Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Cell Biochem ; 124(4): 586-605, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36855998

RESUMO

The elabela-apelin/angiotensin domain type 1 receptor-associated protein (APJ) system is an important regulator in certain thrombosis-related diseases such as atherosclerosis, myocardial infarction, and cerebral infarction. Our previous reports have revealed that apelin exacerbates atherosclerotic lesions. However, the relationship between the elabela-apelin/APJ system and platelet aggregation and atherothrombosis is unclear. The results of the present study demonstrate that elabela and other endogenous ligands such as apelin-12, -17, and -36 induce platelet aggregation and thrombosis by activating the pannexin1(PANX1)-P2X7 signaling pathway. Interestingly, the diuretic, spironolactone, a novel PANX1 inhibitor, alleviated elabela- and apelin isoforms-induced platelet aggregation and thrombosis. Significantly, two potential antithrombotic drugs were screened out by targeting APJ receptors, including the anti-HIV ancillary drug cobicistat and the traditional Chinese medicine monomer Schisandrin A. Both cobicistat and Schisandrin A abolished the effects of elabela and apelin isoforms on platelet aggregation, thrombosis, and cerebral infarction. In addition, cobicistat significantly attenuated thrombosis in a ponatinib-induced zebrafish trunk model. Overall, the elabela-apelin/APJ axis mediated platelet aggregation and thrombosis via the PANX1-P2X7 signaling pathway in vitro and in vivo. Blocking the APJ receptor with cobicistat/Schisandrin A or inhibiting PANX1 with spironolactone may provide novel therapeutic strategies against thrombosis.


Assuntos
Hormônios Peptídicos , Trombose , Animais , Apelina , Peixe-Zebra/metabolismo , Espironolactona , Agregação Plaquetária , Hormônios Peptídicos/metabolismo , Transdução de Sinais , Receptores de Apelina/metabolismo , Trombose/tratamento farmacológico , Infarto Cerebral
2.
Cell Mol Neurobiol ; 43(6): 2989-3003, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37106272

RESUMO

Elabela (ELA), which is the second endogenous peptide ligand of the apelin receptor (APJ) to be discovered, has been widely studied for potential use as a therapeutic peptide. However, its role in ischemic stroke (IS), which is a leading cause of disability and death worldwide and has limited therapeutic options, is uncertain. The aim of the present study was to investigate the beneficial effects of ELA on neuron survival after ischemia and the underlying molecular mechanisms. Primary cortical neurons were isolated from the cerebral cortex of pregnant C57BL/6J mice. Flow cytometry and immunofluorescence showed that ELA inhibited oxygen-glucose deprivation (OGD) -induced apoptosis and axonal damage in vitro. Additionally, analysis of the Gene Expression Omnibus database revealed that the expression of microRNA-124-3p (miR-124-3p) was decreased in blood samples from patients with IS, while the expression of C-terminal domain small phosphatase 1 (CTDSP1) was increased. These results indicated that miR-124-3p and CTDSP1 were related to ischemic stroke, and there might be a negative regulatory relationship between them. Then, we found that ELA significantly elevated miR-124-3p expression, suppressed CTDSP1 expression, and increased p-AKT expression by binding to the APJ receptor under OGD in vitro. A dual-luciferase reporter assay confirmed that CTDSP1 was a direct target of miR-124-3p. Furthermore, adenovirus-mediated overexpression of CTDSP1 exacerbated neuronal apoptosis and axonal damage and suppressed AKT phosphorylation, while treatment with ELA or miR-124-3p mimics reversed these effects. In conclusion, these results indicated that ELA could alleviate neuronal apoptosis and axonal damage by upregulating miR-124-3p and activating the CTDSP1/AKT signaling pathway. This study, for the first time, verified the protective effect of ELA against neuronal injury after ischemia and revealed the underlying mechanisms. We demonstrated the potential for the use of ELA as a therapeutic agent in the treatment of ischemic stroke.


Assuntos
AVC Isquêmico , MicroRNAs , Fármacos Neuroprotetores , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Monoéster Fosfórico Hidrolases/farmacologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos/farmacologia , Apoptose , Glucose/metabolismo
3.
FASEB J ; 36(5): e22257, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35471770

RESUMO

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness associated with retinal vaso-obliteration in phase 1 and pathological neovascularization (NV) in phase 2; however, effective and safe treatments for ROP definitive treatment are yet to be determined. Anti-vascular endothelial growth factor (VEGF) therapy mainly focuses on reducing abnormal NV in phase 2 but with high risks of late recurrence and systemic side effects. Previous studies have established that the severity of vaso-obliteration in phase 1 largely influences subsequent stages, suggesting that prevention of vessels loss may be a potential therapeutic target for ROP. Herein, the therapeutic potential and safety of early Elabela intervention treatment in treating phase 1 ROP and the possible underlying mechanisms were investigated using an oxygen-induced retinopathy (OIR) mouse model. It was observed that intraperitoneal injection of Elabela remarkably reduced the avascular retinal area and increased the vascular density in phase 1 of OIR mice. Further investigation revealed that mitochondrion-dependent ferroptosis was involved in oxidative stress-mediated vascular protection loss in phase 1 OIR. Furthermore, we demonstrated that Elabela could rescue mitochondria-dependent ferroptosis via mediating the xCT/GPX4 axis. Collectively, our study revealed that ferroptosis may play a significant role in early ROP, while Elabela may be a safe and promising strategy for the early intervention of ROP.


Assuntos
Ferroptose , Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Oxigênio/metabolismo , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Retinopatia da Prematuridade/tratamento farmacológico
4.
Prostaglandins Other Lipid Mediat ; 167: 106735, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37059294

RESUMO

OBJECTIVE: Elabela is a newly discovered peptide hormone. This study aimed to determine the functional effects and mechanisms of action of elabela in rat pulmonary artery and trachea. MATERIALS AND METHODS: Vascular rings isolated from the pulmonary arteries of male Wistar Albino rats were placed in chambers in the isolated tissue bath system. The resting tension was set to 1 g. After the equilibration period, the pulmonary artery rings were contracted with 10-6 M phenylephrine. Once a stable contraction was achieved, elabela was applied cumulatively (10-10-10-6 M) to the vascular rings. To determine the vasoactive effect mechanisms of elabela, the specified experimental protocol was repeated after the incubation of signaling pathway inhibitors and potassium channel blockers. The effect and mechanisms of action of elabela on tracheal smooth muscle were also determined by a similar protocol. RESULTS: Elabela exhibited a concentration-dependent relaxation in the precontracted rat pulmonary artery rings (p < .001). Maximal relaxation level was 83% (pEC50: 7.947 CI95(7.824-8.069)). Removal of the endothelium, indomethacin incubation, and dideoxyadenosine incubation significantly decreased the vasorelaxant effect levels of elabela (p < .001). Elabela-induced vasorelaxation levels were significantly reduced after iberiotoxin, glyburide, and 4-Aminopyridine administrations (p < .001). L-NAME, methylene blue, apamin, TRAM-34, anandamide, and BaCl2 administrations did not cause a significant change in the vasorelaxant effect level of elabela (p = 1.000). Elabela showed a relaxing effect on precontracted tracheal rings (p < .001). Maximal relaxation level was 73% (pEC50: 6.978 CI95(6.791-7.153)). The relaxant effect of elabela on tracheal smooth muscle was decreased significantly after indomethacin, dideoxyadenosine, iberiotoxin, glyburide, and 4-Aminopyridine incubations (p < .001). CONCLUSIONS: Elabela exerted a prominent relaxant effect in the rat pulmonary artery and trachea. Intact endothelium, prostaglandins, cAMP signaling pathway, and potassium channels (BKCa, KV, and KATP channels) are involved in the vasorelaxant effect of elabela. Prostaglandins, cAMP signaling pathway, BKCa channels, KV channels, and KATP channels also contribute to elabela-induced tracheal smooth muscle relaxant effect.


Assuntos
Artéria Pulmonar , Anel Vascular , Ratos , Masculino , Animais , Glibureto/farmacologia , Glibureto/metabolismo , Traqueia , Didesoxiadenosina/metabolismo , Didesoxiadenosina/farmacologia , Ratos Wistar , Vasodilatação , Vasodilatadores/farmacologia , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacologia , Indometacina/farmacologia , Prostaglandinas/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Endotélio Vascular
5.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175743

RESUMO

The apelinergic system is a highly conserved pleiotropic system. It comprises the apelin receptor apelin peptide jejunum (APJ) and its two peptide ligands, Elabela/Toddler (ELA) and apelin, which have different spatiotemporal localizations. This system has been implicated in the regulation of the adipoinsular axis, in cardiovascular and central nervous systems, in carcinogenesis, and in pregnancy in humans. During pregnancy, the apelinergic system is essential for embryo cardiogenesis and vasculogenesis and for placental development and function. It may also play a role in the initiation of labor. The apelinergic system seems to be involved in the development of placenta-related pregnancy complications, such as preeclampsia (PE) and intrauterine growth restriction, but an improvement in PE-like symptoms and birth weight has been described in murine models after the exogenous administration of apelin or ELA. Although the expression of ELA, apelin, and APJ is altered in human PE placenta, data related to their circulating levels are inconsistent. This article reviews current knowledge about the roles of the apelinergic system in pregnancy and its pathophysiological roles in placenta-related complications in pregnancy. We also discuss the challenges in translating the actors of the apelinergic system into a marker or target for therapeutic interventions in obstetrics.


Assuntos
Hormônios Peptídicos , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Camundongos , Animais , Apelina/metabolismo , Placenta/metabolismo , Hormônios Peptídicos/metabolismo , Placentação , Pré-Eclâmpsia/metabolismo
6.
Curr Issues Mol Biol ; 45(1): 223-232, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36661503

RESUMO

Elabela is a component of the apelinergic system and may exert a cardioprotective role by regulating the innate immune responses. Innate lymphoid cells (ILCs) have a significant role in initiating and progressing immune-inflammatory responses. While ILCs have been intensively investigated during the last decade, little is known about their relationship with the apelinergic system and their cardiac diversity in a gender-based paradigm. In this study, we investigated the polarization of cardiac ILCs by Elabela in males versus females in a mouse model. Using flow cytometry and immunohistochemistry analyses, we showed a potential interplay between Elabela and cardiac ILCs and whether such interactions depend on sexual dimorphism. Our findings showed, for the first time, that Elabela is expressed by cardiac ILCs, and its expression is higher in females' ILC class 3 (ILC3s) compared to males. Females had higher frequencies of ILC1s, and Elabela was able to suppress T-cell activation and the expression of co-stimulatory CD28 in a mixed lymphocyte reaction assay (MLR). In conclusion, our results suggest, for the first time, a protective role for Elabela through its interplay with ILCs and that it can be used as an immunotherapeutic target in the treatment of cardiovascular disorders in a gender-based fashion.

7.
Pharmacol Res ; 178: 106186, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306141

RESUMO

Doxorubicin (DOX) is a widely used and effective antineoplastic drug; however, its clinical application is limited by cardiotoxicity. A safe and effective strategy to prevent from doxorubicin-induced cardiotoxicity (DIC) is still beyond reach. Elabela (ELA), a new APJ ligand, has exerted cardioprotective effect against multiple cardiovascular diseases. Here, we asked whether ELA alleviates DIC. Mice were injected with DOX to established acute DIC. In vivo studies were assessed with echocardiography, serum cTnT and CK-MB, HW/BW ratio and WGA staining. Cell death and atrophy were measured by AM/PI staining and phalloidin staining respectively in vitro. Autophagic flux was monitored with Transmission electron microscopy in vivo, as well as LysoSensor and mRFP-GFP-LC3 puncta in vitro. Our results showed that ELA improved cardiac dysfunction in DIC mice. ELA administration also attenuated cell death and atrophy in DOX-challenged neonatal rat cardiomyocytes (NRCs). Additionally, we found that ELA restored DOX-induced autophagic flux blockage, which was evidenced by the reverse of p62 and LC3II, improvement of lysosome function and accelerated degradation of accumulated autolysosomes. Chloroquine, a classical autophagic flux inhibitor, blunted the improvement of ELA on cardiac dysfunction. At last, we revealed that ELA reversed DOX-induced downregulation of transcription factor EB (TFEB), and silencing TFEB by siRNA abrogated the effects of ELA on autophagic flux as well as cell death and atrophy in NRCs. In conclusion, this study indicated that ELA ameliorated DIC through enhancing autophagic flux via activating TFEB. ELA may become a potential target against DIC.


Assuntos
Cardiotoxicidade , Cardiopatias , Animais , Atrofia/metabolismo , Atrofia/patologia , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/farmacologia , Cardiopatias/metabolismo , Camundongos , Miócitos Cardíacos , Ratos
8.
Mol Biol Rep ; 49(11): 10509-10519, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36129600

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion (I/R) injury is caused by a chain of events such as endothelial dysfunction. This study was conducted to investigate protective effects of ELABELA against myocardial I/R in Wistar rats and clarify its possible mechanisms. METHODS AND RESULTS: MI model was established based on the left anterior descending coronary artery ligation for 30 min. Then, 5 µg/kg of ELA peptide was intraperitoneally infused in rats once per day for 4 days. Western blot assay was used to assay the expression of t-ERK1/2, and p-ERK1/2 in different groups. The amount of myocardial capillary density, the expression levels of VEGF and HIF-1α were evaluated using immunohistochemistry assay. Masson's trichrome staining was utilized to assay cardiac interstitial fibrosis. The results showed that establishment of MI significantly enhanced cardiac interstitial fibrosis and changed p-ERK1/2/ t-ERK1/2 ratio. Likewise, ELA post-treatment markedly increased myocardial capillary density, the expression of several angiogenic factors (VEGF-A, HIF-1α), and reduced cardiac interstitial fibrosis by activation of ERK1/2 signaling pathways. CONCLUSION: Collectively, ELA peptide has ability to reduce myocardial I/R injury by promoting angiogenesis and reducing cardiac interstitial fibrosis through activating ERK/HIF-1α/VEGF pathway.


Assuntos
Traumatismo por Reperfusão Miocárdica , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , Sistema de Sinalização das MAP Quinases , Ratos Wistar , Neovascularização Patológica , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos/metabolismo , Fibrose
9.
Acta Pharmacol Sin ; 43(10): 2573-2584, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35260820

RESUMO

Inflammatory activation and oxidative stress promote the proliferation of vascular smooth muscle cells (VSMCs), which accounts for pathological vascular remodeling in hypertension. ELABELA (ELA) is the second endogenous ligand for angiotensin receptor-like 1 (APJ) receptor that has been discovered thus far. In this study, we investigated whether ELA regulated VSMC proliferation and vascular remodeling in spontaneously hypertensive rats (SHRs). We showed that compared to that in Wistar-Kyoto rats (WKYs), ELA expression was markedly decreased in the VSMCs of SHRs. Exogenous ELA-21 significantly inhibited inflammatory cytokines and NADPH oxidase 1 expression, reactive oxygen species production and VSMC proliferation and increased the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) in VSMCs. Osmotic minipump infusion of exogenous ELA-21 in SHRs for 4 weeks significantly decreased diastolic blood pressure, alleviated vascular remodeling and ameliorated vascular inflammation and oxidative stress in SHRs. In VSMCs of WKY, angiotensin II (Ang II)-induced inflammatory activation, oxidative stress and VSMC proliferation were attenuated by pretreatment with exogenous ELA-21 but were exacerbated by ELA knockdown. Moreover, ELA-21 inhibited the expression of matrix metalloproteinase 2 and 9 in both SHR-VSMCs and Ang II-treated WKY-VSMCs. We further revealed that exogenous ELA-21-induced inhibition of proliferation and PI3K/Akt signaling were amplified by the PI3K/Akt inhibitor LY294002, while the APJ receptor antagonist F13A abolished ELA-21-induced PI3K/Akt inhibition and Nrf2 activation in VSMCs. In conclusion, we demonstrate that ELA-21 alleviates vascular remodeling through anti-inflammatory, anti-oxidative and anti-proliferative effects in SHRs, indicating that ELA-21 may be a therapeutic agent for treating hypertension.


Assuntos
Hipertensão , Hormônios Peptídicos , Remodelação Vascular , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Ligantes , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Receptores de Angiotensina/metabolismo , Remodelação Vascular/fisiologia
10.
Gynecol Endocrinol ; 38(8): 693-696, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35758889

RESUMO

ObjectiveThis study aimed to detect Elabela concentrations in the serum of Missed abortion (MA) and compare them with the healthy pregnancies.Materials and methodsThis retrospective case-control study was performed in the second affiliated hospital, Xi'an Jiaotong University March 2019 to September 2019. A total of 108 healthy (35 early, 36 middle and 37 late) pregnant women and 25 (early gestational stage) MA patients were involved. Demographic and clinical characteristics were recorded. The concentration of plasma Elabela was examined using ELISA.ResultsThe level of plasma Elabela was increased in early and middle stages and decreased in late stage of healthy pregnant women. Maternal serum Elabela levels were significantly lower in MA patients (4.59 ± 1.23 ng/mL) compared to healthy pregnant women (5.77 ± 1.21 ng/mL, p < 0.01).ConclusionMaternal circulating levels of Elabela were significantly lower in MA patients than in healthy pregnant women. We consider that Elabela might be a crucial biomarker of the pathophysiologic process in MA.


Assuntos
Aborto Retido , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Gravidez , Gestantes , Estudos Retrospectivos
11.
J Cell Mol Med ; 25(17): 8537-8545, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34291565

RESUMO

This study was aimed at investigating whether Elabela (ELA) gene therapy can promote angiogenesis in the treatment of myocardial infarction (MI). The fusion expression plasmid pAAV-3 × Flag/ELA-32 was successfully constructed using molecular cloning technique. The model of acute MI was established by ligating the left anterior descending coronary artery in mice. Adeno-associated virus serotype 9 (AAV9) was injected into the surrounding myocardium and tail vein immediately after the model was established. AAV was injected again from the tail vein one week later. Compared with the MI+PBS (control) group, the serum N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration, and the values of left ventricular end-diastolic diameter (LVDd) and left ventricular end-systolic diameter (LVDs) of the MI+AAV-ELA (gene therapy) group were significantly decreased, while the value of left ventricular ejection fraction was significantly increased at 2 and 4 weeks after operation. Compared with the control group, the expression of CD105 and vWF and the percentage of CD31- and Ki67-co-positive cells were significantly increased in the gene therapy group. Moreover, the expressions of apelin peptide jejunum (APJ) receptor, vascular endothelial growth factor (VEGF), VEGFR2, Jagged1 and Notch3 in the heart tissue around the infarction were up-regulated in mice with gene therapy. The results suggest that ELA activates VEFG/VEGFR2 and Jagged1/Notch3 pathways through APJ to promote angiogenesis after myocardial infarction. ELA gene therapy may be used in the treatment of ischaemic cardiomyopathy in future.


Assuntos
Terapia Genética/métodos , Infarto do Miocárdio , Neovascularização Fisiológica , Hormônios Peptídicos/genética , Animais , Endoglina/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia
12.
J Cell Mol Med ; 25(1): 323-332, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33244875

RESUMO

Diabetic cardiomyopathy-pathophysiological heart remodelling and dysfunction that occurs in absence of coronary artery disease, hypertension and/or valvular heart disease-is a common diabetic complication. Elabela, a new peptide that acts via Apelin receptor, has similar functions as Apelin, providing beneficial effects on body fluid homeostasis, cardiovascular health and renal insufficiency, as well as potentially beneficial effects on metabolism and diabetes. In this study, Elabela treatment was found to have profound protective effects against diabetes-induced cardiac oxidative stress, inflammation, fibrosis and apoptosis; these protective effects may depend heavily upon SIRT3-mediated Foxo3a deacetylation. Our findings provide evidence that Elabela has cardioprotective effects for the first time in the diabetic model.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Proteína Forkhead Box O3/metabolismo , Estresse Oxidativo/fisiologia , Hormônios Peptídicos/metabolismo , Sirtuína 3/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Cardiomiopatias Diabéticas/genética , Proteína Forkhead Box O3/genética , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Hormônios Peptídicos/genética , Reação em Cadeia da Polimerase em Tempo Real , Sirtuína 3/genética
13.
Heart Fail Rev ; 26(5): 1249-1258, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32314083

RESUMO

Heart failure (HF) is a growing epidemic with high morbidity and mortality at an international scale. The apelin-APJ receptor pathway has been implicated in HF, making it a promising therapeutic target. APJ has been shown to be activated by a novel endogenous peptide ligand known as Elabela (ELA, also called Toddler or Apela), with a critical role in cardiac development and function. Activation of the ELA-APJ receptor axis exerts a wide range of physiological effects, including depressor response, positive inotropic action, diuresis, anti-inflammatory, anti-fibrotic, and anti-remodeling, leading to its cardiovascular protection. The ELA-APJ axis is essential for diverse biological processes and has been shown to regulate fluid homeostasis, myocardial contractility, vasodilation, angiogenesis, cellular differentiation, apoptosis, oxidative stress, cardiorenal fibrosis, and dysfunction. The beneficial effects of the ELA-APJ receptor system are well-established by treating hypertension, myocardial infarction, and HF. Additionally, administration of ELA protects human embryonic stem cells against apoptosis and stress-induced cell death and promotes survival and self-renewal in an APJ-independent manner (X receptor) via the phosphatidylinositol 3-kinase/Akt pathway, which may provide a new therapeutic approach for HF. Thus, targeting the ELA-APJ axis has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of HF. An increased understanding of cardiovascular actions of ELA will help to develop effective interventions. This article gives an overview of the characteristics of the ELA-apelin-APJ axis and summarizes the current knowledge on its cardioprotective roles, potential mechanisms, and prospective application for acute and chronic HF.


Assuntos
Insuficiência Cardíaca , Hipertensão , Hormônios Peptídicos , Apelina , Receptores de Apelina , Humanos , Miocárdio
14.
FASEB J ; 34(6): 7989-8000, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301550

RESUMO

Like apelin (pE13F, K17F), Elabela/Toddler is an endogenous ligand of the apelin receptor playing a key role in cardiovascular development. Elabela/Toddler exists as peptide fragments of 32 (Q32P), 22 (K22P) and 11 (C11P) amino acids. In this study, we investigated the possible structural and functional similarities between these endogenous ligands. We performed in vitro pharmacological characterization and biased signaling analyses for apelin and Elabela/Toddler fragments in CHO cells, by assessing binding affinities, the inhibition of cyclic adenosine monophosphate (cAMP) production and the triggering of ß-arrestin 2 recruitment. We also performed Alanine scanning for Elabela/Toddler and structure-function studies based on site-directed mutagenesis of the rat and human apelin receptor, to compare the modes of binding of the different endogenous ligands. Alanine scanning of K22P showed that neither of its cysteine residues were involved in binding or in peptide activity and that its C-terminus carried the key pharmacophore for receptor binding and activation. We showed that Asp282 and Asp284 of rat and human apelin receptor, respectively, were not involved in Elabela/Toddler activity, whereas they are key residues for apelin binding and activity. We found that the structural features of Elabela/Toddler and apelin were different, resulting in different modes of binding of these endogenous ligands to the apelin receptor. These differences should be taken into account in the future development metabolically stable analogs of Elabela/Toddler and apelin as potential therapeutic tools for the treatment of cardiovascular diseases and water retention/hyponatremic disorders.


Assuntos
Receptores de Apelina/metabolismo , Hormônios Peptídicos/metabolismo , Animais , Células CHO , Doenças Cardiovasculares/metabolismo , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Cisteína/metabolismo , Humanos , Hiponatremia/metabolismo , Fragmentos de Peptídeos/metabolismo , Ratos , Transdução de Sinais/fisiologia
15.
FASEB J ; 34(11): 14136-14149, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975331

RESUMO

The (pro)renin receptor (PRR), a key regulator of intrarenal renin-angiotensin system (RAS), is predominantly presented in podocytes, proximal tubules, distal convoluted tubules, and the apical membrane of collecting duct A-type intercalated cells, and plays a crucial role in hypertension, cardiovascular disease, kidney disease, and fluid homeostasis. In addition to its well-known renin-regulatory function, increasing evidence suggests PRR can also act in a variety of intracellular signaling cascades independently of RAS in the renal medulla, including Wnt/ß-catenin signaling, cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2 ) signaling, and the apelinergic system, and work as a component of the vacuolar H+ -ATPase. PRR and these pathways regulate the expression/activity of each other that controlling blood pressure and renal functions. In this review, we highlight recent findings regarding the antagonistic interaction between PRR and ELABELA/apelin, the mutually stimulatory relationship between PRR and COX-2/PGE2 or Wnt/ß-catenin signaling in the renal medulla, and their involvement in the regulation of intrarenal RAS thereby control blood pressure, renal injury, and urine concentrating ability in health and patho-physiological conditions. We also highlight the latest progress in the involvement of PRR for the vacuolar H+ -ATPase activity.


Assuntos
Hipertensão/fisiopatologia , Nefropatias/fisiopatologia , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina , Renina/metabolismo , Animais , Humanos , Transdução de Sinais , Receptor de Pró-Renina
16.
BMC Cardiovasc Disord ; 21(1): 390, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384364

RESUMO

BACKGROUND: Atrial fibrillation (AF) is a common arrhythmia in patients with hypertension. ELABELA, which has cardioprotective effects, is decreased in the plasma of patients with hypertension and might be associated with AF in the hypertensive population. This study aims to measure the ELABELA plasma levels in hypertension patients with and without AF and to analyse the related factors. METHODS: A total of 162 hypertension patients with or without AF were recruited for our monocentric observational study. Subjects were excluded if they had a history of valvular heart disease, rheumatic heart disease, cardiomyopathy, thyroid diseases, or heart failure. The patients' histories were recorded, and laboratory examinations were conducted. Plasma ELABELA was detected by immunoassay. Echocardiographs were performed, and parameters were collected by two experienced doctors. Binary logistic regression analysis was used to identify the association between ELABELA plasma level and AF in patients with hypertension. RESULTS: Plasma ELABELA levels were lower in hypertension patients with AF than in those without AF (2.0 [1.5, 2.8] vs. 4.0 [3.4, 5.0] ng/ml, P < 0.001). ELABELA levels were correlated with age, heart rate, BNP levels and left atrial dimension. In addition to the left atrial dimension, ELABELA plasma levels were associated with AF in patients with hypertension (OR 0.081, 95% CI 0.029-0.224, P < 0.001). ELABELA levels were further decreased in the persistent AF subgroup compared with the paroxysmal AF subgroup (1.8 [1.4, 2.5] vs. 2.2 [1.8, 3.0] ng/ml, P = 0.012) and correlated with HR, BNP and ESR levels. CONCLUSIONS: ELALABELA levels were decreased in hypertension patients with AF and further lowered in the persistent AF subgroup. Decreased ELABELA plasma levels were associated with AF in hypertension patients and may be an underlying risk factor.


Assuntos
Fibrilação Atrial/sangue , Hipertensão/sangue , Hormônios Peptídicos/sangue , Fatores Etários , Idoso , Fibrilação Atrial/complicações , Estudos de Casos e Controles , Feminino , Átrios do Coração , Frequência Cardíaca , Humanos , Hipertensão/complicações , Masculino , Peptídeo Natriurético Encefálico/sangue , Análise de Regressão , Fatores de Risco
17.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 43(2): 278-282, 2021 Apr 28.
Artigo em Chinês | MEDLINE | ID: mdl-33966710

RESUMO

Elabela is a newly discovered peptide in recent years.It is the endogenous ligand of Apelin receptor(APJ)and plays an important role in embryonic development and adult organs.Elabela-APJ axis is closely related to organ fibrosis.Elabela can protect the functions of heart and kidney by antagonizing renin-angiotensin system and regulating blood pressure.In addition,it can prevent kidney and heart fibrosis by down-regulating the expression of fibrosis and inflammatory factors.However,there is a positive correlation between the level of Elabela and the degree of liver fibrosis,suggesting that Elabela may play a role in promoting liver fibrosis.This review aims to explore the role of Elabela-APJ axis in renal fibrosis,cardiac fibrosis,and liver fibrosis,and to provide a new therapeutic target for organ fibrosis.


Assuntos
Hormônios Peptídicos , Apelina , Receptores de Apelina , Pressão Sanguínea , Feminino , Fibrose , Humanos , Gravidez
18.
Am J Physiol Renal Physiol ; 318(5): F1122-F1135, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174138

RESUMO

Emerging evidence has demonstrated that (pro)renin receptor (PRR)-mediated activation of intrarenal renin-angiotensin system (RAS) plays an essential role in renal handling of Na+ and water balance and blood pressure. The present study tested the possibility that the intrarenal RAS served as a molecular target for the protective action of ELABELA (ELA), a novel endogenous ligand of apelin receptor, in the distal nephron. By RNAscope and immunofluorescence, mRNA and protein expression of endogenous ELA was consistently localized to the collecting duct (CD). Apelin was also found in the medullary CDs as assessed by immunofluorescence. In cultured CD-derived M1 cells, exogenous ELA induced parallel decreases of full-length PRR (fPRR), soluble PRR (sPRR), and prorenin/renin protein expression as assessed by immunoblotting and medium sPRR and prorenin/renin levels by ELISA, all of which were reversed by 8-bromoadenosine 3',5'-cyclic monophosphate. Conversely, deletion of PRR in the CD or nephron in mice elevated Apela and Apln mRNA levels as well as urinary ELA and apelin excretion, supporting the antagonistic relationship between the two systems. Administration of exogenous ELA-32 infusion (1.5 mg·kg-1·day-1, minipump) to high salt (HS)-loaded Dahl salt-sensitive (SS) rats significantly lowered mean arterial pressure, systolic blood pressure, diastolic blood pressure, and albuminuria, accompanied with a reduction of urinary sPRR, angiotensin II, and prorenin/renin excretion. HS upregulated renal medullary protein expression of fPRR, sPRR, prorenin, and renin in Dahl SS rats, all of which were significantly blunted by exogenous ELA-32 infusion. Additionally, HS-induced upregulation of inflammatory cytokines (IL-1ß, IL-2, IL-6, IL-17A, IFN-γ, VCAM-1, ICAM-1, and MCP-1), fibrosis markers (TGF-ß1, FN, Col1A1, PAI-1, and TIMP-1), and kidney injury markers (NGAL, Kim-1, albuminuria, and urinary NGAL excretion) were markedly blocked by exogenous ELA infusion. Together, these results support the antagonistic interaction between ELA and intrarenal RAS in the distal nephron that appears to exert a major impact on blood pressure regulation.


Assuntos
Pressão Sanguínea , Hipertensão/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Hormônios Peptídicos/metabolismo , Sistema Renina-Angiotensina , Animais , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Nefropatias/prevenção & controle , Masculino , Camundongos Knockout , Hormônios Peptídicos/administração & dosagem , Hormônios Peptídicos/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Ratos Endogâmicos Dahl , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais
19.
Am J Physiol Heart Circ Physiol ; 318(1): H124-H134, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834836

RESUMO

Elabela (ELA) is a newly discovered peptide that acts as a novel endogenous ligand of angiotensin receptor-like 1 (APJ) receptor. This study was designed to evaluate the effects of ELA-21 in paraventricular nucleus (PVN) on blood pressure and sympathetic nerve activity in spontaneously hypertensive rats (SHR). Experiments were performed in male Wistar-Kyoto rats (WKY) and SHR. ELA expression was upregulated in PVN of SHR. PVN microinjection of ELA-21 increased renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), heart rate (HR), plasma norepinephrine, and arginine vasopressin (AVP) levels in SHR. Intravenous injection of ELA-21 significantly decreased MAP and HR in both WKY and SHR, but only induced a slight decrease in RSNA. APJ antagonist F13A in PVN abolished the effects of ELA-21 on RSNA, MAP and HR. Intravenous infusion of both ganglionic blocker hexamethonium and AVP V1a receptor antagonist SR49059 caused significant reduction in the effects of ELA-21 on RSNA, MAP and HR in SHR, while combined administration of hexamethonium and SR49059 abolished the effects of ELA-21. ELA-21 microinjection stimulated Akt and p85α subunit of phosphatidylinositol 3-kinase (PI3K) phosphorylation in PVN, whereas PI3K inhibitor LY294002 or Akt inhibitor MK-2206 almost abolished the effects of ELA-21 on RSNA, MAP, and HR. Chronic PVN infusion of ELA-21 induced sympathetic activation, hypertension, and AVP release accompanied with cardiovascular remodeling in normotensive WKY. In conclusion, ELA-21 in PVN induces exacerbated pressor and sympathoexcitatory effects in hypertensive rats via PI3K-Akt pathway.NEW & NOTEWORTHY We demonstrated that PVN microinjection of ELA-21 increases sympathetic nerve activity and blood pressure, which can be abolished by pretreatment of APJ antagonist. This is the first demonstration that central ELA can induce hypertension. The pressor effects in PVN are mediated by both sympathetic activation and vasopressin release via PI3K-Akt pathway. Our data confirm that ELA is upregulated in the PVN of SHR and so may be involved in the pressor and sympathoexcitatory effects in hypertension.


Assuntos
Pressão Arterial/efeitos dos fármacos , Hipertensão/induzido quimicamente , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Hormônios Peptídicos/administração & dosagem , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Arginina Vasopressina/sangue , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Injeções Intravenosas , Masculino , Microinjeções , Norepinefrina/sangue , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Hormônios Peptídicos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia
20.
Clin Exp Pharmacol Physiol ; 47(12): 1953-1964, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32687618

RESUMO

Destruction of endothelial cells (ECs) function is involved in the structural and functional pathophysiological processes of preeclampsia (PE). Vascular endothelial injury may pre-exist for several years in women that develop PE and may pose increased risks for hypertension, coronary artery disease, and type-2 diabetes mellitus. Previous findings showed that Elabela (ELA), the endogenous ligand of the apelin (APJ) receptor expressed mainly on ECs, may play a protective role in early pregnancy and prevent PE. However, the exact functional role and molecular mechanisms of ELA are unclear. Here, we aimed to classify whether and how ELA improves EC function via the ELA-APJ axis. Two human umbilical vein endothelial cell (HUVEC) lines, namely HUVECs and EA.hy926, were treated with ELA, and then their cellular activities were studied by performing CCK-8 tests, scratch-wound analysis, and tube-formation assays. Doses of ELA exceeding 0.01 µmol/L markedly improved the cell viability, migration, and tube formation ability of HUVECs and EA.hy926 cells. Western blot analysis indicated that the above effects caused by ELA were related to upregulation of the APJ receptor and activation of PI3K/Akt signalling. Further verification tests were performed using the PI3K inhibitor wortmannin, and the results illustrated that inhibiting PI3K/Akt signalling blocked the positive effects of ELA on EC function and APJ receptor expression. Taken together, our findings indicate that ELA may alter EC function via the ELA-APJ axis and PI3K/Akt signalling and that ELA shows promise for use in endothelial dysfunction therapy for preventing and treating PE.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Feminino , Humanos , Pré-Eclâmpsia/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA