Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 287: 112294, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714046

RESUMO

A novel heteroatomic N, P and S co-doped core-shell material (MnFe3O4@PZS) was synthesized by a simple polycondensation hydro-thermal method, and used as the cathode to cooperate with electron-catalysis to activate persulfate (S2O82-) (E-MnFe3O4@PZS-PDS) for tetracycline (TTC) degradation. Radical scavenger studies demonstrated that non-radicals including atomic H* and singlet oxygen (1O2) rather than sulfate and hydroxyl radicals were the crucial reactive oxygen species (ROS). Electrochemical analysis indicated that Mn doping could promote electro-catalytic process via diverting pathway from four/two-electron to one-electron to generate non-radical H*/1O2 at the cathode, including one-electron oxygen reduction reaction (1e-ORR) (O2→1O2), and one-electron hydrogen reduction reaction (1e-HRR) (H2O+e-→H∗), as evidenced by the lowest onset potential (0.072 V) together with electron transfer number (n = 1.65). Besides, the regeneration/reduction of FeⅡ/Ⅲ/MnⅡ/Ⅲ/Ⅳ and persulfate will not cause excessive consumption of electron and chemicals due to that could directly get the electron individually from the cathode and anode, and finally TTC could be completely degraded with low energy consumption (0.655 kWh m-3). This study provides new insights into the direct single electron activating PDS to produce non-radical H*/1O2 via core-shell catalytic MnFe3O4@PZS, and displays a promising application in wastewater treatment.


Assuntos
Elétrons , Purificação da Água , Catálise , Eletrodos , Oxirredução , Tetraciclina
2.
J Ind Microbiol Biotechnol ; 44(1): 23-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838894

RESUMO

This work assessed the antibacterial activity of electro-activated solutions of salts of weak organic acids (potassium acetate, potassium citrate and calcium lactate) on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes. This activity was compared in terms of minimal inhibitory (bactericidal) concentration to the effect of commercial acetic, citric and lactic acid at equivalent titratable acidity. Staining live/dead BacLight method was used to consider physiological state of bacteria following the evaluation of pathogenic strains during exposure to the tested solutions. The results demonstrated strong inhibitory activity of all electro-activated solutions. After 10 min of exposure to electro-activated potassium acetate, a reduction of ≥6 log CFU/ml of all bacteria was observed. The electro-activated potassium citrate demonstrated the lowest minimal inhibitory concentration. Nevertheless, its inactivation power was significantly higher than that of conjugated citric acid. Although electro-activated calcium lactate was found less effective in comparison with its conjugated acid form, after 10 min of contact with the tested pathogens, it induced a population reduction of 2.23, 2.97 and 5.57 log CFU/ml of S. aureus, L. monocytogenes and S. enterica, respectively.


Assuntos
Antibacterianos/farmacologia , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Ácidos/farmacologia , Contagem de Colônia Microbiana , Eletroquímica , Eletrodos , Humanos , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Sais/farmacologia , Eletricidade Estática
3.
Food Microbiol ; 64: 56-64, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28213035

RESUMO

The aim of this work was to study the potential of diluted electro-activated solutions of weak organic acid salts (potassium acetate, potassium citrate and calcium lactate) to extend the shelf life of blueberries during post-harvest storage. The sanitizing capacity of these solutions was studied against pathogenic bacteria Listeria monocytogenes and E. coli O157:H7 as well as phytopathogenic fungi A. alternata, F. oxysporum and B. cinerea. The results showed that a 5-min treatment of inoculated blueberries with electro-activated solutions resulted in a 4 log CFU/g reduction in Listeria monocytogenes for all solutions. For E. coli O157:H7, the electro-activated potassium acetate and potassium citrate solutions achieved a decrease of 3.5 log CFU/g after 5 min of berry washing. The most important fungus reduction was found when blueberries were washed with an electro-activated solution of potassium acetate and a NaOCl solution. After 5 min of blueberry washing with an electro-activated potassium acetate solution, a very high reduction effect was observed for A. alternata, F. oxysporum and B. cinerea, which showed survival levels of only 2.2 ± 0.16, 0.34 ± 0.15 and 0.21 ± 0.16 log CFU/g, respectively. Regarding the effect of the washing on the organoleptic quality of blueberries, the obtained results showed no negative effect on the product color or textural profile. Finally, this work suggests that washing with electro-activated solutions of weak organic acid salts can be used to enhance the shelf-life of blueberries during post-harvest storage.


Assuntos
Mirtilos Azuis (Planta)/microbiologia , Ácidos Carboxílicos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Qualidade dos Alimentos , Armazenamento de Alimentos/métodos , Fungos/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Mirtilos Azuis (Planta)/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Ácidos Carboxílicos/química , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Microbiologia de Alimentos , Lactatos/farmacologia , Acetato de Potássio/farmacologia , Citrato de Potássio/farmacologia , Hipoclorito de Sódio
4.
Anaerobe ; 47: 173-182, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28578132

RESUMO

In this work, the synergistic effect of electro-activated solutions (EAS) of potassium acetate and potassium citrate, nisin and moderate heat treatment to inactivate C. sporogenes PA 3679 spores was evaluated in green beans puree and whole green beans. Electro-activated solutions (EAS) of potassium acetate and potassium citrate were generated under 400 mA during 60 min. They were characterized by an oxidation-reduction potential (ORP) and pH values ranged from +300 to +1090 mV and 2.8 to 3.67, respectively. Moreover, the EAS were combined with a bacteriocin nisin at concentrations of 250, 500, 750 and 1000 IU/mL and the targeted sporicidal effect was evaluated under moderate heat treatment. The inoculated mixtures were subjected to temperatures of 95, 105 and 115 °C for exposure times of 5, 15 and 30 min. After plate counting, the synergistic effect of the hurdle principle composed of electro-activated solutions, nisin and moderate temperatures was demonstrated. The obtained results showed that the synergistic effect of the used hurdle was able to achieve an inactivation efficacy of 5.9-6.1 log CFU/mL. Furthermore, experiments carried out with whole green beans showed that spore inactivation level was significantly higher and reach 6.5 log CFU/mL. Moreover, spore morphology was examined by transmission electron microscopy and the obtained micrographs showed important damages in all of the treated spores.


Assuntos
Antibacterianos/farmacologia , Clostridium/efeitos dos fármacos , Clostridium/efeitos da radiação , Nisina/farmacologia , Soluções/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Temperatura Alta , Phaseolus/microbiologia , Acetato de Potássio/farmacologia , Citrato de Potássio/farmacologia , Soluções/química
5.
J Dairy Sci ; 99(4): 2552-2570, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26830750

RESUMO

Cheese-whey, a major co-product of the dairy industry, has recently been the subject of many technological applications. We studied the bioconversion of whey into valuable bio-products such as a potential lactulose prebiotic and compounds with antioxidant properties. This paper examines efficiency, safety, and economics of electro-activation as an eco-friendly technology for a maximum valorization of whey. Thus, a bottom-up approach was therefore addressed. The effect of 4 experimental parameters--low working temperatures (0, 10, and 25 °C), current intensities (400, 600, and 800 mA), volume conditions (100, 200, and 300 mL), and feed concentrations [7, 14, and 28% (wt/vol)]--on lactose-whey isomerization to lactulose under electro-activation process were studied. Structural characteristics of whey proteins and antioxidant functionality were also investigated. The results showed a compromise to be reached between both parameters. Therefore, the maximum yield of 35% of lactulose was achieved after 40 min of reaction at the working temperature of 10 °C under 400 mA electric current field and 100-mL volume conditions with using feed solution at 7% (wt/vol). The isomerization of lactose to lactulose is accomplished by subsequent degradation to galactose, but only at a very small amount. Additionally, whey electro-activation showed significantly elevated antioxidant capacity compared with the untreated samples. The enhancement of antioxidant functionality of whey electro-activation resulted from the synergistic effect of its partial hydrolysis and the formation of antioxidant components that were able to scavenge free radicals. In conclusion, the findings of this study reveal that the whey treated by the safety electro-activation technology has both lactulose-prebiotic and antioxidant properties and could have a substantial application in the manufacture of pharmaceutical and functional foods.


Assuntos
Eletroforese em Gel de Poliacrilamida , Tecnologia de Alimentos/métodos , Lactose/química , Espectrometria de Massas , Prebióticos , Proteínas do Soro do Leite/química , Soro do Leite/química , Animais , Queijo/análise , Técnicas Eletroquímicas , Tecnologia de Alimentos/tendências , Galactose/metabolismo , Hidrólise , Isomerismo , Lactose/metabolismo , Lactulose/química
6.
Anaerobe ; 35(Pt B): 11-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26103452

RESUMO

The combined effect of heat treatment and electro-activated solution (EAS) on the heat resistance of spores of Clostridium sporogenes and Geobacillus stearothermophilus was assessed under various heating and exposure time combinations. The acid and neutral EAS showed the highest inhibitory activity, indicating that these solutions may be considered as strong sporicidal disinfectants. These EAS were able to cause a reduction of ≥6 log of spores of C. sporogenes at 60 °C in only 1 min of exposition. For G. stearothermophilus spores, a reduction of 4.5 log was observed at 60 °C in 1 min, while in 5 min, ≥7 log CFU/ml reduction was observed. Inoculated puree of pea and corn were used as a food matrix for the determination of the heat resistance of these spores during the treatments in glass capillaries. The inactivation kinetics of the spores was studied in an oil bath. Combined treatment by EAS and temperature demonstrated a significant decrease in the heat resistance of C. sporogenes. The D100°C in pea puree with NaCl solution was 66.86 min while with acid and neutral EAS it was reduced down to 3.97 and 2.19 min, respectively. The spore of G. stearothermophilus displayed higher heat resistance as confirmed by other similar studies. Its D130°C in pea puree showed a decrease from 1.45 min in NaCl solution down to 1.30 and 0.93 min for acid and neutral EAS, respectively. The differences between the spores of these species are attributable to their different sensitivities with respect to pH, Redox potential and oxygen.


Assuntos
Clostridium/efeitos dos fármacos , Clostridium/efeitos da radiação , Desinfetantes/farmacologia , Microbiologia de Alimentos/métodos , Geobacillus stearothermophilus/efeitos dos fármacos , Geobacillus stearothermophilus/efeitos da radiação , Temperatura Alta , Contagem de Colônia Microbiana , Eletrólise , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Fatores de Tempo
7.
Water Res ; 232: 119682, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746031

RESUMO

Traditional free radicals-dominated electrochemical advanced oxidation processes (EAOPs) and sulfate radical-based advanced oxidation processes (SR-AOPs) are limited by pH dependence and weak reusability, respectively. To overcome these shortcomings, electro-enhanced activation of peroxymonosulfate (PMS) on a novel perovskite-Ti4O7 composite anode (E-PTi-PMS system) was proposed. It achieved an ultra-efficient removal rate (k = 0.467 min-1) of carbamazepine (CBZ), approximately 36 and 8 times of the E-PTi and PTi-PMS systems. Singlet oxygen (1O2) played a dominant role in the E-PTi-PMS system and transformed from SO4•-, O2•-, •OH and oxygen vacancy (Vo••). The electric field expedited the decomposition and utilization of PMS, promoting the generation of radicals and expanding the formation pathway of 1O2. The E-PTi-PMS system presented superiorities over wide pH (3-10) and less dosage of PMS (1 mM), expanding the pH adaptability and reducing the cost of EAOPs. Simultaneously, the excellent reusability (30 cycles) solved the bottleneck of recycling catalysts in SR-AOPs via an ultra-low energy (0.025 kWh/m3-log). This work provides a promising alternative towards high-efficiency and low-cost treatment of polluted waters.


Assuntos
Oxigênio Singlete , Titânio , Peróxidos/química , Oxigênio , Eletrodos
8.
Environ Sci Pollut Res Int ; 30(7): 17585-17596, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36197609

RESUMO

Oxygen (O2) in the air is a green oxidant, and utilization of air for pollutant removal is highly desired. Herein, we report the preparation and utilization of a novel biomass-based three-dimensional (3D) Ni@NiO/carbon composite for the electro-activation of O2 under room condition. The carbon-coated Ni@NiO nanoparticles are fabricated on a hierarchical 3D porous loofah sponge-derived carbon (LSC) support as the bifunctional catalyst for the activation of O2 via both the electro-oxidation and electro-reduction reactions. An electrocatalytic air oxidation coupling system is constructed with the Ni@NiO/LSC shell-core electrodes for pollutant degradation. A variety of organic pollutants, including pharmaceutics and personal care products (PPCPs), dyes, phenolic compounds, and real waters are mineralized by more than 60% with significantly enhanced biodegradability. Notably, the coupling system obtains high mineralization efficiency of 70.2 ± 1.9% on landfill leachate with significant biodegradability enhancement. The specific energy consumptions of the coupling system are only 6.8 ± 0.7 to 60.2 ± 3.6 kWh kg-TOC-1 in mineralizing different pollutants. The hollow structure of the LSC fibers endows the loaded Ni@NiO with superior intrinsic catalytic activity, which is associated with low reaction resistance and facile electron transfer. The Ni@NiO on LSC presents an electrocatalytic wet air oxidation (ECWAO) catalytic activity higher by 35.8% and cathodic air oxidation (CAO) catalytic activity higher by 22.7% as compared to that loaded on commercial graphite felt.


Assuntos
Poluentes Ambientais , Grafite , Luffa , Carbono/química , Oxirredução , Grafite/química , Oxigênio
9.
ACS Appl Mater Interfaces ; 15(6): 8010-8021, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36739542

RESUMO

Efficient hydrogen production, biomass up-conversion, and CO2-to-fuel generation are the key challenges of the present decade. Electrocatalysis in aqueous electrolytes by choosing suitable transition-metal-based electrode materials remains the green approach for the trio of sustainable developments. Given that, finding electrode materials with multifunctional capability would be beneficial. Herein, the nanocrystalline α-NiS, synthesized solvothermally, has been chosen as an electrode material. As the first step to construct an electrolyzer, α-NiS deposited on conducting nickel foam (NF) has been used as an anode, and under the anodic potential, the α-NiS particles have lost sulfides to the electrolyte and transform to amorphous electro-derived NiO(OH) (NiO(OH)ED), confirmed by different spectroscopic and microscopic studies. In situ transformation of α-NiS to amorphous NiO(OH)ED results in an enhancement of the electrochemical surface area and not only becomes active toward oxygen evolution reaction (OER) at a moderate overpotential of 264 mV (at 20 mA cm-2) but also can convert a series of biomass-derived organic compounds, namely, 2-hydroxymethylfurfural (HMF), 2-furfural (FF), ethylene glycol (EG), and glycerol (Gly), to industrially relevant feedstocks with a high (∼96%) Faradaic efficiency. During these organic oxidations, NiO(OH)ED/NF participate in the multiple-electron oxidation process (up to 8e-) including C-C bond cleavages of EG and Gly. During the cathodic performance of the α-NiS/NF, the structural integrity has been retained and the unaltered α-NiS/NF electrode remains more effective cathode for alkaline hydrogen evolution reaction (HER) and CO2 reduction (CO2R) compared to its in situ-derived NiO(OH)ED/NF. α-NiS/NF can reduce the CO2 predominantly to CO even at a higher potential like -0.8 V (vs RHE). The fabricated cell with α-NiS and its electro-oxidized NiO(OH)ED counterpart, α-NiS/NF(-)/(+)NiO(OH)ED/NF, is able to show an artificial photosynthetic scheme in which the NiO(OH)ED/NF anode oxidizes water to O2 and the α-NiS cathode reduces CO2 majorly to CO in a moderate cell potential. In this study, α-NiS has been utilized as a single electrode material to perform multiple sustainable transformations.

10.
Anal Chim Acta ; 1203: 339688, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35361430

RESUMO

Methylglyoxal (MGO), a dicarbonyl compound in living organism, food and environment, has been associated with disease diagnosis and human health. The current electrochemical detection methods rely on the use of advanced materials. In this work, a non-advanced materials "two-step" assay including electrode electro-activation and MGO detection was developed. In the section of electro-activation, an activation method of GCE for MGO detection was established; and the composition changes on GCE surface caused by electro-activation, including functional groups and surface defects, have been carefully studied. The effect of carbonyl and surface defects induced by electro-activation on MGO detection was discussed. In section of MGO detection, the raise of background current caused by electro-activation was minimized by background subtraction; and the effect of interferences can be weakened by adjusting pH. The MGO signal on proposed activated GCE improved 20-fold than bare GCE. The recoveries were 72.38-109.16% in honey and beer, and RSDs were 0.24-9.63% without significant difference with HPLC method and comparable with advanced material modified sensors.


Assuntos
Mel , Aldeído Pirúvico , Cerveja , Técnicas Eletroquímicas , Eletrodos , Humanos , Aldeído Pirúvico/análise , Aldeído Pirúvico/farmacologia
11.
Food Chem ; 373(Pt A): 131428, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34710696

RESUMO

The impact of alkaline electro-activation (EA) on the protein solubility, foaming, and emulsifying characteristics of whey was investigated. EA caused protein aggregation and conjugation. At low electric current and holding time, proteins aggregation through disulfide bonds was observed, whereas increasing currents and holding times caused proteins to conjugate with sugars such as lactose, lactulose and galactose. The EA process improved the protein solubility at the pH range of 4.0-7.0. Compared to untreated whey, which produced micron-sized and unstable emulsions at pH 3, whey samples treated under 750 mA and 24-48 h holding time formed nano-sized and stable emulsions at this pH. Furthermore, although both untreated and EA-whey produced stable emulsions at pH 7, those emulsions prepared with EA-whey had smaller particle size and were more stable against droplet flocculation. EA-treated whey tended to generate foams with significantly higher overrun and stability. The present study demonstrated that EA can enhance the functionality of whey.


Assuntos
Lactose , Soro do Leite , Emulsões , Concentração de Íons de Hidrogênio , Solubilidade , Proteínas do Soro do Leite
12.
J Hazard Mater ; 424(Pt A): 127271, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34564044

RESUMO

Efficient catalysts for oxygen (O2) activation under room condition are required for effective wet air oxidation (WAO) technology. Here, we report a novel manganese-cobalt-based composite (MnO-CoO@Co) fabricated on a graphite felt (GF) support for catalyzing the electro-activation of O2 under room condition. Abundant Co-MnO and CoO-MnO heterointerfaces are formed in the composite. In comparison to the single-metal counterparts, i.e. CoO@Co/GF (16.99 wt% Co) and MnO/GF (26.83 wt% Mn), the bimetal MnO-CoO@Co/GF (5.29 wt% Co and 8.79 wt% Mn) displays an improved oxygen storage capacity and provides more active sites to accommodate surface adsorbed oxygen species. Notably, the strong synergy derived from bimetal heterointerfaces enhances the electron transfer and oxygen mobilization during the electro-activation of O2, thereby significantly reducing the reaction barrier. MnO-CoO@Co/GF exhibits excellent efficiency and stability in electrocatalytic WAO (ECWAO) towards the removal of pharmaceuticals and personal care products (PPCPs) over a wide pH range from 4.0 to 10.0. A model pollutant sulfamethoxazole (SMX) acquires mineralization efficiency of 78.4 ± 2.1% and mineralization current efficiency of 157.89% at +1.0 V of electrode potential. The toxicity of PPCPs can be totally eliminated after the ECWAO treatment. This work highlights the synergy derived from bimetal heterointerfaces in O2 electrocatalysis, and provides a promising approach for advanced WAO catalysts in PPCPs pollution control.


Assuntos
Grafite , Poluentes Químicos da Água , Eletrodos , Peróxido de Hidrogênio , Oxigênio
13.
J Hazard Mater ; 428: 128245, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051773

RESUMO

Mn-doping strategy was adopted to modify the structure of MoO2 for enhancing its catalytic activity towards room-temperature electrocatalytic wet air oxidation (ECWAO) reaction. A series of Mn-doped MoO2 were prepared on carbon support, and their structures were investigated to elucidate the productive effect of Mn doping on the catalytic activity of MoO2. The incorporation of MnIII/MnII into the MoO2 lattice induced the transformation from MoIV to MoV and created more oxygen vacancies. Such structural modifications promoted the electron transfer of MoO2 through the redox couples between MoVI/MoV/MoIV and MnIII/MnII, and facilitated the transformation from O2 to adsorbed oxygen species on MoO2 surface. As a result, the ECWAO catalytic activities of Mn-doped MoO2/graphite felt (MoO2/GF) outperformed the activity of MoO2/GF. Among the synthesized series, Mn0.066:MoO2/GF exhibited the highest activity with the maximum turnover frequency (TOF) promoted by 59% than the undoped MoO2/GF. Under the catalysis of Mn0.066:MoO2/GF, the ECWAO process obtains mineralization efficiencies generally above 85% in degrading typical pharmaceutics and person care products (PPCPs). These findings are anticipated to open up a new venue in the design and fabrication of highly active catalysts for air oxidation reactions by using the strategy of selective dopant-induced structure modification.


Assuntos
Manganês , Molibdênio , Catálise , Humanos , Oxirredução , Óxidos , Temperatura
14.
Int J Food Microbiol ; 358: 109285, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34144838

RESUMO

Widespread in very diverse environments, the spores of Bacillus cereus are highly resistant to hostile conditions and can contaminate a huge variety of food products, posing a potential health hazard to consumers. Given this significant risk, the objective of this research work was to study the impacts of electro-activated solutions (EAS) made with calcium ascorbate, calcium lactate, and their equimolar mixture on Bacillus cereus ATCC 14579 spores in model conditions and food matrix, the fresh Atlantic salmon. The model conditions consisted of a direct application of the EAS to the spores, which avoided any interference with factors external to those of the solutions. Salmon was chosen as a food model because it is a product sensitive to bacterial spoilage and can be eaten raw. To achieve this, the solutions were prepared by electro-activation using an electric current with an intensity of 750 mA for 30 min, resulting in mean pH values of 1.94 ± 0.15-2.16 ± 0.01 and titratable acidity of 0.102 ± 0.001-0.109 ± 0.001 mol/L, depending on the type of solution. These conditions were chosen because of their excellent antibacterial efficacy previously demonstrated against vegetative cells of B. cereus. The results showed high sporicidal activities of the EAS against B. cereus with a 7 to 9 log reduction, using an initial spore population of 109 CFU/mL, depending on the conditions evaluated, namely: in direct contact (2-30 min), in salmon used as a food matrix (2-7 min), and in combination with moderate heat treatments from 60 to 90 °C (0.5-2 min). In addition, it was observed that the sporicidal capacity of the EAS increased with temperature and the contact time. Otherwise, analysis of the color and lipids of the salmon have not shown any major impacts of the use of EAS as a rinsing solution for this highly perishable food. Furthermore, micrographs taken by scanning and transmission electron microscopy revealed the destructive effects of the EAS used in the vital structures/components of the spores. In general, this study has demonstrated that the electro-activation technology is effective in producing EAS capable of destroying/inactivating B. cereus spores and that they can be used for the improvement of food safety and preservation.


Assuntos
Bacillus cereus , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Salmo salar , Alimentos Marinhos/microbiologia , Animais , Ácido Ascórbico , Compostos de Cálcio , Contagem de Colônia Microbiana , Temperatura Alta , Lactatos , Esporos Bacterianos
15.
J Environ Health Sci Eng ; 19(1): 625-639, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34150263

RESUMO

In this research work, we investigated the ability of the oxidative degradation of 2, 4-Dichlorophenoxy acetic acid herbicide via ultrasonic-assisted in electro-activation of the persulfate system in the presence of nano-zero valent iron. The effect of experimental parameters such as pH value [4-8], electrical current (0.5-1 A), persulfate concentration (0.25-0.5 mg.l-1), nano zero-valent iron dose (0.05-0.1 mg.l-1), and initial organic pollutant concentration (50-100 mg.l-1) on the ultrasonic-electropersulfate process performance was assessed via central composite design. The combination of ultrasonic waves with the electrochemical process to activation of persulfate showed better efficiency into 2, 4-Dichlorophenoxy acetic acid herbicide degradation compared to their implementation in individual and binary systems. Following optimal conditions (pH = 5.62, 0.80 A applied electrical current, 0.39 mg/L persulfate concentration, 0.07 mg/L nano-zero valent iron, and 50 mg/L 2,4-Dichlorophenoxy acetic acid concentration in 40 min reaction), nearly 91% removal was done. Moreover, the complete removal of 2, 4-Dichlorophenoxy acetic acid, 92% COD, and 88% TOC removal was achieved by this process near 140 min reaction. The scavenging experiment confirmed the role of free oxidizing species in the degradation of 2, 4-Dichlorophenoxy acetic acid during the process. Approximately 50% improved 2, 4-Dichlorophenoxy acetic acid removal in the process against the inclusive efficiency of single mechanisms. The obtained results were fitted to the pseudo-first-order kinetic model with a high correlation coefficient (R2 = 0.96). Five important intermediate products of 2, 4-D oxidation were 2, 4-dichlorophenol (2, 4-DCP), 2, 6-dichlorophenol (2, 6-DCP), 4, 6 dichlororesorcinol (4, 6-DCR), 2-chlorohydroquinone (2-CHQ), and 2-chloro-1, 4-benzoquinone (2-CBQ). In the end, can be employed as a satisfactory advanced oxidation process in high mineralization of 2, 4-D and refractory organic pollutants.

16.
Food Chem ; 307: 125547, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639582

RESUMO

Functional properties and antioxidant activity of soybean meal extracts obtained by conventional chemical method were compared to those obtained by using electro-activated solutions. The conventional extract obtained at pH8 had the highest WAC (400 ±â€¯7 g/100 g), while the lowest was that of samples extracted under pH3. Extract obtained using electro-activated solution Anolyte_300mA-30 min had WAC value (25 ±â€¯1 g/100 g). OAC was the highest for samples extracted under alkaline conditions whatever the extraction mode used with values of 5.50 ±â€¯0.54 to 6.85 ±â€¯0.62 mL/g. FC of the conventional extracts was higher compared to those extracted by electro-activation with maximal value of 52% for the conventional sample obtained at pH9, whereas the maximal FC of 28% was observed for the electro-activated sample obtained by using Anolyte_450mA-50 min. Electro-activated showed higher EP. Conventional extracts showed higher antioxidant activity (92.31 ±â€¯1.5%) than those obtained by electro-activation (47.46 ±â€¯0.94%).


Assuntos
Antioxidantes/química , Glycine max/química , Elétrons , Refeições , Extratos Vegetais/química , Soluções
17.
Food Res Int ; 103: 316-325, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389621

RESUMO

Recently, we demonstrated the efficacy of electro-activation to improve the functionalities of whey that can be used as a prebiotic and antioxidant agent through lactulose and Maillard reaction products formation. The aim of the present study was to evaluate the effect of electro-activated sweet whey (EA-whey) on growth of probiotics of Bifidobacterium, Lactobacillus, and Streptococcus strains in pure cultures and to compare EA-whey with non-electro-activated whey, lactulose, lactose, sucrose, glucose and galactose at different concentrations (1.25, 2.5 and 5%). The bacterial growth was monitored through maximum optical density (ODmax) and maximum growth rate (µmax) measurements. Moreover, the effects of EA-whey on the growth of L. johnsonii La-1 in the presence of oxygen was assessed. FTIR spectroscopy analyses of the bacterial membrane structure were monitored as a function of EA-whey concentration. The results showed that EA-whey enhanced the growth of all the test bacteria. They clearly demonstrated a promoting bifidogenic effect of EA-whey compared to lactulose. The growth of L. johnsonii La-1 was greatly enhanced under aerobic conditions by the supplementation of the growth medium with EA-whey. This growth promoting effect could be related to the ability of EA-whey to prevent the accumulation of hydrogen peroxide, its high antioxidant capacity and lactulose content. Moreover, FTIR spectra showed that EA-whey acts as an antioxidant in regards to cell membrane lipids oxidation by oxygen species and limited their adverse effect on probiotic bacteria during their growth. Thus, EA-whey, a potential prebiotic and antioxidant, could be used as active ingredient in manufacturing functional fermented dairy products.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Lactobacillus/crescimento & desenvolvimento , Lactose/metabolismo , Lactulose/metabolismo , Prebióticos , Probióticos , Streptococcus/crescimento & desenvolvimento , Proteínas do Soro do Leite/metabolismo , Antioxidantes/metabolismo , Bifidobacterium/metabolismo , Produtos Fermentados do Leite , Eletricidade , Fermentação , Lactobacillus/metabolismo , Reação de Maillard , Probióticos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Streptococcus/metabolismo
18.
Environ Technol ; 39(9): 1208-1216, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28443369

RESUMO

This work assesses the role of the operational conditions upon the electro-activation of persulfate (PS) using sacrificed iron electrode as a continuous low-cost Fe2+ source. An aqueous phenol solution (100 mg L-1) was selected as model effluent. The studied variables include current density (1-10 mA cm-2), persulfate concentration (0.7-2.85 g L-1), temperature (30-90°C) and the solution conductivity (2.7-20.7 mS cm-1) using Na2SO4 and NaCl as supporting electrolyte. A mineralization degree of around 80% with Na2SO4 and 92% in presence of NaCl was achieved at 30°C using 2.15 g L-1 PS at the lowest current density tested (1 mA cm-2). Besides PS concentration, temperature was the main variable affecting the process. In the range of 30-70°C, it showed a positive effect, achieving TOC conversion above 95% (using Na2SO4 under the previous conditions) along with a significant increase in iron sludge, which adversely affects the economy of the process. A lumped and simplified kinetic model based on persulfate consumption and TOC mineralization is suggested. The activation energy obtained for the TOC decay was 29 kJ mol-1. An estimated operating cost of US$ 3.00 per m3 was obtained, demonstrating the economic feasibility of this process.


Assuntos
Ferro/química , Sulfatos/química , Purificação da Água , Eletrodos , Oxirredução , Poluentes da Água , Poluentes Químicos da Água
19.
Waste Manag ; 81: 220-225, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30527039

RESUMO

This work assesses the feasibility of sequential persulfate and Fenton oxidation for the decolorization and mineralization of landfill leachate (5600 mg L-1 TOC; pH0: 8.6) in a continuous batch-recirculation system. Firstly, it was analyzed the role of the operational conditions upon the persulfate activation evaluating the effects of electrolysis, ilmenite (FeTiO3) as a source of Fe(II) and UV-LED (at 365 nm). The studied variables include current density (j) (50-200 mA cm-2), persulfate dose (46.8-234 mM) and mineral concentration (500-1500 mg L-1). The increase in j enhanced the hypochlorite generation and PS conversion to SO4- and, consequently, decolorization efficiency increasing the penetration of light through the solution and the photoreduction of Fe(III) to Fe(II) in the FeTiO3 surface. The combined electrolysis/FeTiO3/UV-LED showed synergetic effect compared to the individual processes, achieving mineralization around 53% under the optimum operating conditions (1 g L-1 of FeTiO3, using 234 mM of PS at 200 mA cm-2 under UV-LED radiation). The subsequent Fenton oxidation once the pH decreased up to around 3, led to overall mineralization above 90% after 480 min, confirming the suitability of this combined treatment to deal with recalcitrant and highly colored effluents.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Sulfatos/química , Eliminação de Resíduos Líquidos , Oxirredução , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água
20.
Food Chem ; 221: 590-598, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979246

RESUMO

Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins.


Assuntos
Reação de Maillard , Peptídeos/química , Proteínas do Soro do Leite/química , Soro do Leite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA