of salt stress defense related genes SmTAS14 and SmDHN1, as well as increase of H2O2 content and decrease of CAT enzyme activity was observed in the SmCAT4 silenced eggplants. Our data provided insightful knowledge of CAT gene family in eggplant. Positive regulation of eggplant response to salinity by SmCAT4 provides resource for future breeding programs.


Assuntos
Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Catalase/genética , Catalase/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Mol Biol Rep ; 49(10): 9147-9157, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934767

RESUMO

BACKGROUND: The appearance quality of the eggplant (Solanum melongena L.) fruit is an important trait that influences its commercial value. It is known that quality traits such as anthocyanin composition and fruit surface pattern are categorical and are inherited simply. However, research examples of gene mapping for the composition (anthocyanin accumulation profile) and the surface pattern in eggplant fruit are limited. METHODS AND RESULTS: To map loci for these traits including the accumulation profiles of two anthocyanins, a widely spreading anthocyanin, delphinidin 3-(p-coumaroyl) rutinoside-5-glucoside (nasunin), and the relatively rare delphinidin 3-glucoside (D3G), we used two F2 intracrossed populations (LWF2 and N28F2). For the LWF2 population, mapping was achieved by reconstructing the linkage map created by Fukuoka et al. [1]. In the case of the N28F2 population, we constructed a linkage map consisting of 13 linkage groups using 238 simple sequence repeats, 75 single-nucleotide polymorphisms. Using the two F2 populations, the nasunin accumulating profile, the striped pattern on the fruit surface, the colors of flowers, fruit, and calyxes, and the D3G accumulating profile were genetically mapped. Furthermore, by utilizing the eggplant reference genome information, mutations in the causative candidate genes for those loci were identified. CONCLUSION: Overall, the results of this study suggest that inactivation of key enzymes of anthocyanin metabolism and the gene orthologous to the tomato u gene are potential causes of observed variety in eggplant appearance traits.


Assuntos
Solanum melongena , Antocianinas/genética , Antocianinas/metabolismo , Mapeamento Cromossômico/métodos , Frutas/genética , Frutas/metabolismo , Glucosídeos/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo
7.
Plant Cell Rep ; 41(11): 2213-2228, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36001130

RESUMO

KEY MESSAGE: The putative TCP genes and their responses to abiotic stress in eggplant were comprehensively characterized, and SmTCP genes (Smechr0202855.1 and Smechr0602431.1) may be involved in anthocyanin synthesis. The Teosinte branched1/Cycloidea/Proliferating cell factors (TCPs), a family of plant-specific transcription factors, plays paramount roles in a plethora of developmental and physiological processes. We here systematically characterized putative TCP genes and their response to abiotic stress in eggplant. In total, 30 SmTCP genes were categorized into two subfamilies based on the classical TCP conserved domains. Chromosomal location analysis illustrated the random distribution of putative SmTCP genes along 12 eggplant chromosomes. Cis-acting elements and miRNA target prediction suggested that versatile and complicated regulatory mechanisms that control SmTCPs gene expression, and 3 miRNAs (miR319a, miR319b, and miR319c-3p) might act as major regulators targeting SmTCPs. Tissue expression profiles indicated divergent spatiotemporal expression patterns of SmTCPs. qRT-PCR assays demonstrated different expression profiles of SmTCP under 4 °C, drought and ABA treatment conditions, suggesting the possible participation of SmTCP genes in multiple signaling pathways. Furthermore, RNA-seq data of eggplant anthocyanin synthesis coupled with yeast one-hybrid and dual-luciferase assays suggested the involvement of SmTCP genes (Smechr0202855.1 and Smechr0602431.1) in the mediation of anthocyanin synthesis. Our study will facilitate further investigation on the putative functional characterization of eggplant TCP genes and lay a solid foundation for the in-depth study of the involvement of SmTCP genes in the regulation of anthocyanin synthesis.


Assuntos
Solanum melongena , Solanum melongena/genética , Regulação da Expressão Gênica de Plantas/genética , Antocianinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genômica
8.
Plant Cell Physiol ; 62(6): 1001-1011, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34043001

RESUMO

Eggplant is rich in anthocyanins, which are thought to be highly beneficial for human health. It has been reported that blue light inhibitors of cryptochromes (BICs) act as negative regulators in light signal transduction, but little is known about their role in anthocyanin biosynthesis. In this study, yeast one-hybrid analysis showed that SmBICs could bind to the promoter of SmCHS, indicating that they could directly participate in eggplant anthocyanin biosynthesis. In SmBICs-silenced eggplants, more anthocyanins were accumulated, while SmBIC1-overexpression (OE) and SmBIC2-OE Arabidopsis and eggplants synthesized less anthocyanin. Quantitative real-time polymerase chain reaction also revealed that the anthocyanin structural genes, which were downregulated in SmBIC1-OE and SmBIC2-OE lines, were upregulated in SmBICs-silenced eggplants. In addition, transcriptome analysis further confirmed that differentially expressed genes of SmBICs-OE plants were enriched mainly in the pathways related to anthocyanin biosynthesis and the key transcription factors and structural genes for anthocyanin biosynthesis, such as SmMYB1, SmTT8, SmHY5, SmCHS, SmCHI, SmDFR and SmANS, were suppressed significantly. Finally, bimolecular fluorescence complementation and blue-light-dependent degradation assay suggested that SmBICs interacted with photo-excited SmCRY2 to inhibit its photoreaction, thereby inhibiting the expression of genes related to anthocyanin biosynthesis and reducing anthocyanin accumulation. Collectively, our study suggests that SmBICs repress anthocyanin biosynthesis by inhibiting photoactivation of SmCRY2. This study provides a new working model for anthocyanin biosynthesis in eggplant.


Assuntos
Antocianinas/biossíntese , Proteínas de Plantas/metabolismo , Solanum melongena/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Transdução de Sinal Luminoso , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Solanum melongena/fisiologia , Ativação Transcricional
9.
BMC Genomics ; 20(1): 678, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455222

RESUMO

BACKGROUND: Light is a key environmental factor in regulation of anthocyanin biosynthesis. Through a large number of bagging screenings, we obtained non-photosensitive eggplants that still have decent amount of anthocyanin synthesized after bagging. In the present study, transcriptome was made to explore the molecular mechanism of dark-regulated anthocyanin synthesis in non-photosensitive eggplant. RESULTS: The transcriptome of the pericarp at 0 h, 0.5 h, 4 h, and 8 h after bag removal were sequenced and analyzed. Comparison of the sequencing data with those of photosensitive eggplant for the same time period showed that anthocyanin synthesis genes had different expression trends. Based on the expression trends of the structural genes, it was discovered that 22 transcription factors and 4 light signal transduction elements may be involved in the anthocyanin synthesis in two types of eggplants. Through transcription factor target gene prediction and yeast one-hybrid assay, SmBIM1, SmAP2, SmHD, SmMYB94, SmMYB19, SmTT8, SmYABBY, SmTTG2, and SmMYC2 were identified to be directly or indirectly bound to the promoter of the structural gene SmCHS. These results indicate that the identified 9 genes participated in the anthocyanin synthesis in eggplant peel and formed a network of interactions among themselves. CONCLUSIONS: Based on the comparative transcription, the identified 22 transcription factors and 4 light signal transduction elements may act as the key factors in dark regulated anthocyanin synthesis in non-photosensitive eggplant. The results provided a step stone for further analysis of the molecular mechanism of dark-regulated anthocyanin synthesis in non-photosensitive eggplant.


Assuntos
Antocianinas/biossíntese , Transdução de Sinal Luminoso , Solanum melongena/genética , Regulação da Expressão Gênica de Plantas , RNA-Seq , Transdução de Sinais , Solanum melongena/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
10.
BMC Plant Biol ; 19(1): 67, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744551

RESUMO

BACKGROUND: Soil salinization is one of the most crucial abiotic stresses that limit the growth and production of eggplant. The existing researches in eggplant were mostly focused on salt-induced morphological, biochemical and physiological changes, with only limited works centered on salt-response genes in eggplant at the transcriptomic level. RESULTS: Our preliminary work found that Zhusiqie (No.118) is salt-tolerant and Hongqie (No.30) is salt-sensitive. Consequently, they were re-named as ST118 and SS30, respectively. ST118 showed less damaged on growth and higher K+/Na+ ratios in leaves than SS30. Comparative-transcriptome analysis was used as a powerful approach to understand the salt-response mechanisms in the leaves and roots of SS30 and ST118. And it revealed that genotype-specific and organ-specific manners exist in eggplant in response to salt stress. Strikingly, the genotype-specific differentially expressed genes (DEGs) in ST118 were considered crucial to its higher salt-tolerance, because the expression patterns of common DEGs in the leaves/roots of the two eggplant genotypes were almost the same. Among them, some transcription factors have been reported to be in response to elevated external salinity, including the members of C2C2-CO-like, WRKY, MYB and NAC family. In addition, the AKT1, KAT1 and SOS1 were up-regulated only in the leaves of ST118. Furthermore, the complementation assays demonstrated that the salt-tolerances of both yeast and Arabidopsis akt1 mutants were enhanced by heterologous expression of SmAKT1. CONCLUSION: The comparative-transcriptome analysis indicated that the salt-tolerance can be increased by higher transcript level of some genotype-specific genes. This work revealed that eggplants seem to be more inclined to absorb K+ rather than to exclude Na+ under salt stress conditions because seven K+ transporters were significantly up-regulated, while only one Na+ transporter was similarly regulated. Finally, the complementation assays of SmAKT1, which is genotype-specific up-regulated in ST118, suggest that the other TFs and K+ transport genes were worthy of future investigation for their functions in salinity tolerance.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Solanum melongena/genética , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia
11.
BMC Plant Biol ; 19(1): 387, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492114

RESUMO

BACKGROUND: Anthocyanin synthesis is affected by many factors, among which temperature is an important environmental factor. Eggplant is usually exposed to high temperatures during the cultivation season in Shanghai, China. Therefore,RNA -seq analysis was used to determine the effects of high-temperature stress on gene expression in the anthocyanin biosynthetic pathway of eggplant (Solanum melongena L.). RESULTS: We tested the heat-resistant cultivar 'Tewangda'. The plants were incubated at 38 °C and 45 °C, and the suitable temperature for eggplant growth was used as a control. The treatment times were 3 h and 6 h. The skin of the eggplant was taken for transcriptome sequencing, qRT-PCR assays and bioinformatic analysis. The results showed that 770 genes were differentially expressed between different treatments. Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses identified 16 genes related to anthocyanin biosynthesis, among which CHSB was upregulated. Other genes, including BHLH62, MYB380, CHI3, CHI, CCOAOMT, AN3, ACT-2, HST, 5MA-T1, CYP75A2, ANT17, RT, PAL2, and anthocyanin 5-aromatic acyltransferase were downregulated. In addition, the Myb family transcription factor PHL11 was upregulated in the CK 3 h vs 45 °C 3 h, CK 3 h vs 38 °C 3 h, and CK 6 h vs 38 °C 6 h comparisons, and the transcription factor bHLH35 was upregulated in the CK 3 h vs 38 °C 3 h and CK 6 h vs 38 °C 6 h comparisons. CONCLUSION: These results indicated that high temperature will downregulate most of the genes in the anthocyanin biosynthetic pathway of eggplant. Our data have a reference value for the heat resistance mechanism of eggplant and can provide directions for molecular breeding of heat-resistant germplasm with anthocyanin content in eggplant.


Assuntos
Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas de Plantas/genética , Solanum melongena/genética , Transcriptoma , Antocianinas/genética , Perfilação da Expressão Gênica , Genes de Plantas , Solanum melongena/metabolismo , Estresse Fisiológico
12.
BMC Genomics ; 19(1): 201, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554865

RESUMO

BACKGROUND: The anthocyanins are highly enriched in eggplants (Solanum melongena L.) with purple peel. However, our previous study showed that anthocyanins biosynthesis in eggplant cultivar 'Lanshan Hexian' was completely regulated by light and color becomes evident at most 2 days after exposure to light. In the present investigation, transcriptome study was made to explore the underlying molecular mechanisms of light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.) before color becomes evident. RESULTS: RNA-Seq was performed for four time points (0, 0.5, 4 and 8 h after bags removal) where concerted changes happened. A total of 32,630 genes or transcripts were obtained by transcriptome sequencing, from which 1956 differentially expressed genes (DEGs) were found. Gene Ontology analysis showed that the 1956 DEGs covered a wide range of cellular components, molecular functions and biological processes. All the DEGs were further divided into 26 clusters based on their distinct expression patterns. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found out 24 structural anthocyanin biosynthesis genes which distributing in seven clusters. In addition, 102 transcription factors, which exhibited highly dynamic changes in response to light, were found in the seven clusters. Three photoreceptors, UV Resistance Locus 8 (UVR8), Cryptochrome 3 (CRY3) and UVR3, were identified as DEGs. The light signal transduction elements, COP1 and two SPAs, might be responsible for anthocyanin biosynthesis regulation. CONCLUSION: Based on the transcriptome data, the anthocyanin biosynthesis structural genes, transcription factors, photoreceptors and light signal transduction elements were quickly screened which may act as the key regulatory factors in anthocyanin biosynthesis pathway. By comparing the transcriptome data with our previous studies, 869 genes were confirmed to participate in the light-induced anthocyanin biosynthesis. These results expand our knowledge of light-induced anthocyanin biosynthesis in plants, which allowing for fruit coloration to be improved under low-light conditions in future.


Assuntos
Antocianinas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Plantas/genética , Solanum melongena/genética , Frutas/genética , Frutas/metabolismo , Frutas/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Luz , Pigmentação , Solanum melongena/metabolismo , Solanum melongena/efeitos da radiação , Transcriptoma/efeitos da radiação
13.
Plant Cell Environ ; 40(12): 3069-3087, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940206

RESUMO

Light is a key environmental factor affecting anthocyanin biosynthesis. Our previous study demonstrated that "Lanshan Hexian" is a light-sensitive eggplant cultivar, but its regulatory mechanism is unknown. Here, delphinidin-3-[4-(cis-p-coumaroyl)-rhamnosyl-glucopyranoside]-5-glucopyranoside and delphinidin-3-[4-(trans-p-coumaroyl)-rhamnosyl-glucopyranoside]-5-glucopyranoside were identified as the main anthocyanin components in Lanshan Hexian by ultra-performance liquid chromatography-tandem mass spectrometry. Three time points of anthocyanin accumulation, including the start point (0 day), fastest point (5 days), and highest point (12 day), were investigated by using ribonucleic acid sequencing and iTRAQ technology. The corresponding correlation coefficients of differentially expressed genes, and differentially expressed proteins were 0.6936, 0.2332, and 0.6672. Anthocyanin biosynthesis was a significantly enriched pathway, and CHI, F3H, 3GT, 5GT, and HY5 were regulated at both transcriptional and translational levels. Moreover, some transcription factors and photoreceptors may participate in light-induced anthocyanin biosynthesis like the known transcription factors MYB113 and TT8. The transient expression assay indicated that SmMYB35, SmMYB44, and a SmMYB86 isoform might involve in the light-induced anthocyanin biosynthesis pathway. Finally, a regulatory model for light-induced anthocyanin biosynthesis in eggplant was constructed. Our work provides a new direction for the study of the molecular mechanisms of light-induced anthocyanin biosynthesis in eggplant.


Assuntos
Antocianinas/metabolismo , Perfilação da Expressão Gênica , Proteômica , Solanum melongena/genética , Análise por Conglomerados , Modelos Biológicos , Filogenia , Solanum melongena/metabolismo , Solanum melongena/efeitos da radiação
14.
Ecotoxicology ; 24(10): 2224-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407708

RESUMO

In this study, the characteristics of cadmium (Cd) uptake by roots and translocation from roots to leaves of two eggplant species (Solanum melongena and Solanum torvum) under relatively low Cd concentrations were investigated using stable (108)Cd isotope through a number of hydroponic experiments. The uptake and translocation of (108)Cd was compared with those of (70)Zn and (15)N. The results showed more (108)Cd was loaded to the vascular channels and translocated upward to the leaves in S. melongena than in S. torvum, while the (108)Cd concentrations were significantly lower in the roots of S. melongena than in S. torvum. When the phloem and xylem were wounded by grafting treatments, the foliar (108)Cd concentrations were decreased by more than 66% regardless of the rootstock species, whereas the uptake of (108)Cd in the root was not inhibited by grafting. Similar grafting effects were observed for (70)Zn. Hence, wounding phloem and xylem by grafting disturbed the upward transport of (108)Cd and (70)Zn to the eggplant leaves. Similarly, interruption of the phloem by the girdling treatment reduced the concentrations of (108)Cd in the leaves of S. melongena by approximately 51%, though the uptake of (108)Cd by roots was not reduced by the interruption of phloem. In contrast, neither (70)Zn concentrations nor stable N isotope ratio (δ(15)N) values in the roots and leaves of S. melongena were significantly influenced by the interruption of phloem. In conclusion, the phloem played a dominant role in the long-distance transport of Cd from the root to the leaf of S. melongena, whereas the xylem was the main channel for the translocation of Zn and N.


Assuntos
Cádmio/farmacocinética , Poluentes do Solo/farmacocinética , Solanum melongena/metabolismo , Transporte Biológico , Floema/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Xilema/metabolismo
15.
Plants (Basel) ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592960

RESUMO

Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis in plants. We discovered a novel eggplant (Solanum melongena L.) mutant yl20 (yellow leaf 20) that exhibits yellow leaves. In this study, we compared the leaves of the mutant yl20 and wild type (WT) plants for cytological, physiological, and transcriptomic analyses. The results showed that the mutant yl20 exhibits abnormal chloroplast ultrastructure, reduced chlorophyll and carotenoid contents, and lower photosynthetic efficiency compared to the WT. Transcriptome data indicated 3267 and 478 differentially expressed genes (DEGs) between WT and yl20 lines in the cotyledon and euphylla stages, respectively, where most DEGs were downregulated in the yl20. Gene Ontology (GO) analysis revealed the "plastid-encoded plastid RNA polymerase complex" and the "chloroplast-related" terms were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the significantly enriched DEGs were involved in flavone and flavonol biosynthesis, porphyrin and chlorophyll metabolism, etc. We speculated that these DEGs involved in significant terms were closely related to the leaf color development of the mutant yl20. Our results provide a possible explanation for the altered phenotype of leaf color mutants in eggplant and lay a theoretical foundation for plant breeding.

16.
Int J Biol Macromol ; 269(Pt 2): 132139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719008

RESUMO

Accumulating salinity in soil critically affected growth, development, and yield in plant. However, the mechanisms of plant against salt stress largely remain unknown. Herein, we identified a gene named SmCYP78A7a, which encoded a cytochrome P450 monooxygenase and belonged to the CYP78A sub-family, and its transcript level was significantly up-regulated by salt stress and down-regulated by dehydration stress. SmCYP78A7a located in the endoplasmic reticulum. Silencing of SmCYP78A7a enhanced susceptibility of eggplant to salt stress, and significantly down-regulated the transcript levels of salt stress defense related genes SmGSTU10 and SmWRKY11 as well as increased hydrogen peroxide (H2O2) content and decreased catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) enzyme activities. In addition, SmCYP78A7a transient expression enhanced eggplant tolerance to salt stress. By chromatin immunoprecipitation PCR (ChIP-PCR), luciferase reporter assay, and electrophoretic mobility shift assay (EMSA), SmWRKY11 activated SmCYP78A7a expression by directly binding to the W-box 6-8 (W-box 6, W-box 7, and W-box 8) within SmCYP78A7a promoter to confer eggplant tolerance to salt stress. In summary, our finds reveal that SmCYP78A7a positively functions in eggplant response to salt stress via forming a positive feedback loop with SmWRKY11, and provide a new insight into regulatory mechanisms of eggplant to salt stress.


Assuntos
Sistema Enzimático do Citocromo P-450 , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Salino , Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Estresse Salino/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroalimentação Fisiológica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Peróxido de Hidrogênio/metabolismo , Tolerância ao Sal/genética
17.
Plants (Basel) ; 12(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140500

RESUMO

Salt stress is a lethal abiotic stress threatening global food security on a consistent basis. In this study, we identified an AP2 and B3 domain-containing transcription factor (TF) named SmRAV1, and its expression levels were significantly up-regulated by NaCl, abscisic acid (ABA), and hydrogen peroxide (H2O2) treatment. High expression of SmRAV1 was observed in the roots and sepal of mature plants. The transient expression assay in Nicotiana benthamiana leaves revealed that SmRAV1 was localized in the nucleus. Silencing of SmRAV1 via virus-induced gene silencing (VIGS) decreased the tolerance of eggplant to salt stress. Significant down-regulation of salt stress marker genes, including SmGSTU10 and SmNCED1, was observed. Additionally, increased H2O2 content and decreased catalase (CAT) enzyme activity were recorded in the SmRAV1-silenced plants compared to the TRV:00 plants. Our findings elucidate the functions of SmRAV1 and provide opportunities for generating salt-tolerant lines of eggplant.

18.
Front Plant Sci ; 13: 1025951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388476

RESUMO

Understanding the mechanisms by which chlorophylls are synthesized in the eggplant (Solanum melongena) fruit peel is of great relevance for eggplant breeding. A multi-parent advanced generation inter-cross (MAGIC) population and a germplasm collection have been screened for green pigmentation in the fruit peel and used to identify candidate genes for this trait. A genome-wide association study (GWAS) performed with 420 MAGIC individuals revealed a major association on chromosome 8 close to a gene similar to APRR2. Two variants in SmAPRR2, predicted as having a high impact effect, were associated with the absence of fruit chlorophyll pigmentation in the MAGIC population, and a large deletion of 5.27 kb was found in two reference genomes of accessions without chlorophyll in the fruit peel. The validation of the candidate gene SmAPRR2 was performed by its sequencing in a set of MAGIC individuals and through its de novo assembly in 277 accessions from the G2P-SOL eggplant core collection. Two additional mutations in SmAPRR2 associated with the lack of chlorophyll were identified in the core collection set. The phylogenetic analysis of APRR2 reveals orthology within Solanaceae and suggests that specialization of APRR2-like genes occurred independently in Cucurbitaceae and Solanaceae. A strong geographical differentiation was observed in the frequency of predominant mutations in SmAPRR2, resulting in a lack of fruit chlorophyll pigmentation and suggesting that this phenotype may have arisen and been selected independently several times. This study represents the first identification of a major gene for fruit chlorophyll pigmentation in the eggplant fruit.

19.
Front Plant Sci ; 13: 847789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330873

RESUMO

Multi-parent advanced generation inter-cross (MAGIC) populations facilitate the genetic dissection of complex quantitative traits in plants and are valuable breeding materials. We report the development of the first eggplant MAGIC population (S3 Magic EGGplant InCanum, S3MEGGIC; 8-way), constituted by the 420 S3 individuals developed from the intercrossing of seven cultivated eggplant (Solanum melongena) and one wild relative (S. incanum) parents. The S3MEGGIC recombinant population was genotyped with the eggplant 5k probes SPET platform and phenotyped for anthocyanin presence in vegetative plant tissues (PA) and fruit epidermis (FA), and for the light-insensitive anthocyanic pigmentation under the calyx (PUC). The 7,724 filtered high-confidence single-nucleotide polymorphisms (SNPs) confirmed a low residual heterozygosity (6.87%), a lack of genetic structure in the S3MEGGIC population, and no differentiation among subpopulations carrying a cultivated or wild cytoplasm. Inference of haplotype blocks of the nuclear genome revealed an unbalanced representation of the founder genomes, suggesting a cryptic selection in favour or against specific parental genomes. Genome-wide association study (GWAS) analysis for PA, FA, and PUC detected strong associations with two myeloblastosis (MYB) genes similar to MYB113 involved in the anthocyanin biosynthesis pathway, and with a COP1 gene which encodes for a photo-regulatory protein and may be responsible for the PUC trait. Evidence was found of a duplication of an ancestral MYB113 gene with a translocation from chromosome 10 to chromosome 1 compared with the tomato genome. Parental genotypes for the three genes were in agreement with the identification of the candidate genes performed in the S3MEGGIC population. Our new eggplant MAGIC population is the largest recombinant population in eggplant and is a powerful tool for eggplant genetics and breeding studies.

20.
Plant Sci ; 309: 110935, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34134842

RESUMO

Eggplant is rich in anthocyanins, which are thought to be highly beneficial for human health. There is no study on weighted gene co-expression network analysis (WGCNA) of anthocyanin biosynthesis in eggplant. Here, transcriptome data of 33 eggplant pericarp samples treated with light were used for WGCNA to identify significant modules. Total 13000 DEGs and 12 modules were identified, and the most significant module was associated with the secondary metabolites pathways. In addition, the hub gene SmWRKY44 with high connectivity was selected and its function was verified. The expression of SmWRKY44 showed a significant correlation with anthocyanin accumulation in the eggplant peels, leaves, and flowers. SmWRKY44-OE Arabidopsis significantly increased the accumulation of anthocyanins. Yeast two-hybrid and BiFC assays showed that SmWRKY44 could interact with SmMYB1, and it was also found that they could jointly promote the biosynthesis of anthocyanins in eggplant leaves through transient expression analysis. Our work provides a new direction for studying the molecular mechanism of light-induced anthocyanin biosynthesis in eggplant.


Assuntos
Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Solanum melongena/genética , Transcriptoma , Antocianinas/efeitos da radiação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Flores/efeitos da radiação , Frutas/genética , Frutas/metabolismo , Frutas/efeitos da radiação , Expressão Gênica , Redes Reguladoras de Genes , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Solanum melongena/metabolismo , Solanum melongena/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA